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Abstract

Selection and Information:
A Class-Based Approach to Lexical Relationships

Philip Stuart Resnik

Supervisor: Aravind Joshi

Selectional constraints are limitations on the applicability of predicates to arguments. For example, the
statement “The number two isblue” may be syntactically well formed, but at some level it is anomal ous —
BLUE is not a predicate that can be applied to numbers.

According to the influential theory of (Katz and Fodor, 1964), a predicate associates a set of defining
features with each argument, expressed within a restricted semantic vocabulary. Despite the persistence of
this theory, however, there is widespread agreement about its empirical shortcomings (McCawley, 1968;
Fodor, 1977). As an dternative, some critics of the Katz-Fodor theory (e.g. (Johnson-Laird, 1983)) have
abandoned the treatment of selectional constraints as semantic, instead treating them as indistinguishable
from inferences made on the basis of factua knowledge. This provides a better match for the empirical
phenomena, but it opensup adifferent problem: if selectional constraintsarethesameasinferencesingeneral,
then accounting for them will require a much more complete understanding of knowledge representation
and inference than we have at present.

The problem, then, isthis: how can atheory of selectional constraints be elaborated without first having
either an empiricaly adequate theory of defining features or a comprehensive theory of inference?

In this dissertation, | suggest that an answer to this question lies in the representation of conceptual
knowledge. Following Miller (1990b), | adopt a “differential” approach to conceptua representation, in
which aconceptua taxonomy isdefined in terms of inferentia relationshipsrather than definitional features.
Crucialy, however, the inferences underlying the stored knowledge are not made explicit. My hypothesisis
that a theory of selectiona constraints need make reference only to knowledge stored in such a taxonomy,
without ever referring overtly to inferential processes. | propose such a theory, formalizing selectional
relationshipsin probabilistic terms: the selectiona behavior of a predicate is modeled as its distributional
effect on the conceptua classes of itsarguments. Thisisexpressed using the information-theoretic measure
of relative entropy (Kullback and Leibler, 1951), which leads to an illuminating interpretation of what
selectional constraints are: the strength of a predicate's selection for an argument is identified with the
guantity of information it carries about that argument.

In addition to arguing that the model is empirically adequate, | explore its application to two problems.
The first concerns a linguistic question: why some transitive verbs permit implicit direct objects (“John
ate (") and others do not (“*John brought ). It has often been observed informally that the omission of
objectsis connected to the ease with which the object can be inferred. | have made this observation more
formal by positing arelationship between selectional constraintsand inferability. Thispredicts (i) that verbs
permitting implicit objects select more strongly for (i.e. carry more information about) that argument than
verbs that do not, and (ii) that strength of selection is a predictor of how often verbs omit their objectsin
naturally occurring utterances. Computational experiments confirm these predictions.

Second, | have explored the practical applications of the mode in resolving syntactic ambiguity. A
number of authors have recently begun investigating the use of corpus-based lexical statistics in automatic



parsing; the results of computational experiments using the present model suggest that many lexica rela
tionships are better viewed in terms of underlying conceptual relationships. Thus the information-theoretic
measures proposed here can serve not only as components in a theory of selectional constraints, but also as

toolsfor practica natural language processing.
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Chapter 1

| ntroduction

1.1 Setting

This thesis is about lexical relationships. Its underlying premise is that the information-theoretic view of
language as a stochasti ¢ phenomenon and the linguistic view of language as a cognitive phenomenon, though
often characterized as being in opposition to each other, are not fundamentally incompatible. Although this
premise isaccepted in principle by many, it seems only rarely to have found its way into actual research.

| demonstrate the compatibility of the two viewpoints by showing that selectional constraints — long
discussed by linguists and philosophers of language — can be expressed as an information-theoretic rela
tionship in a way that respects those discussions rather than ignoring them. | argue that this formalization
has value both for linguistic analysis and for practical work in natural language processing (NLP).

Inthe process of doing thiswork, apriority of mine hasbeen that theideas be coherent both to researchers
in statistical NLP methods and also to linguistsand psycholinguistsinterested in language from a cognitive
perspective. Walking thisline has not always been easy, especialy with regard to methodology — | expect
that some cognitive scientists will remain unconvinced by experiments that use on-linetext corpora rather
than human subjects, and that some applications-oriented NL P researchers will questionthe value of building
introspective knowledge into a system without regard to what the actua training and test data are going
to be. Nonetheless, | hope even those people will find the result relevant and interesting, if not ultimately
persuasive.

The proposalsin thisthesis are, | think, consistent with directions in which research on language from
both practical and theoretical perspectives appears to be evolving. | will mention just a few examples of
what | mean by this. Firgt, it is becoming clear that statistica methods in natural language processing are
moving toward the integration of more linguistic information into probabilistic models — as an indication
of how much so, consider that the Penn Treebank is moving in the direction of annotating not only surface
linguistic structure but predicate-argument structure, aswell (Marcus, Santorini, and Marcinkiewicz, 1993).
This makes perfect sense, since the value of a probabilistic mode is ultimately constrained by how well its
underlying structure — that is, the event space over which it is defined — matches the underlying structure
of the phenomenon it is modeling. Despite references to “ purely statistical” models of language, thereisno
such thing: even the simple n-gram model has underlying it afinite-state model, entailing a commitment to
the view of linguistic structure criticized to such great effect by Chomsky in Syntactic Sructures.



Second, in studies of human sentence processing there is an increasing interest in models based on the
satisfaction of probabilistic constraints rather than the application of rules or strategies; see, for example,
(MacDonald, in press; Tabossi et d., in press). Such studiesshare many of the same concernsthat are central
in constructing stochastic language models: how plausibleis this lexical combination as compared to that
one, and given thiscontext what isexpected next? In addition, | think work inlanguagelearning isbeginning
to pay increasing attention to large quantities of realistic data. Thisisreflected in empirical studiesthat use
the CHILDES data collection to confirm or refute hypotheses (e.g. (Xu and Pinker, 1992)) and in theoretical
work on language learning that takes the messy nature of real datainto account (e.g. (Siskind, 1993a; Kapur,
1992)).

1.2 Argument

Selectiona constraints are limitations on the applicability of predicates to arguments. For example, the
statement “The number two is blue” may be syntactically well formed, but at some level it is anomalous
— BLUE isnot a predicate that can be applied to numbers. Philosophers have called examples like this one
“category mistakes,” and generative linguistshave called them “ selectiona violations.”

The most influential theory of selectional constraints has been the one proposed by Katz and Fodor
(1964), according to which a predicate associates a set of defining features with each argument, expressed
within arestricted semantic vocabulary. Despite the persistence of thistheory, however, there iswidespread
agreement about its empirical shortcomings (McCawley, 1968; Fodor, 1977). As an alternative, some
critics of the Katz-Fodor theory (e.g. (Johnson-Laird, 1983)) have abandoned the treatment of selectiona
congtraints as semantic, instead treating them as indistinguishable from inferences made on the basis of
factual knowledge. This provides a better match for the empirical phenomena, but it opens up a different
problem: if selectional constraints are the same as inferences in general, then accounting for them will
require a much more complete understanding of knowledge representation and inference than we have at
present.

The problem, then, is this: how can a theory of selectiona constraints be elaborated without first
having either an empirically adequate theory of semantic features or a comprehensive theory of conceptua
knowledge and inference?

| will suggest that an answer to this question lies in the representation of conceptua knowledge. Fol-
lowing Miller (1990b), | adopt a“differential” approach to conceptual representation, in which a conceptual
taxonomy is defined in terms of inferential relationships rather than definitional features. Specificaly,
knowledge about words is represented in terms of other words whose meanings they share. | characterize
the notion of “sharing” ameaning in terms of plausible entailments: two words share a meaning if thereisa
representative context in which they are mutually substitutable without changing the inferences one would
ordinarily be licensed to draw. Crucialy, however, the inferences themselves are not made explicit in the
knowledge representation. The role of inferences is indirect — they determine what the structure of the
taxonomy will be, but otherwise are not a part of the knowledge stored there.

My hypothesisis that a theory of selectiona constraints need make reference only to knowledge stored
in a taxonomy of this kind, without ever referring overtly to inferential processes or to other forms of
factual knowledge. | propose such atheory, formalizing selectional relationshipsin probabilisticterms. The
selectional behavior of a predicate is modeled as its distributional effect on the conceptual classes of its
arguments, expressed using the rel ative entropy between the prior distribution of argument concepts and the
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posterior distribution of argument concepts given the predicate. Using this information-theoretic measure
leads to an illuminating interpretation of what selectional constraints are: the strength of a predicate’s
selection for an argument is identified with the quantity of information it carries about that argument.

In the computationa implementation of this model, WordNet (Miller, 1990b) serves as a proxy for the
conceptua taxonomy, and on-line corpora provide linguistic input. Thus, unlike previous theories, the
present model demonstrates the capacity to acquire selectional constraints, and it has been tested using
large quantities of naturally occurring data. The performance of the implementation supports the empirical
adequacy of the theoretical model: without additional specia-purpose agorithms, the implemented model
shows appropriate behavior when confronted with traditional examples considered by Katz and Fodor, and
their critics.

The remainder of the thesis concerns the application of the theory to two problems. Firgt, | consider a
linguistic question: why some transitive verbs permit implicit direct objects (“ John ate (") and others do not
(“*John brought (). 1t has often been observed informally that the omission of objects is connected to the
ease with which the object can be inferred. | have made thisinformal observation more precise by positing
arelationship between selectiona constraints and inferability. Thiswould predict (i) that verbs permitting
implicit objects select more strongly for (i.e. carry more information about) that argument than verbs that
do not, and (ii) that strength of selection is a predictor of how often verbs omit their objects in naturally
occurring utterances. Computational experiments confirm these predictions.

Second, | explore the practical applications of the model in resolving syntactic ambiguity, following a
number of authors (e.g. Hindle and Rooth (1991; 1993)) who have recently begun investigating the use of
corpus-based lexicd statisticsin parsing. The hypothesis considered here isthat many lexica relationships
reflect underlying conceptual relationships, and that statistical disambiguation strategies should take those
into account. Like approachesthat create and use word classes on the basis of distributional behavior in text
corpora, this provides somemeasure of resi stanceto the problem of datasparseness. Unlikethose approaches,
however, the use of knowledge-based rather than distributional classes provides a clear interpretation for
what isin aclass, and takes advantage of existing on-line knowledge sources. Although the use of semantic
or conceptual word classes in disambiguation has been investigated using a small set of semantic primitives
or text from arestricted domain (Basili, Pazienza, and Velardi, 1991; Chang, Luo, and Su, 1992; Grishman
and Sterling, 1992; Weischedd et al., 1991), to my knowledgethe present work isthefirst to apply statistical
disambiguati on techniques using a large-scal e conceptual taxonomy to unrestricted text corpora. Theresults
suggest that the information-theoretic measures proposed here can serve not only as componentsin atheory
of selectiona constraints, but also as toolsfor practical natural language processing.

1.3 Chapter Summaries

Chapter 2. In this chapter, | discuss the use of corpus-based statistics to capture lexical properties. After
illustrating how some limitationsof statisticsbased solely on word co-occurrence suggest generalizing from
wordsto word classes, | discussthe aternatives of using classes based on distributional similarity and using
classes based on taxonomic knowledge. | then proposeto compute class-based statistics using a knowledge-
based, conceptua taxonomy, detailing the semantics of such ataxonomy and discussing how class-based
probabilities are estimated.
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Chapter 3. This chapter represents the core of the thesis. Limits on the applicability of predicates to
arguments have variously been called sortal constraints, selection (or selectional) restrictionsor constraints,
andtyperules. A review of theliterature on such constraints suggeststwo different waysinwhich they can be
characterized: a“semantic” approach, which has been questioned on empirical grounds, and an “inferential”
approach, for which the theoretical issues are at present poorly understood. In this chapter, | propose a
new, information-theoretic formalization of selectional constraints based on the taxonomic representation
introduced in Chapter 2, and argue that it addresses both theoretical and empirical concerns.

Chapter 4. In this chapter, | investigate one application of the model proposed in Chapter 3, exploring
the rel ationship between selectional constraints and argument omissibility for verbsin English. It has been
observed that the ability of some verbsto omit their objectsis connected with theinferability of propertiesfor
that argument, and that inferability can to agreat extent beidentified with the selectional information carried
by the verb. This hypothesisis supported by a computational study: the first experiment demonstrates that
verbs permitting implicit objects tend as a group to select more strongly for that argument than obligatorily
transitiveverbs; the second experiment demonstrates that the tendency in practice to drop the object of verbs
correlates with selectiona preference strength; and a third experiment investigates the inferability of direct
objectsfor verbsthat do and do not require a salient antecedent for that argument in order for it to be omitted.
I conclude the chapter with a discussion of some possible implications of this study for accounts of verb
acquisition by children.

Chapter 5. Inthischapter, | investigate a second application of the model proposed in Chapter 3, exploring
the use of the implemented model as a statistical method for resolving syntactic ambiguity in process-
ing unconstrained text. | argue that a number of “every way ambiguous’ constructions — in particular,
prepositional phrase attachment, coordination, and nominal compounds — can be resolved by appealing
to conceptua relationships such as selectional preference and semantic similarity, and that class-based,
information-theoretic formalizations of these notions provide a practical way to do so.

Chapter 6. | summarize the contributionsof the dissertation, and present some thoughts on future work.



Chapter 2

Word Classesin Corpus-Based
Research

In this chapter, | discuss the use of corpus-based statisticsto capture lexical properties. After
illustrating how some limitations of statistics based solely on word co-occurrence suggest
generalizing from words to word classes, | discuss the alternatives of using classes based on
distributional similarity and using classes based on taxonomic knowledge. | then propose to
compute class-based statistics using a knowledge-based, conceptual taxonomy, detailing the
semantics of such a taxonomy and discussing how class-based probabilitiesare estimated.

2.1 Overview

It has become common in statistical studies of natural |anguage datato use measures of lexical association to
extract useful relationshipsbetween words. To take afew examples, (Smadja, 1991) uses lexical association
measures to extract coll ocation information from large corporafor use in language generation, (Church and
Hanks, 1989) propose the use of mutua information to estimate word association norms on the basis of
lexical co-occurrence, and (Yarowsky, 1993) shows that local word co-occurrences providereliable cues for
sense disambiguation. (See (Church et d., 1991) for a useful overview of statistical techniques for lexica
analysis)

Lexical association hasitslimits, however, since often either the data are insufficient to providereliable
lexical correspondences, or atask requires more abstraction than solely lexica correspondences permit. In
the next section | illustrate these points by looking a one application of lexical association — a proposal
by (Hindle, 1990) to use mutual information in capturing predicate-argument relationships. In the sections
that follow, | discuss the extension of lexical relationships to class-based relationships, and consider the
advantages and disadvantages of constructing word classes on the basis of lexical distributionsin corpora.
| then turn to the possibility of using word classes defined in terms of a knowledge-based taxonomy. In
particular, | consider the theory of lexica representation implemented in WordNet (Beckwith et a., 1991),
whichisclosaly related to aproposal by Sparck Jones (1964). The chapter concludes with a straightforward
method for estimating probabilitiesin such a noun-class taxonomy on the basis of lexical co-occurrence in
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a corpus; thiswill lay the groundwork for the information-theoretic model of selectional constraints to be
proposed in Chapter 3.

