next up previous
Next: About this document Up: Scalable Data Parallel Algorithms Previous: Tables for CM-5

References

1
S. G. Akl. The Design and Analysis of Parallel Algorithms. Prentice-Hall, Englewood Cliffs, NJ, 1989.

2
D. A. Bader, J. JáJá, and R. Chellappa. Scalable Data Parallel Algorithms for Texture Synthesis and Compression Using Gibbs Random Fields. Technical Report CS-TR-3123 and UMIACS-TR-93-80, UMIACS and Electrical Engineering, University of Maryland, College Park, MD, August 1993.

3
J. E. Besag and P. A. P. Moran. On the Estimation and Testing of Spacial Interaction in Gaussian Lattice Processes. Biometrika, 62:555--562, 1975.

4
G. E. Blelloch. data layout for the CM-2. Personal Communications, August 17, 1993.

5
G. E. Blelloch, C. E. Leiserson, B. M. Maggs, C. G. Plaxton, S. J. Smith, and M. Zagha. A Comparison of Sorting Algorithms for the Connection Machine CM-2. In Proceedings of the ACM Symposium on Parallel Algorithms and Architectures, pages 3--16, July 1991.

6
R. Chellappa. Two-Dimensional Discrete Gaussian Markov Random Field Models for Image Processing. In L. N. Kanal and A. Rosenfeld, editors, Progress in Pattern Recognition, volume 2, pages 79--112. Elsevier Science Publishers B. V., 1985.

7
R. Chellappa and S. Chatterjee. Classification of Textures Using Gaussian Markov Random Fields. IEEE Transactions on Acoustics, Speech, and Signal Processing, 33:959--963, August 1985.

8
R. Chellappa, S. Chatterjee, and R. Bagdazian. Texture Synthesis and Compression Using Gaussian-Markov Random Field Models. IEEE Transactions on Systems, Man, and Cybernetics, 15:298--303, March 1985.

9
R. Chellappa, Y. H. Hu, and S. Y. Kung. On Two-Dimensional Markov Spectral Estimation. IEEE Transactions on Acoustics, Speech, and Signal Processing, ASSP-31:836--841, August 1983.

10
R. Chellappa and R. L. Kashyap. Synthetic Generation and Estimation in Random Field Models of Images. In IEEE Comp. Soc. Comf. on Pattern Recog. and Image Processing, pages 577--582, Dallas, TX, August 1981.

11
R. Chellappa and R. L. Kashyap. Texture Synthesis Using 2-D Noncausal Autoregressive Models. IEEE Transactions on Acoustics, Speech, and Signal Processing, ASSP-33:194--203, February 1985.

12
F. S. Cohen. Markov Random Fields for Image Modelling & Analysis. In U. Desai, editor, Modelling and Applications of Stochastic Processes, chapter 10, pages 243--272. Kluwer Academic Press, Boston, MA, 1986.

13
F. S. Cohen and D. B. Cooper. Simple Parallel hierarchical and relaxation algorithms for segmenting noncausal Markovian fields. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-9:195--219, March 1987.

14
G. R. Cross and A. K. Jain. Markov Random Field Texture Models. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-5:25--39, January 1983.

15
H. Derin. The Use of Gibbs Distributions In Image Processing. In Blake and H. V. Poor, editors, Communications and Networks, chapter 11, pages 266--298. Springer-Verlag, New York, 1986.

16
H. Derin and H. Elliott. Modeling and segmentation of noisy and textured images using Gibbs random fields. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-9:39--55, January 1987.

17
R. C. Dubes and A. K. Jain. Random Field Models in Image Analysis. Journal of Applied Statistics, 16:131--164, 1989.

18
S. Geman and D. Geman. Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-6:721--741, November 1984.

19
R. I. Greenberg and C. E. Leiserson. Randomized Routing on Fat-Trees. Advances in Computing Research, 5:345--374, 1989.

20
J. JáJá. An Introduction to Parallel Algorithms. Addison-Wesley Publishing Company, New York, 1992.

21
F. C. Jeng, J. W. Woods, and S. Rastogi. Compound Gauss-Markov Random Fields for Parallel Image Processing. In R. Chellappa and A. K. Jain, editors, Markov Random Fields: Theory and Application, chapter 2, pages 11--38. Academic Press, Boston, MA, 1993. Bell Communications Research and ECSE Department, Renssalaer Polytechnic Institute.

