Publications

Export 7148 results:
[ Author(Desc)] Title Type Year
Filters: Filter is   [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
D
Deshpande A, Garofalakis M, Rastogi R.  2001.  Independence is good: dependency-based histogram synopses for high-dimensional data. SIGMOD Rec.. 30(2):199-210.
Deshpande A, Nath S, Gibbons PB, Seshan S.  2003.  Cache-and-query for wide area sensor databases. Proceedings of the 2003 ACM SIGMOD international conference on Management of data. :503-514.
Deshpande A, Hellerstein L.  2008.  Flow Algorithms for Parallel Query Optimization. IEEE 24th International Conference on Data Engineering, 2008. ICDE 2008. :754-763.
Deshpande A, Guestrin C, Madden S.  2005.  Using probabilistic models for data management in acquisitional environments. Proc. CIDR. :317-328.
Deshpande A, Guestrin C, Madden SR, Hellerstein JM, Hong W.  2004.  Model-driven data acquisition in sensor networks. Proceedings of the Thirtieth international conference on Very large data bases - Volume 30. :588-599.
Deshpande A, Ives Z, Raman V.  2007.  Adaptive query processing: why, how, when, what next? Proceedings of the 33rd international conference on Very large data bases. :1426-1427.
Deshpande A, Sarawagi S.  2007.  Probabilistic graphical models and their role in databases. Proceedings of the 33rd international conference on Very large data bases. :1435-1436.
Deshpande A, Hellerstein JM.  2002.  Decoupled query optimization for federated database systems. 18th International Conference on Data Engineering, 2002. Proceedings. :716-727.
Deshpande A.  2010.  Increasing representational power and scaling reasoning in probabilistic databases. Proceedings of the 13th International Conference on Database Theory. :1-1.
Deshpande A, Hicks MW.  2005.  Toward on-line schema evolution for non-stop systems. 11th High Performance Transaction Systems Workshop.
Deshpande A, Madden S.  2006.  MauveDB: supporting model-based user views in database systems. Proceedings of the 2006 ACM SIGMOD international conference on Management of data. :73-84.
Deshpande A, Huang R, Raman V, Riggs T, Song D, Subramanian L.  1999.  A Study of the Structure of the Web. University of California, Berkeley.
Deshpande A, Hellerstein J.  2002.  On using correlation-based synopses during query optimization. Computer Science Division (EECS), University of California Berkeley.
Deshpande A, Khuller S, Malekian A, Toossi M.  2011.  Energy efficient monitoring in sensor networks. Algorithmica. 59(1):94-114.
Desimone R, Wilkins DE, Bienkowski M, desJardins M.  1993.  SOCAP: lessons learned in automating military operations planning. Proceedings of the 6th international conference on Industrial and engineering applications of artificial intelligence and expert systems. :384-393.
desJardins M, Bulka B, Carr R, Hunt A, Rathod P, Rheingans P.  2006.  Heuristic search and information visualization methods for school redistricting. Proceedings of the 18th conference on Innovative applications of artificial intelligence - Volume 2. :1774-1781.
desJardins M.  1994.  Knowledge acquisition techniques for a military planning system. Tools with Artificial Intelligence, 1994. Proceedings., Sixth International Conference on. :454-460.
desJardins M.  2005.  DD-PREF: A language for expressing preferences over sets. In AAAI-05.
desJardins M.  1994.  How to succeed in graduate school: a guide for students and advisors: part I of II. Crossroads. 1(2):3-9.
desJardins M, MacGlashan J, Wagstaff KL.  2010.  Confidence-based feature acquisition to minimize training and test costs. Proceedings of the SIAM Conference on Data Mining. 76(373):514-524.
desJardins M, Rathod P, Getoor L.  2008.  LEARNING STRUCTURED BAYESIAN NETWORKS: COMBINING ABSTRACTION HIERARCHIES AND TREE‐STRUCTURED CONDITIONAL PROBABILITY TABLES. Computational Intelligence. 24(1):1-22.
desJardins M.  1993.  Pagoda: A Model for Autonomous Learning in Probabilistic Domains. AI Magazine. 14(1):75-75.
desJardins M.  1994.  Evaluation of learning biases using probabilistic domain knowledge. Proceedings of the workshop on Computational learning theory and natural learning systems (vol. 2) : intersections between theory and experiment: intersections between theory and experiment. :97-112.
desJardins M, Rathod P, Getoor L.  2005.  Bayesian network learning with abstraction hierarchies and context-specific independence. Machine Learning: ECML 2005. :485-496.
desJardins M.  1995.  How to succeed in graduate school: A guide for students and advisors. International Amateur-Professional Photoelectric Photometry Communications. 58:15-15.

Pages