2.2 Lexical Statisticsand their Limitations

Recent discussionsof |exical statisticsoften begin with mutual information, aninformati on-theoretic measure
of association used with natural language data to gauge the “relatedness’ between two words. The mutua
information between two words z and y is defined as follows:

p(z,y)
p()p(y) @1

I(z;y) = log

Intuitively, the probability of seeing z and y together, p(z, v), gives some idea as to how related they are.
However, if z and y are both very common, then it islikely that they appear together frequently simply by
chance and not as aresult of any relationship between them. In order to correct for this possibility, p(z, y) is
divided by p(z)p(y), whichistheprobability that 2 and y would have of appearing together by chanceif they
wereindependent. Taking thelogarithm of thisratio givesmutual information some desirable properties; for
example, itsvalue is respectively positive, zero, or negative according to whether » and y appear together
more frequently, as frequently, or less frequently than one would expect if they were independent.

Another quite useful interpretation of mutua information can be derived by looking at the information-
theoretic notion of entropy. The entropy of a random variable X is defined as the expected value of
—logp(z). That is,

H(X) E [ logp(x)]

— Y p(z)logp(z), (22)

where the summation is over dl possible values of X. The quantity H(X) is, roughly speaking, a measure
of how uncertain we are about the value that X will have. The conditional entropy of X given another
random variable Y measures the uncertainty of X, given that the value of Y is known:

H(X]Y) E [~ logp(z|y)]

= = p(z,y)logp(z|y). (23)
T,y
Clearly, H(X|Y "), the uncertainty about X given that you know the value of Y, isalways less than or equal
to H(X'), since any additional knowledge about ¥ can only decrease (or at worst have no effect on) our
uncertainty about X .
Now, the mutual information of random variables X and V' is:

: - Pz, y)
&) = E[logp(r)p(y)]
H(X) — H(XY). (2.4)

Notice that thisis just the expected value for the quantity defined in equation (2.1), which is aso known
more precisaly as “ pointwise mutua information.”
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Figure 2.1: Relationship between mutual information and entropy

As equation (2.4) shows, mutual information is a measure of how much information Y’ provides about
X — that is, how much it decreases uncertainty.® Thisrelationship between mutual informationand entropy
isdepicted in Figure2.1.

Asan example of how mutual information has been used in corpus-based work, consider Hindl€'s(1990)
application of mutual information to the discovery of predicate-argument relations. Unlike some researchers
who restrict themselves to surface distributions of words, Hindle investigates word co-occurrences as
mediated by syntactic structure — that is, words z and y are counted as appearing together whenever
they stand in a certain syntactic relationship to each other (e.g. subject, object) within a sentence. A
six-million-word sample of Associated Press news stories was parsed in order to construct a collection
of subject-verb-object instances. On the basis of these data, Hindle calculated a co-occurrence score (an
estimate of mutual information) for verb-object pairsand verb-subject pairs. Table 2.1 showsthe verb-object
pairs for the verb drink that occurred more than once, ranked by co-occurrence score, “in effect giving the
answer to the question ‘what can you drink?”’ (Hindle, 1990, p. 270).

Hindle sproposal illustratestwo limitationsof using mutual information between words as a measure of
predicate-argument association:

e Sparseness of data: the corpus may fail to provide sufficient information about relevant word-word
rel ationships

e Lack of abstraction: word-word relationships, even those supported by the data, may not be the
appropriate relationshipsto look at for some tasks.

Indeed, any of afamily of statisticsbased solely on lexical co-occurrences — including mutua information,
t-score (Church et a., 1990), y?, and so forth— suffers from these limitations. Let us consider themin turn.

1Being symmetrical, it also measures how much information X provides about Y. See (Cover and Thomas, 1991) for a clear
discussion of mutual information and related topics.



score | verb | object |
12.34 | drink | bunch (of) beer
11.75 | drink | tea

11.75 | drink | Pepsi

11.75 | drink | champagne
10.53 | drink | liquid

10.20 | drink | beer

9.34 | drink | wine

7.65 | drink | water

5.15 | drink | anything

254 | drink | much

1.25 | drink | it

1.22 | drink | SOME AMOUNT

Table 2.1: Verb-object pairsfor drink (with count > 1)

| score | verb | object [ count

7.76 | open | closet 2
6.93 | open | mouth 9
6.79 | open | door 32

6.14 | open | window
5.88 | open | store
5.76 | open | season
454 | open | church
449 | open | heart
424 | open | eye
238 | open | way

BINININININ| O

Table 2.2: Verb-object pairsfor open (with count > 1)

First, asinall statistical applications, it must be possible to estimate probabilitiesaccurately. Although
larger and larger corporaareincreasingly available, the specific task under consideration often can restrict the
choice of corpusto onethat providesasmaller sample than necessary to discover all thelexical relationships
of interest. This can lead some lexical relationshipsto go unnoticed.

For example, the Brown Corpus of American English (Francis and KuCera, 1982) has the attractive
(and for some tasks, necessary) property of providing a sample that is balanced across many genres. In
an experiment using the Brown Corpus, modeled after Hindle's (1990) investigation of predicate-argument
relationships, | cal culated the mutual informati on between verbs and the nounsthat appeared astheir objects.?
Table 2.2 shows objects of the verb open. Asin Table 2.1, the listing includes only verb-object pairs that
were encountered more than once.

Attention to the verb-object pairs that occurred only once, however, led to an interesting observation.
Included among the “ discarded” object nounswasthefollowingset: discourse, engagement, reply, program,
and session. Although each of these appeared as the object of open only once — too infrequently to provide
reliable probability estimates — this set, considered as awhol e, reved s an interesting fact about some kinds
of thingsthat can be opened, roughly captured by the notion of communications. More generally, severa

2Direct objectsin this experiment were identified using the parsed version of the Brown corpus found in the Penn Treebank.
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pieces of statistically unreliable information at the lexical level may nonetheless capture a useful statistical
regularity when combined. This observation motivates an approach to lexical association that makes such
combinations possible.

The second limitation of word-word associationsissimply this: sometasksare not amenable to treatment
using lexical relationshipsaone. An example isthe automatic discovery of verb argument preferences for
natural language systems. Here, therelationship of interest hol dsnot between averb and anoun, but between
the verb and a class of nouns (e.g. between eat and nouns representing things that are edible). Given a
table built using lexical statistics, such as Table 2.1 or 2.2, no single lexical item necessarily stands out as
the “preferred” object of the verb — the selectional restriction on the object of drink would typically be
something like “beverages’ or “liquids,” not tea. Once again, the limitation seems to be one that can be
addressed by considering sets or classes of nouns, rather than individual lexica items.

2.3 Word Classes Based on Lexical Distributions

The limitations discussed in the previous section suggest a shift from looking at words to looking at groups
or classes of words. A class of words will have attributed to it the accumulated properties of its members,
even if observations of the individual members are sparse; in addition, word classes can be used to capture
higher level abstractions such as syntactic or semantic features.

A great deal of recent work addresses the creation and use of word classes using lexica distributionsin
text corpora. The premise behind this approach is that the relatedness of words is reflected by similarities
in their distributional contexts, as observed in large collections of naturaly occurring text. Church et al.
(1990, p. 159), discussing statistical methods and linguistic performance, sum up thisideaas follows:

Our approach has much in common with a position that was popular in the 1950s. It was
common practice to classify words not only on the basis of their meanings but aso on thebasis
of their co-occurrence with other words. Running through the whole Firthian tradition, for
example, is the theme that “You shall know a word by the company it keeps’ [Firth, 1957].
Harris's “distributional hypothesis’ dates from about the same period. He hypothesized that
“the meaning of entities, and the meaning of grammatical relations among them, is related to
the restriction of combinations of these entitiesrelativeto other entities’ ([Harris, 1968], p. 12).

Inthissection, | will review anumber of computational proposalsfor deriving word classes onthe basis
of distributional behavior in corpora. These can be broken up according to thefollowingrough classification:

e Smoothing methods
These methods make implicit use of word classes, but do not represent them explicitly.

e Proximity methods and clustering
Proximity methodsdefine measures of word similarity. Clustering methods use proximity rel ationships
to form explicit word classes, but do not decompose word tokens into representations that are related
to class membership.

o Vector representations
These methods form decompositional word representations, but may or may not use these representa
tionsto derive explicit word classes.
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Dividing the distributional techniques in this way is somewhat artificial, since many methods are closely
related. For example, given a vector representation, it is aways possible to derive a proximity measure
such as Euclidean distance. Similarly, given a measure of word proximity, it is aways possibleto perform a
cluster analysisto derive explicit classes, and given ahierarchical clustering, it is aways possibleto define
a similarity measure based on some notion of proximity in the hierarchy. Nonetheless, this classification
providesaway to make some helpful distinctionsamong the current approaches reviewed in the subsections
that follow.

2.3.1 Smoothing methods

Smoothingisagenera termfor thecombination of multiplesourcesof information, often under circumstances
inwhich using theinformationat a singledata point might be undesirable or misleading. For example, given
a set of data points plotted in two dimensions, it may be uninformative to smply draw a curve that goes
through each individual data point (z, y); such a curve might be jagged and hard to interpret, as opposed
to a smooth curve that misses some points but reveals a genera trend in the data. In the absence of some
parametric model (e.g. finding the parabola that best fits the data), a smooth curve can be obtained by
“averaging” each data point together with the nearby points.® Thusin asense a point together with its nearby
points congtitutes a class, and the properties of the class are derived from the properties of its individual
members.

For purposes of language processing, the “points’ of interest are typically words or sequences of words.
For example, the language model in a speech recognition system generates hypotheses about what the next
wordwill be, onthebasisof apreviousword sequence. Hypothesestaketheform of aconditional probability
distribution p(Wp|wy, . . ., w—1), where random variable W}, ranges over possible words to be predicted,
and word sequence wy, . . ., wg_1 iSthe prior context. In many speech systems, it is assumed that words are
produced according to an underlying Markov model, so that the distributionis well approximated by

p(Wk|'w1, e wk_]_) 7 p(Wk|wk_n, R wk_]_), (25)

wheren isthe order of the Markov model. Noticethat thisapproximationimplicitly represents a grouping of
word sequencesinto classes, sinceall sequencesforwhichwy _,,, . .., w;_1isthesamearetreatedidenticaly.
For trigram models, wheren = 2, thismeans that the sequences (I’ I1,see, him,after) and (She,met,him,after)
are equivaent— in both cases dinner and the are each reasonabl e hypothesisabout the word that will follow.
However, often even this equivalence classification of prior word sequences is insufficient, because the data
are too sparse to estimate probabilities accurately: even for a corpus of reasonable size, many trigrams do
not occur at all.

One method proposed for solving this problem is the technique of interpolated estimation (Jelinek and
Mercer, 1980; Bahl, Jdinek, and Mercer, 1983), in which several probability estimators are smoothed
together. The central ideabehind interpol ated estimation isto take alinear combination of several estimates,
weighting each according to how reliableitis. That is,

Plwlo) = ZM(%(U))D(WI%(U)): (2.6)

where w is a possible word to be predicted, o is the prior context, each ¢; is a different equivaence class
function, and A;(; (o)) must dwayssumto 1. Asan example, consider the case whereo = wa, . . ., w_1,

3See discussion and referencesin (Press et al., 1988).
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and

p1(o) = wp_2,wr_1
po(0) = wi-1.

Here, thefirst estimator uses two previouswords of context, and the second estimator uses just one word of
context. Clearly it is better to use more information when it is available, so A, () will be high relative to
Aya(o) When @1 (o) occurs frequently; when it does not, A,y will be accordingly higher. Jelinek et al.
discuss methods for estimating the A; using held-out datain order to achieve this behavior.

(Bahl et d., 1989) discuss arelated approach to combining estimators, in which the equivalence classes
are determined not simply by applying an nth-order Markov assumption for varying n, but by classifying
prior contexts using a decision tree. The process of classifying a context sequence wy, . . ., wg_1 involves
starting at the top node of thetree and descending along apath until aleaf isreached. At each node, the choice
of which branch to descend is made on the basis of a question at that node (e.g., is w;_1 a determiner?).
Thus the top node of the tree can be viewed as implicitly representing an exhaustive equivalence class,
and the nodes along a path represent progressively narrower equival ence classes, comprising those context
sequences for which al the questions up to this point have been answered the same way.

There are many ways to construct decision tree classifiers, the most common of which isto start with
the full set of training data at the root, and to proceed top down, recursively partitioning nodes according
to the partition that optimizes some measure such as information gain (Quinlan, 1990). In (Bahl et a.,
1989) the best partition — and hence the choice of equivalence classes created at this branch — is chosen
by minimizing the average conditional entropy H(WW3|c;) over the equivalence classes {¢; } in the partition.
The conditional entropy at aleaf measures the uncertainty of the prediction made at that leaf, based on the
training data.

Because the training data are partitioned at each branching point, by thetime a leaf is reached the class
it represents may be too small to support statistically reliable predictions. Accordingly, many decision tree
construction a gorithmsprune paths bel ow a certain point (e.g., (Breiman et a., 1984)), increasing the size of
the classes represented by theleaves of thetree. Bahl et al. take adifferent approach: they apply interpolated
estimation, using estimators based on the equivalence class represented at each node. Specifically, p(w|o)
iscalculated by classifying o in the tree, and then computing

Bulo) = Ap(uler(@)) +- -+ Ap(wlei(0)), 27)

wheren,, . .., n; arethenodesonthe path that wastaken fromroottoleaf and ¢, . . ., ¢; aretheequivalence
classes associated with those nodes. As before, the A; are estimated on the basis of held-out data, with the
end result being that the nodesin a path contribute according to how reliably the prediction at that node can
be estimated.

In summary, both n-gram and decision tree word prediction methods make implicit use of equivaence
classes of word sequences; in the case of decision-tree techniques, a constructed tree implicitly represents
a set of equivalence classes derived according to lexical distributionsin the training data. Interpolated
estimation is one way to combine predictions made on the basis of different equivalence classes.

(Grishman and Sterling, 1993), investigating the automated acquisition of selectional constraints, apply
co-occurrence smoothing (Essen and Steinbiss, 1992), atechniqueinwhich predictioninformation for distinct
words is combined on the basis of their distributional similarity. A matrix P¢ of confusion probabilitiesis
constructed on the basis of lexical distributions: P (w; |w;) indicates the probability on average that word
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w; will occur in a context in which w; occurs. Using this matrix, the likelihood of a word w given some
context can be estimated robustly by combining thelikelihoodsof all other wordsw’ given that same context,
weighting the contribution of each w’ by its confusability with w. For example, a smoothed trigram model
would be computed as follows:

Blwn|wn—2,wn 1) = Y Po(w)|w,)p(w) [wn_2, wp_1). (2.8)

In general, any property of interest can be smoothed in thisfashion: if f issome value based on w, then
flw) = > Po(w|w)f(w). (29

Grishman and Sterling smooth frequencies of relational triples (e.g. [like,subject,Mary]) and demonstrate
that the smoothed frequenciesyield improved performance over unsmoothed frequenciesin constraining the
output of arobust parser.