22
S. L. Johnsson, M. Jacquemin, and R. L. Krawitz. Communications Efficient Multi-Processor FFT. Journal of Computational Physics, 102:381--397, 1992.

23
S. L. Johnsson and R. L. Krawitz. Cooley - Tukey FFT on the Connection Machine. Parallel Computing, 18:1201--1221, 1992.

24
R. L. Kashyap. Univariate and Multivariate Random Field Models for Images. Computer Graphics and Image Processing, 12:257--270, 1980.

25
R. L. Kashyap and R. Chellappa. Estimation and Choice of Neighbors in Spacial Interaction Models of Images. IEEE Transactions on Information Theory, IT-29:60--72, January 1983.

26
H. Künsch. Thermodynamics and Statistical Analysis of Gaussian Random Fields. Zeitschrift für Wahrscheinlichkeitstheorie verwandte Gebiete, 58:407--421, November 1981.

27
O. J. Kwon and R. Chellappa. Segmentation-based image compression. Optical Engineering, 32:1581--1587, July 1993. (Invited Paper).

28
C. E. Leiserson. Fat-Trees: Universal Networks for Hardware-Efficient Supercomputing. IEEE Transactions on Computers, C-34:892--901, October 1985.

29
C. E. Leiserson, Z. S. Abuhamdeh, D. C. Douglas, C. R. Feynman, M. N. Ganmukhi, J. V. Hill, W. D. Hillis, B. C. Kuszmaul, M. A. St. Pierre, D. S. Wells, M. C. Wong, S. W. Yang, and R. Zak. The Network Architecture of the Connection Machine CM-5. (Extended Abstract), July 28, 1992.

30
M. Lin, R. Tsang, D. H. C. Du, A. E. Klietz, and S. Saroff. Performance Evaluation of the CM-5 Interconnection Network. Technical Report AHPCRC Preprint 92-111, University of Minnesota AHPCRC, October 1992.

31
F. A. Lootsma and K. M. Ragsdell. State-of-the-art in Parallel Nonlinear Optimization. Parallel Computing, 6:133--155, 1988.

32
B. S. Manjunath, T. Simchony, and R. Chellappa. Stochastic and Deterministic Networks for Texture Segmentation. IEEE Transactions on Acoustics, Speech, and Signal Processing, ASSP-38:1039--1049, June 1990.

33
J. Max. Quantizing for Minimum Distortion. IRE Transactions on Information Theory, IT-16:7--12, March 1960.

34
J. Palmer and G. L. Steele Jr. Connection Machine Model CM-5 System Overview. In The Fourth Symposium on the Frontiers of Massively Parallel Computation, pages 474--483, Los Alamitos, CA, October 1992. IEEE Computer Society Press.

35
T. Poggio and D. Weinschall. The MIT Vision Machine: Progress in the Integration of Vision Models. In R. Chellappa and A. K. Jain, editors, Markov Random Fields: Theory and Application. Academic Press, Boston, MA, 1993.

36
B. T. Polyak. Introduction to Optimization. Optimization Software, Inc., New York, 1987.

37
T. Simchony, R. Chellappa, and Z. Lichtenstein. Relaxation Algorithms for MAP Estimation of Gray-Level Images with Multiplicative Noise. IEEE Transactions on Information Theory, IT-36:608--613, May 1990.

38
Thinking Machines Corporation, Cambridge, MA. Programming Guide, Version 6.0.2 edition, June 1991.

39
Thinking Machines Corporation, Cambridge, MA. Paris Reference Manual, Version 6.0 edition, June 1991.

40
Thinking Machines Corporation, Cambridge, MA. The Connection Machine CM-5 Technical Summary, January 1992.

41
Thinking Machines Corporation, Cambridge, MA. CMMD Reference Manual, 3.0 edition, May 1993.

42
Thinking Machines Corporation, Cambridge, MA. CMSSL for CM Fortran, CM-5 Edition, Version 3.1 edition, June 1993.

43
Thinking Machines Corporation, Cambridge, MA. Programming Guide, May 1993.

44
R. Whaley. data layout for the CM-2. Personal Communications, August 17, 1993.

45
R. Whaley. data layout for the CM-5. Personal Communications, June 8, 1993.

46
J. W. Woods. Two-Dimensional Discrete Markovian Random Fields. IEEE Transactions on Information Theory, IT-18:232--240, March 1972.



next up previous
Next: About this document Up: Scalable Data Parallel Algorithms Previous: Tables for CM-5



David A. Bader
dbader@umiacs.umd.edu