Co-occurrence smoothing and interpolated estimation are similar in the sense that each computes a
smoothed value by weighting the contributions of multiple estimators. However, in the applications of
interpol ated estimati on described above, each estimator i sassoci ated with aset of words (or word sequences)
that are treated as equivalent. In contrast, co-occurrence smoothing utilizes not equivalence classes, but
a continuous measure of relatedness among the words for which estimated values are combined; in this
respect, it strongly resembl es proximity methods.

2.3.2 Proximity methodsand clustering

Since a number of techniques for measuring the similarity (or dissimilarity) of words can be viewed as
representing proximity in some semantic space, | will group such techniques under the label of “proximity
methods.” Generally, these methods work by using the frequency with which two words appear in the
same contexts, together with their frequencies in other contexts, to compute a singleval ue representing their
proximity. Proximity need not be symmetric — for example, in (Grishman and Sterling, 1993) the confusion
probability Pc(w;|w;) need not be the same as P (w;|w;). Inaddition to itsintuitive plausibility, theidea
that shared contexts indicate semantic similarity appears to have some psychologica validity: (Miller and
Charles, 1991) show that the discriminability of word contexts correlatesinversaly with semantic similarity
ratings.*

Given a measure of proximity, clustering techniques are used to organize data into groupings of similar
entities. Itisimportant to notethat traditional applicationsof dataclustering are used for exploratory analysis
of existing data. Jain and Dubes (1988, p. 1) write:

The objective of cluster anadysis is simply to find a convenient and valid organization of the
data, not to establish rules for separating future data into categories. Clustering algorithms are
geared toward finding structure in the data.

This must be distinguished from the automatic learning of classifiers based on training data. Weiss and
Kulikowski (1991, p. 17) write:

4Miller and Charles determined contextual similarity by having subjects sort sentential contexts (sentences with the target word
blanked out) for pairs of target words. In one experiment the sentences came from the Brown corpus, and, in areplication, a separate
group of subjects generated sentences containing the target words. They discuss the comparative advantages and disadvantages of
contextual similarity measures based on substitutability versus overlap of co-occurring words.
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The objective of learning classifications from sample dataisto classify and predict successfully
on new data.

Despitethe apparent opposition, of course, there areimportant rel ationshipsbetween cluster analysisand
statistical pattern classification. For example, k-nearest neighbor classifiersin effect make use of proximity
to form clusters: a new pattern is classified by first seeking an exact match in the training data, and then, if
oneisnot found, choosing the class that appears most frequently among the k training items that are closest
(or most similar) to the new pattern (Weiss and Kulikowski, 1991, p. 70). Most of the work to be described
here isintended to be used by first fixing a training corpus, and then applying the resulting word classes to
new data, soin general these techniques seem closer to classifier learning than to traditional exploratory data
analysis. However, experimenta results are often evaluated by inspecting the cohesiveness of the clusters
that result from training.

One useful way to organize a discussion of word proximity methods is according to the way they
determine that two words occur in similar contexts. Perhaps the simplest interpretation of context is string
co-occurrence: one word is said to appear in the context of another if the two words are adjacent, or, more
generadly, if the context word appears within some fixed distance to the left or right. (Church and Hanks,
1989) observe that this form of context may help lexicographers identify useful semantic classes: they
suggest that by ranking the words occurring to the right of aword (in their example, the verb save) by mutual
information, useful patternsmay emerge. |n effect, their suggestion amountsto computing aword proximity
measure, using the word save some distance to the left as the shared context, although no explicit measure
of similarity is ever computed.

(Brown et a., 1992) make more direct use of mutua information in determining word classes: they
create a hierarchical clustering of wordsin avocabulary by first assigning each word to itsown cluster, and
then merging clusters bottom up, at each point choosing to merge the pairs of clusters for which the loss
of average mutual informationisleast. Here mutual information between clusters is calculated using string
adjacency. That is, two clusters ¢; and ¢, co-occur when a pair wiw, occurs in the training text, where
w1 € ¢1 and wp € e, — thusthe model underlying the clustering criterion is a bigram model.

Brill (1990; 1991) has d so investigated bigram-based word clustering; however, his methods operate by
specifying a parameterized measure of word proximity based on similarity of bigram distributions, rather
than maximizing mutua information. By varying the strictness of the similarity criterion from moreto less
stringent, a hierarchical clustering results.

Along similar lines, (Bensch and Savitch, 1992) use string adjacency to determine word co-occurrence,
representing the context of each word instance as the pair comprising the preceding and following word.
However, unlikemost distributional approachestoword clustering, they ignorefrequencies of co-occurrence,
and compute a score, the Tanimoto coefficient, based simply on the number of shared and unshared contexts.
Thus what is relevant is not how often two words occur in a shared context, but whether that context is
shared at all. Given aword proximity measure based on the Tanimoto coefficient, Bensch and Savitch create
a clustering by first creating a fully connected graph of the words in the vocabulary, with proximities on
the arcs, and then constructing the minimum spanning tree for the graph. (In this respect the technique is
a specidization of the Pathfinder algorithm (Schvaneveldt, Durso, and Dearholt, 1989), which also begins
with afully connected graph and produces anetwork structure. Pathfinder permitstwo user-set parametersto
vary, and at one extreme val ue of the parametersthe“minimal” network isproduced, consisting of the unique
minimal spanning treeif there is one, and the union of all edgesin any minimal spanning tree, otherwise.)
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String co-occurrence within a window is a very coarse-grained way to capture linguistic relationships,
and as the size of the window increases, the amount of noise — that is, the frequency of irrelevant co-
occurrences — increases. Given a syntactic analysis, however, it is possible to define word contexts using
relationships that are more constrained and linguistically well motivated. For example, (Hindle, 1990)
proposes a method for classifying nouns on the basis of the verbs for which they appear as arguments, as
determined using a robust parser. The similarity of two nouns n; and n, with respect to a single verb is
defined using mutual information: the“object similarity” (similarity relativeto thedirect object position) is
taken to be zero if one noun has positive mutua information and the other negative mutual informationwith
theverb; otherwisethisverb can be considered a shared context, and the strength of similarity in this context
is quantified by minimizing the magnitude of the two mutual information values. “Subject similarity” is
defined analogoudly, and overall similarity is defined as the sum of subject and object similarity for the two
nouns, summed up over dl verbs. Grefenstette (1992) has taken a similar approach, though using a broader
set of syntactic relationships, and using the Jaccard measure rather than mutua information. Both Hindle
and Grefenstette produce a similarity-based ranking of wordsfor a given noun, though an explicit clustering
is never constructed.

(McKeown and Hatzivassiloglou, 1993) apply a distributional method not unlike Grefenstette's to the
clustering of adjectives on the basis of the nouns they modify. For purposes of measuring similarity, they
employ Kendall’s r coefficient, anon-parametric statistic. Unlikethe other distributionally-based clustering
methods described here, McKeown and Hatzivassiloglou provide their agorithm with negative evidence
derived from the corpus using linguistic knowledge: essentialy, they assume that two adjectives modifying
the same instance of a noun cannot be modifiers on the same scale and therefore should not be grouped
together. (For example, the phrasethetall, dark man provides evidence that tall and dark belong in different
classes)

(Pereira, Tishby, and Lee, 1993) aso use argument relationships to determine similarity, producing a
clustering of nouns based on the verbs for which they appear as direct objects. Words and clusters are
represented using the probability distribution for co-occurrence with verbs, and similarity (really dissimi-
larity) is measured using the relative entropy between distributions. The use of relative entropy yields a
useful information-theoretic interpretation of the relationship between a word and a cluster: it measures
how costly it would be, in bits of information, to use the distribution associated with the cluster rather than
the distribution associated with the noun itself. It isimportant to note that this method, unlike many of the
others, produces clusters that are not discrete: cluster membership isa matter of degree.

2.3.3 Vector representations

In most of the techniques described above, the set of contextsin which aword appears can be thought of as
arepresentation for that word in a“semantic’ space, the dimensions of which are identified with the set of
wordsinthevocabulary. For instance, if there are k wordsin the vocabulary, then the frequency distribution
of words appearing to immediately to the left of aword can be represented as a k-ary vector of integers. In
(Bensch and Savitch, 1992), where co-occurrence isrel evant but frequency of co-occurrenceisnot, aword’'s
context can be interpreted as a vector of binary features.

Under the heading of “vector representation” methods, | will describe a set of techniques that construct
word representations on the basis of lexical distributions. In most cases, the resulting representations arise
by means of areduction in the dimensionality of the semantic space determined by the full vocabulary.
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To begin with an exception, however, the mutual information clustering method of Brown et al., de-
scribed above, can be seen as producing not only a hierarchy of discrete clusters, but also a bit-vector
representation for each word in the vocabulary. The derivation of representations from the cluster hierarchy
isstraightforward: if M isthe height of the hierarchy — that is, the length of the longest path from the top
of the hierarchy to aword at the bottom — then one need only label each connecting branch in the hierarchy
with either a 0 or a 1, according to the direction of the branch. The resulting bit-vector representation of
each word is the sequence of bits encountered on the path from the top of the hierarchy to that word, where
any sequence of length lessthan M is padded on the right with sufficiently many 0 bitsto make its length
exactly M. Notice that the “meaning” of each bit in the representation will depend on the sequence of bits
preceding it, so the vector does not really identify a point in an M -dimensional space. Nonetheless, such a
representation is useful in contexts where the order-dependence of the bits can be exploited — for example,
in abinary decision tree, where classification is accomplished by asking questionsone bit at atime.

In the connectionist community, a fair amount of work has taken place under the rubric of “distributed
representations’ — that is, representing aword (or anything else of interest, for that matter) as a pattern of
activity across a set of nodes in a neural network. In many cases, these representations are “ subsymbolic,”
in the sense that no individual node constitutes the representation for a single concept or semantic feature.
A thorough description of the connectionist literature on this topic is beyond the scope of this discussion;
however, see (Smolensky, 1988) on the “ sub-symbolic paradigm,” and (Smolensky, Legendre, and Miyata,
1992) for an illuminating discussion on the relationship between connectionism and the study of language,
as well as pointersto the connectionist literature.

One interesting and influential example of connectionist work on lexica representation is a study by
Elman (1990) on the automatic discovery of syntactic/semantic features for words. Elman proposes an
extension of the ubiquitous“feed-forward” network architecture — comprising a layer of input units, one
or more layers of hidden units, and alayer of output units— in which the input at any time step includes
the activations of the hidden units from the previous time step.®> This “recurrent” network mode is trained
on (artificialy constructed) sentences, in which each word is represented as a bit vector with a single bit
active. Itstask isto predict the next word at each time step, on the basis of the information at the input units.
Since these encode previous context, training the network is not unlike automatically constructing akind of
Markov model. What is of interest here, however, is not performance on the prediction task, but rather the
generalizations the network has been forced to make in order to learn to make itspredictions. Elman writes:

[The] network seemsto havelearned to approximatethelikelihoodratiosof potential successors.
How has this been accomplished? The input representations give no information (such as form-
class) that could beused for prediction. Theword vectorsareorthogonal to each other. Whatever
generalizations are true of classes of words must be learned from the co-occurrence statistics,
and the composition of those classes must itself be learned. . . . [One] might expect to see
these patterns emerge in the internal representations which the network developsin the course
of learning the task. These interna representations are captured by the pattern of hidden unit
activationswhich are evoked in response to each word and its context.

Elman studies these internal representations by constructing for each word a single vector representation,
computed by averaging the vectors of hidden-unit activity for the word in each context in which it appears.
These vector representations are subjected to a hierarchical cluster analysis. The resulting hierarchy shows

SThis architectureis a variation on a proposal by Jordan (1986). A similar architectureto Elman’sis proposedin (Allen, 1990).
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that the similarity structure of representati ons accords with the syntactic and semantic character of the words
they represent — for example, the major distinction is between verbs and nouns, within the verb cluster
there are sub-clusters corresponding to different subcategorizations, and within the noun cluster there are
divisionsand subdivisions according to animacy, humanness, and so forth.

It is important to note that Elman’s model appears to depend to a great extent on the orthogonality
of the input representations, since if these representations do not start out as equally dissimilar, spuri-
ous representational similarities between unrelated words could dominate discovered similarities based on
distributional evidence. (In a small study investigating this problem, | found that representing words by
non-orthogonal bit-vectors did, in fact, lead to this problem of spurious similarity (Resnik, 1991). Initia
experiments indicated that the problem could be overcome by making the hierarchical clustering sensitive
not to the distance between internal representations, but to the rel ative movement of word representationsin
representational space over the course of training.) It isalso important to note that Elman’s method requires
multiple co-occurrences in thetraining data, and perhaps depends on these to agreater extent than statistical
methods where low counts can nonetheless be used to compute reasonable probability estimates. It is this
concern, in fact, that motivated Bensch and Savitch to explore a frequency-independent method for word
classification.

(Schiitze, to appear) has investigated the acquisition of distributed representations on a far larger scale
than ElIman. The heart of hismethod isareduction of dimensionality in asemantic space using singular-value
decomposition. Schiitze first constructs a large matrix containing frequencies of lexical co-occurrence in a
string; a singular-value decomposition is then performed on this matrix, and 97 singular values extracted,
resulting in vector representations that congtitute points in a 97-dimensional “semantic space.”® Since
the singular-value decomposition of a matrix provides the best possible |east-squares approximation to the
origina matrix using the reduced number of dimensions, the resulting 97-dimension vectors will be similar
if the original 5000-dimension vectors were.”

2.3.4 Discussion

There has clearly been agreat deal of interesting research on the automated acquisition of word classes based
on lexical distributions — the discussion above illustrates some red variety among approaches, and it is
not exhaustive. The results thusfar are promising: in most of the worksjust described, the authors present
automatically derived word classes that on inspection seem entirely plausible.

However, despite their obvious potentidl, it is difficult to assess the value of these distributional class
methods at present, and even when there are clear successes, it is particularly difficult to compare the
advantages and disadvantages of aternative proposals. For example, Brown et al. (1992) succeed in using
classes to reduce the space required for storing a language model, but are less successful in their ultimate
goal of increasing the model’s predi ctive power on unseen data. Most of the other methods discussed pursue
other goals, with ensuing difficultiesin drawing comparisons; for example, although Grishman and Sterling
(1993) achieve an improvement in performance according to their eval uation metric — essentially success at
identifyingunlikely relationd triples— those resultsare not eval uated against any other statistical smoothing
method or, indeed, any of the other techniquesfor making use of lexical classinformation. Among the other
authors presenting formal evaluations of their proposals, we find still other methods for assessment: Pereira

8For reasons of practicality co-occurrenceswere taken with respect to four-letter subsequencesrather than entire wordsin some of
Schitze'swork; however, his most recent work makes direct use of word co-occurrences, e.g. (Schiitze, 1993).
7See (Deerwester et al., 1990) for arelated application of singular-value decomposition in information retrieval
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et al. (1993) measure the relative entropy of held-out test data against the trained cluster models, as well as
performance on an artificial verb-choicetask, and Schitze (to appear) applieshis statistically-derivedlexica
representationsto the task of resolving word sense ambiguity.

This difficulty in evaluating alternative methods is by no means isolated to the problem of deriving and
using word classes, and undoubtedly more systematic comparisons will be undertaken as further progressis
made. However, in addition to the question of evaluation, several other issues are worth noting.

Computational expense. The derivation of word classes based on lexica distributions can be extremely
expensive in computational terms. Brown et al. (1992) note that they have no practical method for finding
an optimal solution to partitioning words into classes, and that even the suboptimal greedy agorithm they
usetakes O(V°) time (where V' isthesize of thevocabulary) if implemented straightforwardly, and O(V 3) if
implemented cleverly. For vocabulariesthat are still too large to handl e, they present afurther approximation
according to which the assignment of wordsto classes proceeds incrementally, holding the total number of
classes constant as new words are added. Computationsof thiskind can take anywhere from days to weeks
of real time, and runs of several months are not unheard of .

Although there is in principle nothing wrong with algorithms that require long-term computation —
especidly given rapid increases in computational power — increased computing power may not succeed
in catching up with the time complexity of statistical agorithms. More important, it may be that the
computationaly intensive nature of statistical approaches slows down the rate of progress. Since training
a statistical model requires a globa computation relative to the entire corpus, and since statistics based on
a subset of the corpus may not adequately reflect the whole, testing each new idea requires computation
on alarge scae. On the other hand, it may be that the automated discovery of information by statistical
means is worth the wait, when compared to the even longer time-course of knowledge acquisition by hand.
For example, (Magerman, 1993) reports parsing results obtained by statistical methods, trained in weeks
or months, that are comparable to the performance of a grammar developed for the same domain by a
grammarian over the course of adecade.

Classidentifiers. A potentia problem with distributionally derived word classes isthefact that, in general,
the classes that emerge are not identified with symbolic labels of any kind. If classes are viewed as a means
for reducing data sparseness, as in the language model of (Brown et al., 1992) or the selectional constraints
of (Grishman and Sterling, 1993), thisis not a problem — similarity measures or classifications are smply
a means for improving the probability estimates for a given word. When a symbolic component is also
involved, though, some method is needed for relating clustersto other information. For example, (Schiitze,
to appear) manually labels clusters of word representationsin order to identify word senses, and in (Schiitze,
1993) he takes a similar approach for the identification of part-of-speech tags. The choice of classesto label
ismade on the basis of arelatively small test set, and it is not clear how such an approach would be applied
inamore general setting.

The problemiscompounded in cases where the classes themselves are not discrete. Pereiraet al. (1993),
describing some results of their hierarchical clustering, present the nounsthat are closest to the centroid of

8A quote from (Dagan, 1990) seems fairly representative of the prevailing attitude toward computational time among researchers
pursuing statistical approaches: “ Although the construction of the full size database [of co-occurrence statistics] is not feasible for us,
itisclearly feasible for a large scale project. Thisisshown by asimilar database that was implemented as part of the language model
of the IBM speech recognition system. . . . Parsing time dependsupon the specific parser that is used, but with current technologiesit
isreasonableto parse afairly large corpuswithin several months’ (emphasis added).
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each cluster — for instance, one cluster of direct objects for the verb fire is described by the set {missile,
rocket, bullet, gun}. However, every noun in the vocabulary is a member of this cluster to some degree.
If, as Pereira et al. suggest, these clusters are to be used in automatically constructing grammars, some
method for drawing sharp rather than fuzzy class boundaries seems necessary, and ultimately some way of
identifying classes symbolically as componentsin a grammar will be needed.

The semantics of word classes. Although the representations or classes discovered using distributional
methods are often described as “semantic,” the information captured by means of statistical distributions
often defies simple description. For example, clusters hand-selected by Brown et al.  as particularly
“interesting” include the following (they list just the ten most frequent items):

o feet miles pounds degrees inches barrels tons acres meters bytes . . .
e asking telling wondering instructing informing kidding reminding bothering thanking deposing . . .

These groups are encouragingly coherent and even “semantic” in some sense — but notice that other
information is encoded, as well, such as number (plura units of measurement) and inflection (verbs of
communication in the progressive).

Among their randomly selected rather than hand-picked classes, it isnot clear exactly what information
isbeing captured even in the more coherent cases:

o risefocus depend rely concentrate dwell capitalize embark intrude typewriting . . .
e aware unaware unsure cognizant apprised mindful partakers . . .

For example, with the exception of rise and typewriting, the clustering of focus, depend, and so forth seems
primarily to capture a set of verbs that tend to be followed by on. The distributional property of being
followed by of seems highly relevant for the rather more related group containing aware, unaware, and so
forth, but also appears to pull in the incongruous partakers. Many of the other randomly selected classes
appear to have some connecting link among themost frequent items, but become increasi ngly opaque beyond
thefirst few:

e cost expense risk profitability deferral earmarks capstone cardinality mintage resdller . . .
o force ethic stoppage force’s conditioner stoppages conditioners waybill forwarder Atonabee . . .
o industry producers makers fishery Arabiagrowers addition medalist inhaation addict . . .

Many of the examples selected at random by Schiitze (to appear) to illustrate his results have a similar
character:

o disable: deter intercept repel halting surveillance shield maneuvers
e kid: dad kidding mom ok buddies Mom Oh Hey hey mama

It would seem that the information captured using these techniquesis not precisely syntactic, nor purely
semantic — in some sense the only word that appears to fit is distributional. Of course, Brown et al.
do not make any claims to the contrary for the above data. They do, however, propose another technique
specifically for the purpose of identifying “semantically sticky” groups of words. Again, the hand-selected
set of classes they present are encouraging; for example, the following:
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e We our ourselves ours

guestion questions asking answer answers answering

write writes writing written wrote pen
e school classroom teaching grade math
e attorney counsd tria court judge

But againitisnot clear what linksthe members of these classes— pen and writing are undoubtedly associ ated
insome sense, asarejudgeandtrial or math and classroom, but it isdifficult to go beyond that to adiscussion
of what general properties hold of classes discovered by this procedure. The best description seems to be
“wordsthat tend to appear in similar contexts,” which is no more than arestatement of the method by which
the classes were derived.

To befair, it isfar from clear exactly what the criteria of success should be for an automatic discovery
procedure aimed at identifying “semantic” classes. (Miller, 1971) describes four different genera methods
used by psychologiststo investigate semantic similarity among lexical items, and the psychologists’ criteria
range from frequency of association to substitutability to co-occurrence. The last of theseis essentially the
linetaken by Brown et al. inthe semantically “sticky” examples just presented.

Conflation of word senses. Schutze (to appear), describing the results of his experiment on vector repre-
sentations, comments that “vector representations of words that can be used in awide variety of contexts
are not interesting.” He illustrates by showing that the nearest “semantic” neighbors of the verb keeping,
according to hismethod, do not form a coherent class on any obviousinterpretation of semantic relatedness.

Now, keeping is not a semantically vacuous word, and its distribution is far from arbitrary. It islikely
that keeping appears in similar contexts to putting more often than it does to, say, speaking:

(1) a keeping/putting/* speaking them together
b. keeping/putting/* speaking his hands on his head

On the other hand, unlike putting, it isalso likely to appear in similar contexts to retaining:

(2) a keeping/retaining/* putting possession of the football
b. keeping/retaining/* putting a permanent record of the transaction

The redl issue seems to be not that the word appears in a wide variety of contexts, but that distributional
analysisis being donewith respect to the word token and not the different senses associated with that token.

The same concern arises in many other studies of automatic word classification based on lexical distri-
butions. When Brown et al. present a semantic class containing both school and grade, as described above,
the grouping is perceived as semantically coherent because the reader assigns an appropriate interpretation
to each word on the basis of the other words. However, itishard to see how their discrete classification could
succeed in grouping those two terms, and at the same time also manage to encode the rel ationship between
dlope and grade, or the relationship between school and hospital, without inducing spurious similarities. If
each token isassociated with asinglepoint in semantic space, then words having multiple senses will occupy
a point determined by the relative frequencies of the individua senses. Although in many cases multiple
word senses share relevant properties— for example the newspaper and term paper senses of paper — in
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other instances the single point in semantic space represents an ama gam of propertiesthat may not preserve
the rel ationships associated with component word senses.

The problemisreduced to someextentin (Pereira, Tishby, and Lee, 1993), where anoun can be amember
of any number of clusters, each of which to some extent encodes a different sense. Thus the appearance of
the noun rocket in a cluster with gun and weapon (thingsthat fire projectiles) does not preclude it from also
appearing in acluster with shot and bullet (the projectilesthemselves). Nonetheless, there still appearsto be
some “leakage” across the word senses of a singleword token. The “distance” between noun n and cluster
c is caculated by using relative entropy to compare the verb distribution given n and the verb distribution
givenc:®

d(n=c) = D(pn ||pc)

p(vle)
ZU: p(v|n)log o]’ (2.10)
Here each term, measuring the contribution of each verbto thetotal divergencebetween thetwo distributions,
is calculated using the probability of the verb given the noun token, regardless of the sense in which the
noun was being used. This means that frequently used senses of the noun will influence cluster membership,
potentially overwhelming the distributional characteristics of less frequent senses.

To be specific, consider a noun that has two senses s1 and s, for which sense s, is much more frequent
than sense s;. Supposethat cluster ¢ is, on intuitivegrounds, closely related to s1 but not s,, and that verb
v tends to co-occur with s; but not with s,. For example, n might be back, in its senses as afootball player
(s1) and a body part (s2), cluster ¢ might represent the portion of the semantic space shared by appropriate
senses of quarterback, kicker, receiver, and so forth, and verb » might be tackle. Even if p(v|s1) is high,
the contribution corresponding to tackle in equation (2.10) will below, since p(v|n) & p(v|s2); conversely,
the contribution corresponding to the verb arch may be high. Asaresult, itislikely that » will be judged an
unlikely member of c.

Now, a more informed model might resolve this problem by including the rel ationship between nouns
and noun senses as part of the distance cal culation; for example, calculating class membership by replacing
equation (2.10) with

d(n,c) = ZZp@nn,v)p(wsi)logrf’((j@). (2.11)

Such asolutionisunfortunately circular for Pereiraet al., sinceidentifying the senses {s; } for agiven noun
ispart of their task.

A rather moreradical solutionissuggested by Elman: abandoning theidea of context-independent word
tokens altogether. He comments:

Conventional wisdom holds that as words are heard, listeners retrieve lexical representations.
Although these representations may indicate the contextsin which the words acceptably occur,
the representations are themselves context-free. They exist in some canonical form which is
consistent across dl utterances. . . .

A different image is suggested in the approach taken here. Aswords are processed there is no
separate stage of lexical retrieval. The representations of words (the internal states following
input of a word) aways reflect the input taken together with the prior state. In this scenario,

9Therrelative entropy alone does not measure extent of class membership: probability of membershipis afunction of this value.
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words are not building blocks as much as they are cues which guide the network through
different grammatical states. Words are distinct from each other by virtue of having different
causal properties. (Elman, 1989, p. 23)

Onthisstory — | think of it as“radical polysemy” — it is not words that occupy pointsin semantic space,
nor even word senses, but word instances taken in context. Theidea is not inconsistent with the philosophy
behind distributional clustering methods. Asinthework of Pereiraet al., a sense could be conceived of as a
point in semantic space, the center of mass for a set of items determined according to similarity of context.

In sum, distributional methods show a great deal of promisefor determining word classes automatically.
However, they tend to conflate words with word senses, since corpora contain the former and not the latter.
Inaddition, littleattention has been paid to the semantics of the representationsthat result. 1nthe next section
| consider resolving these problems by adopting a “knowledge based” approach to distributional statistics.

2.4 Word Classes Based on a Taxonomy

A natura dternativeto strictly distributional techniques for acquisition of lexica information, such as word
classes, isthe use of existing repositoriesof lexical knowledge, such as knowledge bases, lexical databases,
dictionaries, and thesauruses. However, it isnot aways entirely clear how to make use of information from
such sourcesin astatistica setting. There are several issuesin particular that are worth mentioning.

e Coverage. In order to perform corpus-based anayses, adequate coverage of the corpus vocabulary
is necessary. Traditiona knowledge-based forms of “deep” lexical-conceptual knowledge — for
example, the domain models in natural language systems like BBN's IRUS (Ayuso et a., 1989) —
will requireagreat deal of effort if they are to scale up to large quantities of text, unlessthedomainis
highly constrained. Text that is not constrained according to topic reguires vocabulary coverage more
on the order of that found in machine-readabl e dictionaries (MRDS).

e Representation. Onthe other hand, simply putting a dictionary into machine-readable form does not
guaranteethat it can be put to practical use as a computational tool. Numerous researchers have made
progressin extracting computationally useful lexical informationfrom MRDsand turningitintoformal
representations— e.g. (Alshawi, 1987; Byrd et al., 1987; Jensen and Binot, 1987; Braden-Harder and
Zadrozny, 1991) — but some forms of information are easier to reliably extract than others. 1S-A
rel ationships between superordinate terms (hypernyms) and subordinate terms (hyponyms) appear
relatively easy to discover (Byrd et al. report 98% accuracy in finding the head word in noun entries,
taken to represent the noun’ s superordinate category), whereas other information may not be. Alshawi
commentsthat “the fact that definition texts are often not analyzed compl etely means that information
that is central to adefinition is sometimes not taken into account” (p. 198).

o Ambiguity. Because most dictionaries and thesauruses relate words to other words, the automatic
extraction of lexical information is to some extent confounded by lexical ambiguity. Byrd et al.
comment that, absent an explicit indication of intended sense, some of their extraction methods are
“relegated to the status of a semi-automatic (rather than a fully automatic) processing tool” (p. 234).

Given these considerations, it seems sensible from a practical standpoint to begin by investigating the
statistical uses of word class information organized in the form of an 1S-A taxonomy, specifically, a noun
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taxonomy. For purposes of implementation, | will be using WordNet (Beckwith et a., 1991), a dictionary-
sized, hand-constructed taxonomy of nouns in English. The use of WordNet's noun taxonomy addresses
the issues of coverage and representation, and sense ambiguity is not a problem because it is organized
according to noun senses that have been manually disambiguated.

Because reliable extraction of noun sense taxonomies from MRDs is quickly becoming arealistic goal,
results achieved using WordNet will soon be more generally applicable. As techniques for extracting
information from dictionaries continue to improve — and are applied to languages other than English —
statistical methods devel oped using WordNet can be applied to the taxonomies that result. In additionto its
practical advantages, WordNet is unlike most dictionaries by virtue of the goalswith which it was designed:
as atestbed for psycholinguistic principles of lexical organization. Thetheoretical foundationsfor WordNet,
which | now discussin some detail, will become relevant in Chapters 3 and 4.

24.1 TheWordNet noun taxonomy and its semantics

WordNet (Miller, 1990b; Beckwith et al., 1991) isalarge-scale resource for lexical information in English,
constructed by George Miller and colleagues at Princeton University. It is broadly organized according
to parts of speech — verbs, nouns, adjectives, and adverbs — and the information for words belonging
to each of these syntactic classes is encoded in the form of a semantic network. Each network encodes
different kinds of information; for example, the noun network containslinks encoding rel ationships such as
“part of” (CARBURETOR is a part of GASOLINE_ENGINE) and antonymy (EVIL is an antonym of Goob), and
the verb network encodes causal relationships (DISCLOSE causes BECOME_KNOWN) and manner distinctions
(STRANGLE is a specialization of KiLL).0

In thisresearch, | have used only the noun taxonomy, and within that taxonomy, only two rel ationships:
hyponymy and synonymy. Hyponymy as used by Miller et al. isintended to capture classinclusion, asin
the classic example ELEPHANT IS-A MAMMAL. They write (Beckwith et a., 1991, p. 215):

A noun X is said to be [a] hyponym of a noun Y if we can say that X is a kind of Y. This
relation generates a hierarchical tree structure, i.e., ataxonomy. . . . A hyponym anywhere in
the hierarchy can be said to be “a kind of” al of its superordinates. Researchers in artificial
intelligence have long noted that a taxonomic organization is a highly efficient and economic
storage system: all of the properties attributed to a superordinate node are inherited by its
hyponyms; conseguently, the properties need to be stored only once rather than separately with
each hyponym.

A discussionin (Sparck Jones, 1964) on the definition of semantic relations pointsto a potential problem
with hyponymy as Miller et al. areusingit. Sparck Jones attemptsto draw adistinction between “linguistic”
relations, on the one hand, and “factual” relations, on the other — that is, lexical relationships based on
interpretations of meaning as opposed to knowledge about the world.* The relationships between woman
and female would seem to fdl into the former category; the relationship between woman and blouse would
seem to fall into the latter, since thereis at most a contingent rel ationship having to do with the fact, in the
world, that women sometimes wear blouses. Sparck Jones argues that the distinction is necessary in order
to constrain the domain of lexical description: she comments (p. 48) that unless we do so,

10For purposesof notation, | useitalics when referring to aword regardless of its sense, and uppercasewhen talking about aword in
some specific sense. For example, one sense of word is in the sense of WORD or TIDINGS, asin “Have you received word?’

11Cf. Dowty’s term lexical entailment, for which “the implication follows from the meaning of the predicate in question alone”
(Dowty, 1991, p. 552).
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. .. wewould finish up trying to give a description of the whole physical world, in the widest
sense of “physical world.” We would be constructing an encyclopedia, which is not what we
want; and we could, moreover, never finish it (either medically or logicaly).

One definition of hyponymy that Sparck Jones considers is from (Lyons, 1961), where the lexica
relationship is defined in terms of implication between sentences. In order for A to be a hyponym of B, it
must be the case that a sentence containing A is understood in generd to imply the same sentence with B
substituted for A, but not conversely. So, for example, “x is scarlet” is generally understood asimplying “x
isred,” though not conversely, and therefore scarlet isahyponym of red. Implication isnot used by Lyons
asitisinforma logic; rather, it isintended to represent the judgements of the language user. As Sparck
Jones describes it, “two sentences are equivalent if the ordinary language user would agree that in asserting
the one we are asserting the other; and one sentence implies another if in saying the one we are prepared to
say the other” (p. 54). | will distinguishimplication of thiskind from the normal use of implicationinlogic
by caling it “plausible entailment.”

A possible difficulty with using this definition in atheory of lexical semanticsisthat it failsto unequiv-
ocally rule out relationshipsthat may be factual, as opposed to linguistic in the sense described above. So,
for example, even if it were true that anything which isa dog is hairy, and that the ordinary language user
would be prepared to say “x is hairy” given that “x isadog,” one might not want to say that that thereis
a hyponymic relation between the words canine and hairy. One the one hand, one could argue that being
hairy isadefinitional aspect of being a dog, in which case the rel ationship does bel ong within the domain of
lexical semantics; but on the other hand, one could argue against this position, saying that the hairiness of
dogsis accidental and therefore a matter of factual knowledge and not definition. The answer is not clear,
and this, Sparck Jones argues, is the problem with trying to treat implication (plausible entailment) as a
“linguistic” relation. She argues instead for making synonymy the central semantic relation in her lexica
theory, a proposd that | will discuss momentarily.

Given this discussion, one could also conclude that the definition used by Miller et al. isnot alinguistic
characterization. Sparck Jones says as much:

[We] might say that A and B arerelated [by hyponymy —PsR] if an aisakind of b. But in this
case we are obliged to say that we are no longer concerned with linguisticrelations. (p. 63)

Itisnot entirely clear to methat the“kind of " relationshipisin principlenon-linguistic— after al, thecentral
fact captured by such relationshipsisinheritance of properties, and even Sparck Jones would most likely be
willing to concede that theinheritance of gender from womAN (femal e adult) to QUEEN (female monarch) is
inextricably wrapped up in themeanings of thelexical itemsand not just accidenta factsabout theworld. On
theother hand, Miller et al. do not provideany rigorousdefinitionof what they mean by “akind of” — and, in
fact, the contents of the noun taxonomy suggest that their criteriafor superordinate-subordinaterel ationships
are more generous than astrictly linguistic definition woul d allow.'? For example, the classification of FRUIT
(inits sense as foodstuff or produce, not part of a plant) as subordinate to GROCERIES (commodities sold by
agrocer) surely reflects world or perhaps even culturally specific rather than linguistic knowledge.

2All examples are from WordNet Version 1.2.

13Whether this is good or bad dependson your point of view. (Nirenburg and Raskin, 1987) argue that creating a conceptual model
encoding “all theworld's knowledgedown to somelevel of detail” — what they call aWorld Concept Lexicon— isin fact anecessary
preliminary to any construction of a lexicon for analysis or generation. However, they explicitly commit themselves to constrained
domains, rather than the world in general, distinguishing themselves from broad-coverage knowledge acquisition endeavors such as
CYC (Lenat, Prakash, and Shepherd, 1986).
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Word Word Forms
Meanings | f1 fo fa ... fa
may X

mo X X
mp X

Table 2.3: Schematic representation of alexical matrix

The digtinction between “linguistic” and “factual” knowledge is the source of quite a bit of difficulty;
it is an issue that will arise again in Chapter 3. But assuming the distinction is applicable here, | will
interpret hyponymy in the WordNet noun taxonomy as a lexical-conceptual relationship rather than as
gtrictly “linguistic” — though theinformationisas strictly lexica asany oneislikely to find in adictionary,
as distinguished from an encyclopedia* From aformal point of view, the taxonomy does appear to respect
implication in the sense used by Lyons: having said “x is a piece of fruit,” the ordinary speaker of English
can reasonably be expected to agree that “x isan item of groceries or foodstuffs’ isaso true, aswell as any
additional facts plausibly entailed by that statement on either linguistic or non-linguistic grounds. Thus, for
the sake of making things concrete, | will formalize hyponymy in WordNet in the following way: if « and
b are digtinct hyponyms of ¢, and «, 3, and v are the sets of plausible entailments generated by virtue of
membership in each respective class, theny C a,y C 8, and a # 3.1

The second organizing relationship within the WordNet noun taxonomy is synonymy. Miller et al.
(1990) characterize synonymy in terms of a lexical matrix relating “word forms’ to “word meanings’ —
such amatrix isrepresented schematically in Table 2.3. Word forms correspond to what | have earlier called
“word tokens,” and what Sparck Jones calls “word-signs’ — essentially an atom or symbol, in written text
typically a sequence of characters delimited by spaces.’® Word meanings refer to “the lexicalized concept
that a form can be used to express’ (Miller et al., 1990, p. 4). However, an important facet of WordNet's
formalization of word meaning is the absence — in both theoretical and practical terms — of a complete
conceptua representation. Miller et al. distinguish between constructive theories and differential theories:
the former requires representations that provide enough information to support accurate construction of the
concept by person or machine, but the latter requires only that the representations of meaning are sufficient
for someone to identify concepts that are aready known. WordNet instantiates a differentia theory by
representing meanings in terms of synonym sets (sometimes shortened to synsets), so that m;, for example,
isidentified by {f2, f. }, the members of its row in Table 2.3. In this example, m, might correspond to the

Miller et al. comment that “ somewhere a line must be drawn between lexical concepts and general knowledge, and WordNet is
designed on the assumption that the standard lexicographiclineis probably asdistinct as any could be” (Miller et al., 1990, p. 15). See
(Jackendoff, 1983, chapter 6) for an argument against taking the purported distinction between “semantic” and “ conceptual” structure
too seriously; Jackendoff’s|s-INCLUDED-IN relation seemslike it may also be areasonablebasis for hyponymy.

151t may ultimately be necessary to sort out the semantic issues here a bit more clearly, distinguishing implication, entailment,
presupposition, and conventional implicature (see, e.g., discussion in (Dowty, Wall, and Peters, 1981)). Also see discussion of
taxonomies and further references in Chapter 6 of (Cruse, 1986); in particular, Cruse makes a distinction between hyponymy and
taxonymy, the latter being a sub-species of theformer. A number of these issuesarise in Chapter 3.

16| general, of course, some provision must be made for multi-word lexical items. That complication isignored here.
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concept BOARD initssense as “along, flat dab of sawed lumber” (AHD, 1991), with synonym set { f2, f,. }
being {board, plank}. Miller et al. (1990, p. 4) comment:

These synonym sets (synsets) do not explain what the concepts are; they merely signify that the
concepts exist. People who know English are assumed to have aready acquired the concepts,
and are expected to recognize them from the words listed in the synset.

Asit turns out, an approach to synonymy of very much the same kind is argued for at length by Sparck
Jones, in the context of specifying which relationships are to be captured by an automatically constructed
thesaurus. She makes a distinction similar to the one just described, and concludes (Sparck Jones, 1964,
p. 28):

The distinction between the two different ways of looking at a thesaurus head [i.e., a lexical
grouping or class —PSR] is therefore a useful one, because it suggests a new approach to the
problem of constructing a thesaurus; it suggests that we should treat athesaurus head primarily
as aset of wordswhich are related to one another, and only secondarily as a set of wordswhich
express an idea. This means that we can set about the business of finding heads by looking
for sets of words which are related in a suitable way, and then labelling them, rather than by
inventing ideas, and then searching for words which express them. This approach has two
advantages: thefirst isthat the heads can be found more easily, and the second is that they can
be found without any reference to an a priori set of idess.

Sparck Jones characterizes synonymy as follows. First, as a background assumption sentences are taken to
have a property she calls aploy (i.e. theway in which it is employed) — for example, Shut up and Keep
quiet have the same ploy. Given a sentence S and one of the word positionsin S, arow is defined as a set of
words that can appear in that position without changing the ploy of S. So, for example, the sentencesin (3)
giverisetotherow {signal, sign} and (4) givesriseto therow {shouted, cried, called}.

(3) a Hegavethesigna for the advance.
b. He gavethe sign for the advance.
(49 a Heshoutedfor help.
b. Hecried for help.
c. Hecdled for help.

One might argue that, even if ploy can be given some precise interpretation, no two words are ever truly
substitutableeven in aparticular context, since each carries different associations or overtones. Sparck Jones
responds to this objection as follows (p. 84):

In spite of this argument, it isan empirical fact that we do explain the meaning of aword in a
context by giving other words which we say can be used in the same way; we do in practice say
that words may be used synonymously. This suggests that we can make a distinction between
a particular use and the whole range of uses of aword. We can and do say that though the
overtones of two words, representing their whole ranges of uses may be different, their usesin
aparticular context may, for all practica purposes, be treated as indistinguishable.

Given thisdiscussion, it seems clear that Table 2.3 is representative of the theories of both Miller et al. and
Sparck Jones. Inboth cases, thegoal isnot to provideathesaurusdefined intermsof word synonymy; X rather,

17| ndeed, Sparck Jonesexpendsconsiderableeffort detailing the argumentsagainst this view, andlater proposesthat “total” synonymy
be derived from synonymy of word uses.
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taxonomic classes comprise differential representations corresponding to word uses that are synonymousin
particular contexts. Although WordNet classes represent a higher level of abstraction than Sparck Jones's
rows — something like what she calls agroup — the core ideaisthe same. Lexica classes comprise sets of
wordsthat in some contexts are mutual ly substitutablewhile preserving the essential components of meaning
and use.

To summarize, one way to characterize synonymy in WordNet is as follows. Let s be a WordNet synset
containing synonyms (word forms) {w; }. Then thereisa“representative’ set of sentences {S5; } such that if
S; entails o, then S; [n = w] also entails o for dl w € s, where S [n = w] denotes sentence S; with word
w substituted at position n; furthermore, s contains all such w. So, for example, suppose s is the synset
{board, plank}: for al practical purposes the sentences in (5) are interchangeable, in that the conclusions
one can draw — such as o1 and o2 — are the same.

(5) a John sawed the board in two.
b. John sawed the plank in two.

(6) a [o1] Thething John sawed isused for construction.
b. [¢2] The thing John sawed isflat.

Furthermore, some entailment serves to exclude other similar words from the set; for example, brick and
shingle are closely related to this sense of board, but substituting brick for board in (5a) would violate o5,
and substituting shingle would introduce a new entailment o3 not shared by board and plank.

(7 [e3] The thing John sawed is used for covering roofs.

Again, it should be noted that the notion of entailment that is operative here is concerned not with logical
necessity, but with implication in the sense used by (Lyons, 1961) — that is, entailed properties consist
in conclusions that one would be willing to draw. It is not difficult to elicit such properties from human
subjects; for example, (McRae, de Sa, and Seidenberg, 1992) describe a norming study in which subjects
produced properties like requires a driver and used for transportation (e.g., given bus). Although | have
characterized rel ationshipsin WordNet in terms of such properties, however, it isimportant to remember that
thisisdonesoldly intheinterest of providingawell-founded interpretation for an existing taxonomy — such
relationshipsare not explicitly represented in WordNet, nor were they explicitly used inits construction.

Computationally, these two taxonomic relationships in WordNet, hyponymy and synonymy, form the
basis for what is essentialy an inheritance system. Each word token w is mapped to senses(w), a set of
synonym sets that in effect represent al of its word senses. For the sake of notational convenience, such
synonym setswill be represented not by listing each included word, but by pairing a single descriptive word
with a unique identifier — for example, (boar d, 4012740) rather than {board, plank}.*® Each synset s
in the taxonomy may have hyponyms (subordinates) and hypernyms (superordinates); these correspond to
both directions of an 1s-A link. Because WordNet permits multipleinheritance, hyponymy and hypernymy
are one-to-many relationships, and the structure of the taxonomy is a directed acyclic graph rather than a
tree.

18The numerical identifiers are derived from WordNet's internal data representation and can be thought of as arbitrary; hencethisis
equivalent to providing traditional sense labels like BOARD1, BOARD2, etc. | will sometimes omit the unique identifier when it is not
particularly relevant, e.g. writing {boar d) rather than {(boar d, 4012740). Identifiers used here are from WordNet version 1.2.
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| Description | Example | Count ]
Hyphenated term grease-removal 17
Occurred once in corpus carousing 16
Number .05% 4
Not in dictionary fella 3
Unusua or wrong spelling | threshhold 2
Acronym USP 1

| Other | dkdi | 6]

Table 2.4: Brown corpus houns missing from WordNet

Each synset in WordNet can be viewed as a class containing all the words in all directly or indirectly
subordinate synsets — that is, all synonym sets that inherit its plausible entailments. The extensional inter-
pretation of aclass ¢ will be written using the notation words(c); for example, synset (I unber, 4012560},
interpreted as an extensiona class, contains batten, board, deal, fin, furring, lath, louver, louvre, lumber,
pale, picket, plank, slat, spline, stave, strip, and timber.’® Conversely, classes(w) will represent the set
{c|w € wordg(c¢) } — noticethat thisincludesall the classes in which word token w is contained, regardless
of whether a particular sense of w was intended. From this point on, notation that is ambiguous between
synonym sets and classes — eg. (I unber, 4012560) — should be interpreted as referring to the class,
unless otherwise noted.

Intermsof size, the WordNet noun taxonomy (version 1.2) contains on theorder of 35,000 synonym sets,
and avocabulary of on the order of 47,000 nouns (approximately 30,000 if compounds are excluded). Using
the Brown corpus as a representative sample of English, WordNet's coverage accounts for approximately
95% of the tokens tagged as common nouns (singular or plura). Table 2.4 shows a breakdown into
categories for 49 nouns randomly chosen from the set of nounsin the Brown Corpusthat do not appear in
the WordNet taxonomy. Thereference dictionary for the“not in dictionary” category was (AHD, 1991), and
the one acronym on the list, USP, derives from the United States Pharmacopoeia reference standard. Of the
hyphenated terms, just one, vice-president, appearsin WordNet as a compound.

This coverage estimate will most likely remain fairly stable as WordNet changes: of the six nounsin the
“other” category — alkali, glycol, growl, handspike, quicksilver, and slam — only one, alkali, appears in
the more recent WordNet Version 1.3.

2.4.2 Esimation of class probabilities

Although the discussion in Section 2.4.1 describes a structured taxonomy, the probabilistic formalization
presented here will be based on a sample space consisting of class labels. In essence, the theoretica
formulation of the sample space will suppose that people say thingslike“| drank some (bever age)” rather
than “1 drank some wine.” The structure of the taxonomy will play arole not in defining the sample space,
but in estimating probabilities.

1 Actually, it also containsthe compound noun furring_strip; however, | treat all compound nounsin WordNet asif they did not exist.
Although this potentially loses useful information, it does away with the problem of determining whether or not a nominal compound
should betreated as a unit.



28

To be specific, let the probability space (Q, F, p) consist of:

Q = {Cl;CZa"'7ck}
F o= PQ
p : F—=[01]

where Q is the complete set of unique class identifiers in the taxonomy. F is simply the maximaly fine-
grained event space based on such a sample space, and p is a probability function. Thus the probability
space hereisjust likethe space for rolling a die; in thiscase it just happensthat the die has k sides.
Since real observations contain not class label s but words, the frequency of aclass ¢ will be estimated as
freqc) = > _t freq(w). (2.12)

wEords(e) |classes(w)]

Whenever word w is observed, credit must be assigned to some of the classes in the sample space.
So, for example, if the actual observation is drink wine, the frequency of co-occurrence with drink will
be incremented for (wi ne, 2657055}, (al cohol i c_bever age, 2654808), (bever age, 2653465), and
(5941, subst ance), among others. At the moment they are incremented by equal amounts, something |
will discuss further in detail in a moment.

There are many ways to estimate class probabilitiesp(c) on the basis of such afrequency distribution, of
which the maximum likelihood estimate (MLE) is the simplest. Although there are known problems with
maximum likelihood estimates of probability (see discussion in (Church and Gale, 19xx)), MLE seems a
reasonabl e starting point, especially since one of its main problems — the assignment of zero probability to
all unseen data— isin fact one of the problems thiswork is attempting to resolve. A similar point is made
by Pereira et al. (1993), who write, “We could [smooth zero frequencies] . . . However, thisis not very
satisfactory because one of the goals of our work is precisely to avoid the problems of data sparseness.”
Results obtained using MLE should be further improved by using improved probability estimates.?

The estimation of probabilitiesusing MLE is straightforward:

A freg(c

pMLE(C) = %, (213)
where N = 3", freq(c’). The calculation of joint probabilitiesis similarly straightforward: if the sample
contains co-occurrences (z, w), where z is an element of some set X' of tokens, one need only replace

equation (2.12) with

freg(z,c) = Z

wewords(c)

1
|classes(w)|

freg(z, w). (2.19)

For example, such a sample might contain pairs consisting of a verb and its direct object, in which case
pymre(v, ¢) would represent the estimated probability of amember of ¢ appearing as the direct object of v.

Let usreturn to the fact that in equation (2.12) the observation of aword w has an equal effect on every
class to which w belongs. Thisis clearly an oversimplification. However, absent a solution to the problem
of word sense disambiguation, distributing the“credit” for aword uniformly over its possible classes seems
the most sensible solution.

This brute-force approach works because related words tend to be ambiguous in different ways. For
example, consider the observation of two verb-object combinations, drinkwineand drink water. Onthebasis

2|n earlier work, | used Good-Turing estimates rather than MLE; for discussion of this and further notes on probability estimation,
see Appendix A.
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of these observations, the joint frequency will be incremented for each class containing wine in any sense
— including, for example, (chromati c_col or, 1925370). Similarly, the second pair will be recorded
as a co-occurrence between drink and inappropriate categorizations such as (body of wat er, 2995307).
However, evidence for co-occurrence will accumulate only for classes contai ning both water and wine, such
as (bever age, 2653465). The cumulative evidence thus will tend to support appropriate interpretations,
and counts with inappropriate senses will appear only as very low frequencies dispersed throughout the
taxonomy. A similar point is made by Yarowsky (1992), commenting on the calculation of statistics using
the numbered categories in Roget’s Thesaurus:

Whilethelevel of noiseintroduced through polysemy is substantial, it can usualy be tolerated
because the spurioussenses are distributed through the 1041 other categories, whereas the signal
isconcentrated in just one. (p. 455)

Given the much larger set of categories in WordNet, the dispersal of inappropriate senses should be even
more effective. However, using classes at al levels of the WordNet taxonomy has its disadvantages, relative
totheflat set of Roget’s categoriesused by Yarowsky: classeslow inthetaxonomy accumulate less evidence
than classes higher up. Asaresult, among small classesit can be more difficult distinguishwhich correlations
are signa and which are noise. For example, given numerous observations of verb blow with object nose,
there is not enough accumulation of evidence to determine that the high frequency with (nose, 2088032)
(the body part) is appropriate but the high frequency for (nose, 1172320} (e.g. the front part of an aircraft)
isnot.

24.3 Comparison with distributional methods

The following discussion is organized around several of theissuesthat have been raised in this section.

Sparseness. Knowledge-based taxonomies and distributional methods both address the problem of sparse
data. Knowledge-based methods have the advantage of classifying words that have not been encountered
a al, or words that are difficult to classify distributionally owing to lack of evidence. However, every
dictionary has gaps, and unlike distributional methods, knowledge-based taxonomies are not well-suited
to keeping up with changing terminology, proper names, and productive variations in usage. Hearst and
Schiitze (1993) present a promising approach to thisproblem; their work suggeststhat distributional methods
can be used to classify new words and proper names within the WordNet taxonomy.

Abstraction. Taxonomies of the kind defined in Section 2.4.1 provide a rich source of information about
lexical items, expressed at a level of abstraction that seems suitable for capturing conceptua in addition to
simply lexical information. However, some relationships may be more genuindly lexical than conceptua
— for example, (Smadja, 1991) argues that the distinction between strong tea and powerful tea cannot be
accounted for on purely syntactic or semantic grounds, and thus should be considered an instance of lexical
idiosyncracy. Capturing such relationships may be more difficult using a taxonomy like WordNet as an
intermediary. Therefore, consistent with the approach taken by Hearst and Schiitze, the use of aword sense
taxonomy should be viewed as away to extend, not replace, purely lexical methods.?*

210necould arguethat somerel ationshipsseem* purely” lexical simply becausethe appropriatesyntactic or semantic characterization
has not yet been found — for example, Patrick Hanks has conjectured that strong describes an intrinsic property whereas powerful
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Computational expense. Thedistributional derivation of classesclearly entailsagreat deal of computational
expense. Such expense can be justified on the grounds that the cost will vanish in the limit as computers
become more and more powerful; however, the sheer combinatorics of lexical relationships suggests that
some forms of distributional analysis may never be tractable. For the time being, even highly optimized
algorithms, such as those presented by (Brown et a., 1992), require agreat deal of computation.

On the other hand, dictionary building requires an enormous amount of effort — work undertaken by
people, not machines. Althoughitisincreasingly possibleto take advantage of existing dictionary resources
that appear in machine-readable form, the extraction of useful information from such sources— for example,
by parsing dictionary entries— can itself require significant computation. Moreover, thereis no guarantee
that exi sting sources of information, constructed asthey arefor other purposes, can be used for computational
purposes without substantial modification, if at all.

Perhaps a more interesting issue is the cost of keeping up with language use as it changes over time.
Most distributional methods involve global computations, requiring a complete recomputation of the model
even if the new version will differ significantly from the old only in a small fraction of cases. In contrast,
on-line knowledge sources can be modified incrementally without affecting core information that is retained
over time.

Classidentifiers. There are two reasons for associating symbolic descriptions with word classes: human
readability, and integration with other symbol-based system components. To some extent, WordNet comes
with human-readabl e class labelsbuilt in — this property will be shared by any knowledge base constructed
according to what Miller terms a differential theory of representation (see discussion in Section 2.4.1).%2
Distributionally-derived classes may or may not besimilarly interpretable; for example, showing thethree or
four words closest to the cluster centroid, as doneby Pereiraet al. (1993), |eadsto some easy interpretations
(e.g. the centroid for recognition, acclaim, renown, and nomination) and some that are rather more opaque
(e.g. pollution, failure, increase, and infection).

Symbolic class labels can also be necessary in order to integrate word classes with other components of
alanguage-processing system — for example, once a sense disambiguation algorithm has selected the most
likely category for aword in context, therest of alanguage-processing system will need to make use of other
informationindexed by that category. Such anintegrationmay be moredifficult when theonly representation
of classesisextensional. On the other hand, class |abels alone do not suffice: it isaso necessary to define a
mapping between the set of class labels and the set of symbols used by other components of the system. At
one extreme, the other components use the class taxonomy as a reference point and thistask istrivia; a the
other extreme, the other components have their own distinct characterization of word categorization and the
problem effectively becomes one of merging ontol ogies (Knight, 1993).

In some cases, neither human readability nor system integration is an issue and word equivalence classes
can be used as such without further interpretation. Thisis most notably the case for class-based language
models — athough even in such cases the ability to describe classes concisely may help, for example in
interpreting what exactly the language model has done when it makes an error.

describes an extrinsic property (Church and Mercer, 1993, p. 20). Thisissueis not likely to be resolved any time soon, given our
current limited understanding of lexical semantics, so maintaining Smadja’s distinction seemsreasonable.

2ZEven WordNet has exceptions, of course; for example, synonym sets containing only a single synonym. Peter Norvig (personal
communication) has explored methods for rendering synsetsin human-readableform — for example, augmenting a singleton synonym
set with terms from its immediate superclass, e.g. distinguishing FILE/RECORD VS. FILE/[HAND _TOOL.
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The semantics of word classes. Although, as discussed in Section 2.4.1, it isdifficult to ground taxonomic
representationssuch as WordNet in preciseformal terms, the use of the WordNet taxonomy makes reasonably
clear the nature of the rel ationshipsbeing represented. (The same may not be true of other taxonomies— see
for instance Sparck Jones's discussion of the various relationshipsthat relate words in Roget’s Thesaurus.)
However, like the need for class identifiers, the extent to which the contents of a class need to be clearly
describable will vary depending on the problem being solved. For tasks such as topic labelling, a group
of words that are associated according to topic may suffice (Hearst and Schiitze, 1993); for integration of
classes within alanguage understanding system framework, the ability to more clearly identify what a class
contains may be important.

Conflation of word senses. The distributiona hypothesis— that words sharing distributional contextswill
be similar to some degree — makes the most sense when taken at the level of word meanings or uses rather
than word tokens. Consider a single polysemous word token: its distributional signature may capture the
essential connection between a word's different uses (e.g. a door as an entranceway as well as the barrier
that occupies the entranceway), or the distribution may sum together quite independent uses (e.g. crane as
bird versus machine), or it may fall somewhere in between. In the first case, the distributional hypothesis
clearly holds. In the second case, the hypothesis runs into trouble, although perhaps the distribution can
somehow be analyzed into its independent components, and those used as the basis for judging similarity.
(Thiswould amount to extracting easily distinguished word senses from the distribution of the word token.)
Thethird case isthe most problematic: two word senses that intuitively are distinct will be treated as one on
the basis of the word token’s distribution.

Although it is possible to induce word senses as entitiesin their own right on the basis of word token
observations, as in (Pereira, Tishby, and Lee, 1993), the discussion in Section 2.3.4 suggests that capturing
word similarity will ultimately require a distributional analysis of word senses rather than word tokens.?
Such a solution is circular, however, under the assumption that the set of word senses is itself defined by
analyzing how word tokens are distributed. The proposal here to use externally-defined word senses can be
seen as one way of breaking that circularity: given adistributional analysis of classes using the model of
Section 2.4.2, it becomes possibleto consider both the distributional behavior of words and the distributional
behavior of the classes to which they belong.?

Distinction between domain-dependent and domain-independent knowledge. Information extracted
from acorpusis aways domain dependent to some extent, even for corporathat aspire to balanced coverage.
Church and Mercer (1993, p. 19) argue that if corpora are combined to obtain larger quantities of data, the
quirks of individual subcorporacan essentially be treated as noise:

Fortunately, though, it is extremely unlikely that [phrases specific to an individua corpus] will
appear much more often than chance across arange of other corpora . . . If such a phrase were
to appear relatively often across a range of such diverse corpora, then it is probably worthy
of further investigation. Thus, it is not required that the corpora be balanced, but rather that
their quirks be uncorrelated across a range of different corpora. This is a much wesker and

2Z5ee especialy equations (2.10) and (2.11) in Section 2.3.4.
2*Re-estimation is another possible way out of this circularity, though | will not pursue that idea further here.
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more realistic requirement than the more standard (and more idedlistic) practice of baancing
and purging quirks.

In practice, however, statistical methods are often useful for capturing language as it is found within a
particular context — automated tailoring to a particular domain is, in fact, one of the biggest advantages
of corpus-based techniques. If the goal isto parse IBM manuas, for example, then more genera language
usage in sources like the Brown corpus may be misleading: thingsthat get installed in general (8b) may not
be the kinds of thingsthat get installed when dealing with computers (8a).

(8) a Afterinstalation of the option, the backup copy of the Reference Diskette was started for the
computer to automatically configure itself.
b. Makes necessary purchases, places contracts, supervises construction, installation, finishing
and placement of furniture, fixtures and other correlated furnishings . . .

Knowledge-based sources of information also have their quirks. However, by using taxonomic classes
rather than distributionally derived classes, it ispossibleto isolate word classification from other distributional
issues. Asaresult, the behavior of class-based statistical methods can be broken down according to corpus-
dependent and corpus-independent factors. Thisshould beuseful for identifyingdifferences between corpora
aswell asfor evaluating the quality of the taxonomy itself.

In conclusion, distributional methods and knowledge-based methods for using word classes each have
advantages and disadvantages. Quite a few researchers have started investigating the derivation of word
classes on the basis of distributional similarity; in this chapter | have attempted to provide a balanced
description of their approaches. The present work differs from those investigations, beginning instead with
existing large-scal e knowledge sources as a source of lexical information.

It seems clear that athough lexical taxonomies cannot provide al the knowledge one could hope to
extract from a corpus, neither are distributional methods likely to capture al the information found in a
resource like WordNet, even in principle. Methodologically, the use of classes from a taxonomy makes
it possible to be clear about what kind of knowledge is represented, to keep separate what information is
provided by the classes and what by the lexica statistics, and to take advantage of existing resources.

Finally, an underlying goal of this work has been to incorporate knowledge-based information in to
statistical methods in the most conservative fashion possible. Although there is aways some residual
uncertainty as to how to interpret notions like synonymy and hyponymy — at least in terms of formal
semantics — the synonym and I1S-A relationships captured within the WordNet taxonomy are intuitively
reasonabl e and as widely accepted as any other form of knowledge representation. Furthermore, even those
representational details can be separated from the way the taxonomy is used in determining probabilities
based on classes: the class frequency estimate proposed here assumes only an extensional representation
of classes as sets of words, without requiring any further interpretation. The methods developed here can
therefore be applied in other settings, where some other model determines the criterion for coherent sets of
words.

In the next chapter | turn to selectiona constraints. After providing a review of the philosophical and
linguistic issues, | will argue that previous approaches leave unresolved problems concerning how such
congtraints are to be formalized. These problems, | will suggest, can be resolved in part by making use of
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the taxonomic lexical representation discussed here, and in part by formalizing selectional constraints using
amodel withinwhich class-based probabilitiesplay avita role.



Chapter 3

An Information-Theoretic Account of
Selectional Constraints

Limits on the applicability of predicates to arguments have variously been called sortal con-
straints, selection (or selectional) restrictions or constraints, and type rules. A review of the
literature on such constraints suggests two different ways in which they can be characterized:
a“ semantic” approach, which hasbeen questioned on empirical grounds, and an “ inferential”
approach, for which the theoretical issues are at present poorly understood. In this chapter, |
propose a new, information-theoretic formalization of selectional constraints, and argue that it
addresses both theoretical and empirical concerns.

3.1 Overview

The topic of this chapter can be traced back to Aristotle.! He considered the case of sentences like

(99 a aiseven.
b. o isnot even.

when « isnot a number — for example, when « is Socrates. Intuitively, “ Socrates is even” is certainly not
true, but neither isit clearly false; rather, it seemsto be a case where « issimply not the sort of thing to which
the predicate can be applied. More recent examples of this phenomenon include Chomsky’s predications
concerning ideas and sincerity:

(10) a Colorlessgreen ideas sleep furioudly.
b. Sincerity may admire the boy.

Limitations on the applicability of a predicate have variously been called sortal constraints, selection
(or selectiond) restrictionsor constraints, and type rules; expressions violating constraints of thiskind have
been discussed in terms of category mistakes, selectiona violations, type crossings, and semantic anomaly.
Whatever the guise, phenomena of thiskind raise a number of difficult issues.

1| regret that | am not nearly as erudite as this opening statement might suggest: in this section and the one that follows | draw
heavily on the deep and insightful discussion found in (Horn, 1989), especially chapters 2 and 6.

34
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First, examples like (9) pose a problem for straightforward truth-theoretic semantics. the axiom that
every propositioniseither true or false (Aristotle's“law of the excluded middl€”) confrontsthe widely-held
intuition that sentences like “ Socrates is even” are neither true nor false, but instead nonsensical, absurd, or
meaningless.

Second, in addition to the philosophical problems posed by anomal ous sentences of thiskind, it is nec-
essary to consider the positive application of predicate-argument constraintsin the process of interpretation.
Someone reading (9) — under the mathematical interpretation of even — will infer that « is an integer.
Similarly, to take an example from (Fodor, 1977, p. 195), the pronounin

(1D This one admires John.

will have attributed to it properties consistent with its use as the subject of admire, such as animacy and the
possession of higher psychological functions.

A third, closdly related point concernstheinterpretation of ambiguouslexica items. To take an example
from (McCawley, 1968, p. 131),

(12) a John has memorized the score of the Ninth Symphony.
b. The score of the Ninth Symphony is lying on the piano.

lexical itemsthat denoteworksof art or scholarship can also denote the physical embodiment of those works;
example (12) suggests that the correct interpretation of score may in part derive from constraints provided
by the verb.

| consider the first of these issuesin Section 3.2, where | review some of the philosophical approaches
to sentences like “Socrates is (not) even” and recapitulate Horn's (1989) argument for a pragmatic rather
than semantic trestment of (negative) category mistakes. In Section 3.3, | turn to the characterization of
selection restrictions in generative linguistics, particularly the discussions of Katz and Fodor (1964) and
McCawley (1968), who concern themselves not only with selectiona violations but also with the role of
selection restrictionsin constraining the interpretation of non-anomal ous sentences (issues two and three).

At this point, | will suggest that the discussion has reached something of an impasse (Section 3.4). On
the one hand, it will have become evident that the truth-theoretic approaches to selection restrictions —
that is, most of the voluminous literature reviewed by Horn — rest on the assumption that such restrictions
are phrased in terms of necessary and sufficient semantic conditions on the applicability of a predicate. |
will observe that this approach is equivaent to the “defining properties’ approach to mental categories and
thus inherits some substantial empirical problems associated with that approach. On the other hand, | will
argue that the “pragmatic” or “inferentia” approach proposed by Horn (aspects of which can be found in
McCawley and in (Drange, 1966) and (Johnson-Laird, 1983)) is too open-ended, potentialy requiring a
theory that encompasses al the inferences a person might make on the basis of factual knowledge.

The rest of the chapter, naturally enough, will be devoted to a proposal for going beyond theimpasse. In
Section 3.5, | will focusontheinferential view, but arguethat, rather thanincorporating al kindsof knowledge
and inference, a characterization of selectiona phenomena can be formulated in terms of an extremely
restrictive knowledge representation, together with an appropriate information-theoretic characterization
of predicate-argument relationships. By replacing selectiona restrictions with an information-theoretic
proposal for selectiona preference, | provideaprecisemodel that isnonethel essconsistent with theinferential
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view of theverification andtransfer of propertiesin anomal ousand non-anomal ousutterances. In Section 3.7,
| describe a computational implementation of this model, and illustrate its behavior on examples from
throughout the chapter. In addition, | consider the possibility that thisaccount might providethe groundwork
for a psycholinguistic model of “local semantic fit” and thus contribute to the study of on-line plausibility
effects in sentence processing. | conclude in Section 3.8 with a brief consideration of the present approach
in relation to other computational proposalsfor capturing selectional constraints.

3.2 Category Mistakes

In this section, | rely to a great extent on the discussion in (Horn, 1989), who describes utterances such
as (13) as category mistakes (CMs):

(13) a Thenumber two isblue.
b. The number two is not blue.

The latter sentence is an instance of a negative category mistake (NCM).

These and closdly related expressions have generated a formidable quantity of philosophical discussion
— at one point Horn refers to “ standard approaches of dual-negation logics’ in which (13b) can beread as
“simply false, apriori false, neither true nor false, fal se and insecure, or meaningless, depending on whether
the assessor is, respectively, an Aristotelian, a Drangean, a Bochvarian, a Bergmannian, or a Russellian”
(p- 139). On the following page he presents a chart in which no fewer than twenty-two other philosophers
jointhefivejust cited.

Rather than attempting the hopeless task of improving on Horn’sreview of the literature, | will restrict
myself to a summary of the major issues that are relevant to the present study. These are the questions
of whether category mistakes are best analyzed in terms of entailments or presuppositions, whether they
should be considered meaningful or meaningless, and whether they should be treated within a theory of
(truth-conditional) meaning or from a broader, pragmatic perspective.

3.2.1 Entailment

If predicate P does not “naturally” apply to argument x, asisthe case with bl ue and the number two, what
can be said about thetruth value of P( x) ? One might begin by supposing that any predicate has associated
with it a domain of applicability, and that applicability is an entailment of the predication. On this view,
introduced by Aristotle, the predication (13a) entail sthat the number two be something that can be described
as having a color, and since this entailment isfalse, (13a) simply isfalse aswell.2

Sentence (13b) could be described as generating the same entailment, and therefore also false. At first
glance, thiswould seem to be problematic, sinceit suggests that both a propositionand its negation could be
simultaneously false. However, it is not necessarily the case that (13b) is the negation of (13a). Aristotle's
analysis of (13b) positstwo different readings: in one the entire predicate is negated, and in the other what
isnegated istheterm bl ue itself. These interpretations can respectively be phrased as follows:

(14) a The number two is-not blue.

2For the moment, nouns are to be interpreted literally — so although “the number two” might be used to refer to, say, a sheet of
paper cut out in the appropriate shape, here it should be interpreted as referring to the abstract mathematical concept. The ability to
construearguments on other than their intended readings will be discussed in Section 3.5.
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b. The number two is not-blue.

On this analysis, the former interpretation does not ascribe a color to the number two, but merely negates
the predication (13a) that does so — therefore applicability of the predicateis not entailed and the statement
issimply true (since the number two is not among the set of bluethings). Thelatter reading is an instance of
term negation, in this case ascribing the property not bl ue to the number two. Unlike predicate negation,
term negation requires that the applicability of a property be considered; in essence, not bl ue isto be
interpreted as equivaent tored or green or yellow or.... Asaresult, (13b) does entail the
applicability of color terms to the argument, and istherefore false.

Horn points out that this analysis of category mistakes is closely tied to the analysis of sentences
containing empty (i.e. non-denoting) subjects, such as (15):

(15) a Theking of Franceisbald.
b. The king of Franceis not bald.

Taking Aristotle' sview, sentence (15b) can be treated as an instance of term negation — affirmation of the
predicate not bal d of the king of France — which entailsthat the king of France exist. Alternatively, it
can betreated as an instance of predicate negation, which does not generate such an entail ment.

3.2.2 Presupposition and meaninglessness

A widdy discussed alternative to the entailment approach, associated in particular with Strawson, is that
statements do not entail the applicability of predicates to subjects (or the existence of subjects), but rather
that applicability (and existence) are presupposed. On this view, someone uttering (15a) has not asserted
that a unique king of France exists, but rather has acted on the presupposition that such a person exists. If
the presupposition is not true, then the truth value of (154) is simply not at issue; it is neither true nor false.

It isimportant to distinguishbetween aproposition being neither true nor false and itsbeing meaningless.
An uncontroversially meaningless expression is (16):

(16) Boy girl of picture saw the and.
“Word salad” sentences like thisresult in more word salad when embedded in amatrix sentence:
an | dreamed that boy girl of picture saw the and.

and there is no intuition that the import of (17), if there were one, could be distinguished from another
instance of the same kind of anomaly:

(18) | dreamed that the saw picture of girl boy and.

Sentences that appear more normal on the surface can nonetheless exhibit behavior similar to this; for
example, violationsof Grimshaw’s (1979) s-selection:

(19) a John believed if thetrain left on time.
b. Mary reported that John believed if thetrain left on time.

In contrast, category mistakes can befelicitousy embedded (20) and distinguished from each other, since
in (21ab) Mary isclearly making two different claims:

(20) | dreamed that the number two was blue.
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(21) a Mary clamsthat colorless green ideas sleep furioudly.
b. Mary claims that sincerity may admire John.

Furthermore, category mistakes can be entailed by and entail other propositions. For example,
(22 Quadratic equations do not go to race meetings.

entails
(23) Quadratic equations do not watch the Newmarket horse races.

and isentailed by
(24) Quadratic equations do not move in space.

Similar observations hold of “empty subject” cases like those involving the king of France.

Propositionsthat generate entail mentscan certai nly not be viewed asmeaningless. Oneway of describing
the truth-conditional status of category mistakes, then, isto say that they are meaningful, but in some sense
insignificant. “Presuppositionalist” accounts generally accomplish this by relaxing the assumption that the
truth function be complete, instead characterizing it asa partial function and permitting category mistakesto
fal intoa“truth valuegap,” or by using amulti-valued logic, with category mistakes taking an intermediate
value expressing something like “not true.” Crucialy, in such a system the non-truth of a proposition will
not entail the truth of its negation.®

3.2.3 Implicatures, pragmatics, and metalinguistic negation

To summarize thus far, one treatment of anomal ous expressions involving inappropriate or empty subjects
retains a truth-theoretic analysisin which every propositioniseither true or false; on thisview the existence
and appropriateness of the subject amounts to an entailment of the proposition. Another widely held view
analyzes these not as entailments but as presuppositions, requiring some semantic status other than truth or
fasity.

Presuppositiona trestments are complicated by the fact that negative category mistakes and negative
existentially-presupposing expressions have a reading in which the presupposition appears to be “can-
celled”:

(25) a Theking of Franceisn't bald — thereisno king of France!
b. Ideas aren’t green — they’ re only in your head!*

In these cases, it is evident that the speaker is asserting the truth of the first statement, and justifying the
assertion by explicitly rgecting a presupposition.

3For a presuppositional treatment of category mistakes within the framework of Montague semantics, see (Waldo, 1979), who
follows van Fraasen's (1968) method of supervaluationsin treating truth as a partial function. Interestingly, Waldo's method succeeds
in evaluating “The theory of relativity is shiny” as neither true nor false, while still managing to evaluate “Every shiny theory of
relativity is shiny” asatautology; however, no accountis given for category mistakes that appear as the embedded clause in embedded
contexts.

4This exampleis adapted from an exchange between Barbara Landau and a blind five-year-old subject, brought to my attention by
Lila Gleitman:

(a) Barbara: Could an ideabe green?
(b) Blind child: No, silly! They're only in your head.
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Anadternativethat isstill very much inthespirit of presuppositionalist approaches, proposed by Karttunen
and Peters (1979), di stingui shesbetween thetruth-conditi onal semantics of apropositionand itsconventional
implicatures. Conventiona implicatures are distinguished from conversational implicatures in that in the
former case “the conventiona meaning of the words,” as opposed to general conversationa principles, will
determinewhat isimplicated (Grice, 1975, p. 66). Karttunen and Peters focuson cases likethefollowing:

(26) a John managed to solve the problem.
b. John didn’t manage to solve the problem.

27 It was difficult for John to solve the problem.

(28) John solved the problem.

Here the implicatum (27) is part of the meaning of both the positive and the negative statements in (26),
but not part of the truth-conditional meaning, since (26a) and (28) are truth-conditionally equivalent. The
distinctionis formalized by breaking down the meaning  of an utterance into apair (¢, ¢'), respectively
representing the utterance's truth-conditional meaning and its conventiona implicata.

The ambiguity between presupposition-preserving and presupposition-cancelling negation is then ac-
counted for by the existence of two negation operators:

(=p¢, ) [Ordinary negation of ]
(=(g® A @h), (#* V —ph)) [Contradiction negation of ¢]

Ordinary negation affects only the truth-conditional meaning, preserving implicatures (roughly equivalent
to presuppositions), so that John’s not managing to solve the problem still implicates that the problem was
difficult. In contrast, the meaning of the “contradiction” negation leaves unspecified whether the negation
is based on the truth-conditional meaning or the conventional implicata; and crucially, the implicata of the
contradictory negation are vacuous, thusin effect cancelled.

Although Karttunen and Peters do not discuss category mistakes explicitly, it is not difficult to see
how directly this approach would adapt to such cases: applicability conditions of predicates (e.g. having a
physical surfacefor color predicateslikegr een) can betaken as conventional implicatures. Asaresult, the
utterance “ldeas are not green” has an interpretation as an ordinary negation, in which case it suffers from
the same presupposition failure as “ldeas are green,” or as a contradiction negation, as in example (25b).
Notice the analogy between this approach and the term- vs. predicate-negation ambiguity discussed earlier.

Horn (p. 146) comments that “as part of the meaning of an expression and yet not part of its litera
meaning (that aspect of meaning which affects truth and satisfaction), conventiona implicata are located
simultaneously within semantics . . . and pragmatics.” However, the ambiguity of negation is ill a
semantic ambiguity since it concerns only meaning, albeit construed sightly more broadly. Having gone
thisfar, he argues in favor of going still further, proposing an analysis according to which the ambiguity of
negation unashamedly involves pragmatics.

At the core of Horn’s argument is a distinction between descriptive negation, which concerns semantic
or logical status, and metalinguistic negation, which concerns assertability. Crucially, descriptive negation
isan operator over propositions, but metalinguistic negation relates to utterances.
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Horn justifiesthe shift from semantic to pragmatic i ssues by presenting an array of data showing that the
“presupposition-cancelling” variety of negative category mistakes and empty subjects— illustrated in (25)
— isjust one case of a more general phenomenon that is not restricted to the domain of semantics. For
example, what isrejected in (29)

(29 Chrisdidn’t manage to solve some of the problems, he managed to solve all of them.

is not a conventional implicature, but the conversational implicature that leads the typical listener to infer
that “some” implies“not all.”

Other conversational implicatures are handled along similar lines. For example, Grice (1975, p. 73)
suggested that a reviewer might choose to write (30a) in order to imply that writing (30b) would have left
out crucia information, such as a hideous defect in Miss X's performance.

(30) a MissX produced aseries of soundswhich corresponded closely with the score of ‘ Home Sweet
Home.’
b. Miss X sang ‘Home Sweet Home!’

According to Grice, theimplication that the performance was terribl e ari ses because the speaker has violated
the submaxim of Brevity. Horn notes that the conversational implicature here can be rejected by negation
justasin (29):

(3D Miss X didn’t produce a series of sounds which corresponded closaly with the score of * Home
Sweet Home,' dammit, she sang ‘ Home Sweet Home,” and alovely rendition it was, too!

Implicatures associated with the order of conjunction (i.e. the correspondence of order to a time sequence
or to importance) can be cancelled, aswell:

(32) a They didn't have ababy and get married, they got married and had a baby.
b. Mozart’'s sonatas weren't for violin and piano, they were for piano and violin.

Other examples show that the phenomenon is still more general, permitting the regjection even of
phonetic, morphological, and stylistic aspects of utterances, or the focus or connotation implicated by a
particular utterance.

(33) a Hedidn't cal the[pblig], he caled the [polig].
b. | didn't manage to trap two mongeese, | managed to trap two mongooses.

(34) a Now Cindy, dear, Grandmawould like you to remember that you're ayoung lady: Phydeaux
didn’t shit the rug, he soiled the carpet.
b. It'snot stewed bunny, dear, it'scivet de lapin.

(35) a I'mnot hisdaughter, he' smy father.
b. Ben Ward is not a black Police Commissioner but a Police Commissioner who is black.

Metalinguistic negation, then, constitutes “a formally negative utterance which is used to object to a
previous utterance on any grounds whatever” (p. 374).% Unifying all these examples is a typical prosodic

SHorn's later analysis appears to weaken this statement somewhat; he isolates a class of implicata that cannot be cancelled by
negation.
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contour — “ contrastiveintonationwith afinal risewithinthe negative clause” — together withacontinuation
in which the faulty implicatum, whether lexical, morphological, or phonetic, is rectified. Horn strengthens
his case for thisanalysis by showing that other logical operators have metalinguisticinterpretations, asin:

(36) a | can only very briefly set forth my own views, or rather my general attitudes. (From Sapir,
Language)
b. If you'rethirsty, there's some beer in the fridge.

and that his analysis also applies to scalar implicatures, where metalinguistic negation is used “for discon-
necting the implicated upper bound of relatively weak scalar predicates’ (p. 382):

(37) a Around here, we don't like coffee, we loveit.
b. That wasn't abad year, it was ahorrible year.

Finally, Horn describes a set of diagnostics for distinguishing descriptive from metalinguistic negation,
including the inability of incorporated negation to license a metalinguistic reading, the ability of metalin-
guistic negation to permit positive polarity items, and the “archetypal” not X but Y frame for metalinguistic
negation.

(38) a Theking of Franceis not happy.
b. The king of France is unhappy.

(39) a Chlamydiaisnot “sometimes’ misdiagnosed, it is frequently misdiagnosed.
b. #Chlamydiais not ever misdiagnosed, it is frequently misdiagnosed.

(40) a Itisn't hot, but scalding.
b. Negation isambiguous not semantically but pragmatically.

In positing a distinction between the logical and theimplicated aspects of an utterance, Horn'sanaysis
is very much in the same spirit as that of Karttunen and Peters. However, Horn argues that unlike their
account, his metalinguistic analysisis capable of handling not only objectionsto propositiona content and
conventiona implicatures, but aso objections based on improper grammar, choice of register, phonetics,
and so forth. A similar point holds for analyses in which one reading of negation is taken to be a genera
operator more or less equivalent to “it isnot truethat S.” Horn comments,

Metalinguistic negation, as we have seen, isused to deny or object to any aspect of a previous
utterance — from the conventional or conversationa implicata that may be associated with it
to its syntactic, morphological, or phonetic form. There can be no justification for inserting an
operator TRUE into thelogical form for a certain subclass of marked negative sentences, in order
for negation to be ableto focus on it, if metalinguistic negation does not in principle have to do
with truth conditions. (p. 414)

Horn acknowledges that establishing a dichotomy between descriptive and metalingui stic negation opensup
an enormous formal problem:

One important question which | did not, and will not, directly address here is just how met-
alinguistic negation is to be represented within a formal theory of natural language discourse
... We must be content for now with the negative fact extracted from this chapter: some
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instances of negationin natural language are not formally representable in an interpreted propo-
sitiona language. (p. 444)

Since category mistakes and metalinguistic negation are so closaly related, thislast comment of Horn's
might lead a cynic to consign them to a black hole (the one containing all those “ pragmatic” phenomenathat
are deemed to be beyond formal treatment, at least for the next few centuries). In Section 3.4 | will argue
for a more optimistic view, to be developed in the remainder of the chapter. First, however, | will briefly
review the treatment of category mistakesin generative linguistic theory.

3.3 Sdection Restrictions

3.3.1 Sdectionrestrictionsaslexical features

The phenomena discussed in the previous section appeared in the guise of “selection restrictions” in (Katz
and Fodor, 1964). Katz and Fodor proposed a decompositional theory of word meaning in which lexica
entries specified the features applicableto aparticular lexical item. The classic exampleisthenoun bachelor,
decomposed into four lexical entries of the following form:

(41) a (Human), (Mae), [who has never married]
b. (Human), (Mae), [young knight serving under another knight’s standard)]
¢. (Human), (Mde), [who has thefirst or lowest academic degree]
d. (Animal), (Mde), [young fur seal when without a mate during the breeding time]

Features not encoded directly in the lexica entry were also taken to be part of a word's meaning —
for example, something HUMAN is also ANIMATE — though specific mechanisms for accomplishing this
(inheritance, redundancy rules) are not relevant here. (The items in parentheses are semantic markers,
and elements in square brackets are “distinguishers.” Semantic markers are intended to be primary, with
distinguishers not constituting components of meaning per se; however, see (Fodor, 1977, Chapter 5) for
acritical discussion of thisview. Kastovsky (1980) comments that Fodor and Katz's distinction between
markers and distinguishers “was completely rejected later as untenable both on theoretical and empirical
grounds’ (p. 86).)

For words that denote predicates, Katz and Fodor proposed that the arguments in their lexical entries
(properly, variables in argument position) be annotated with selection restrictions— that is, specifications
identifying the necessary and sufficient condition for a semantically acceptable argument. Such conditions
wererepresented as Bool ean functionsof semantic markers; for example, (42) givestheir selectionrestrictions
on the arguments for the verb hit when used as in “The man hits the ground with arock.”

(42) a [suBJECT] (Human) Vv (Higher Animal)
b. [oBJECT] (Physica Object)
C. [INSTRUMENTAL] (Physica Object)

Given a characterization of arguments as in (41) and of selection restrictions as in (42), the predicates
and arguments were combined straightforwardly: the cross-product of al possible combinations would be
taken over the senses associ ated with the component wordsin an expression, and sel ection restrictionswoul d
rule out inappropriate readings from the resulting set. For example, suppose bachelor had the four readings
given above, hit had the reading in (42) plus one other (e.g. the reading in “the rock hit the ground with
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athud”), and baseball had two senses (e.g. as a physical object and a game). Under these circumstances,
“The bachelor hit the baseball” would begin with sixteen (= 4 x 2 x 2) possible readings. However, some
of those readingswould be ruled out: assuming that seals are not higher animals, the selection restriction on
the subject in (42) eliminates all readings in which that sense of hit takes (41d) asitssubject. Similarly, the
interpretive procedure would discard al readings construing baseball as a game.

The theory presented by Katz and Fodor (1964) has a number of important features. First, it accounts
for the semantically anomal ous character of selectional violations(i.e. category mistakes): if no sense of an
argument meets the conditionson an argument of the predicate, then the set of readingsfor an expressionwill
be empty. Second, it shows how selectional properties can be used in apositiveway to constrain ambiguity,
since the cross-product of all possible readingsis reduced by those that are selectionally inappropriate. And
third, it accounts, via decompositional lexical semantics, for the intuition that certain lexical combinations
are redundant or tautologous— for example, the lexical decomposition of bachelor specifies that bachelors
are unmarried, so the modifier in unmarried bachelor adds no new information when the two lexical entries
are combined.

3.3.2 Selection restrictionsas syntactic features

Chomsky (1965) adopted a theory of selectional restrictions that was in many ways similar to Katz and
Fodor’s, but he located selectional featuresin the syntactic rather than the semantic-interpretive component.
Selectional constraints applied to lexical insertion, preventing anomal ous predi cate-argument combinations
from being inserted into deep structures. The presence of two contemporary forma mechanisms, one syn-
tactic and the other semantic, was complicated even further by the fact that Chomsky’s syntactic view of
selectional phenomenarepresented a shift from his semantic characterization in Syntactic Sructures (Chom-
sky, 1957). Fodor (1977, p. 97) comments that “the treatment of selection at this stage was schizophrenic.”

Chomsky did not express a particularly strong commitment to the syntactic treatment of selection
restrictions; for example, he wrote:

Selectional rules play arather margina rolein the grammar, athough the features that they deal
with may be involved in many purely syntactic processes . . . One might propose, therefore,
that selectional rules be dropped from the syntax and that their function be taken over by the
semantic component. Such a change would do little violence to the structure of grammar as
described earlier. (Chomsky, 1965, p. 153)

However, he did argue forcefully that selectional features such as [Human] and [Abstract] could not be
excluded from the syntactic component, under the assumption that expressionslike“the book who you read”
are deviant on syntactic grounds.

Asfor the status of selectional rulesthemselves, Chomsky’sarguments are neither particularly vehement
nor particularly convincing. The main point he makes seemsto be aresponseto the observation that semantic
but not syntactic anomaly is acceptable in embedded contexts. He comments that athough placing selection
in the syntactic component would require an account for such cases as (43a), some such explanation would
be necessary anyway, in order to account for the acceptability of embedded subcategorization violationsas
in (43b):

(43) a Itisnonsenseto spesk of frightening sincerity.
b. It isnonsenseto spesk of elapsing a book.
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Thus at least one motivation for removing selectional rules from the syntactic component is not as strong as
it might be.

(Although (43b) certainly requires an explanation, it seems to me that embedded contexts are irrel evant
here. Rather the phenomenon seems to concern the question of how verb meanings and syntactic frames
productively interact — as, for example, in:

(44) a Gepetto danced Pinnochio (across the table).
b. The shortstop looked the runner back to second base.

See (Fisher, Gleitman, and Gleitman, 1991) for discussion, and cf. Grimshaw’s (1993) suggestion that
diathesis aternations are the result of core verb meanings interacting with clausal structure.)

3.3.3 Sdection restrictions as semantic constraints

The discussion of selection restrictions in syntactic terms seems for the most part to have ended in the
1970s, owing at least in part to the influence of critiques by McCawley (1968) from the perspective of
generative semantics. McCawley provides convincing evidence that selection involves at least semantics,
contra Chomsky (1965); and contra Katz and Fodor (1964) he finds severe problems with their analysis of
selectional phenomena based on alexical decomposition theory of meaning.

Asafirst point against the lexical-features analysis of selectiona phenomena, McCawley observes that
selection restrictionsmust be construed as applying not to lexical items, but to entire constituents. He points
out that the anomaly of (45a) cannot be attributed to the head noun of the subject, since (45b) is perfectly
fine,

(45) a My buxom neighbor isthe father of two.
b. My neighbor isthe father of two.

Furthermore, M cCawley argues, sel ectionrestrictionscantakeinto account any pieceof semanticinformation
about alexical item, and not just somerestricted set — he pointsout that many words have extremely specific
selectional restrictions, such as devein (a shrimp or prawn), diagonalize (a matrix), and benign (a tumor,
in medical usage). In addition, he claims that only semantic properties can serve as selectiona features,
so that apparent cases of selection for syntactic features (e.g. mass vs. count nouns) are really cases of
selection for the semantic features with which they are correlated (e.g. whether or not the items referred to
areindividuated). Notice, for example, that there are no verbsthat select just syntactically feminine subjects
(e.g. in English, women and ships), but certainly some that select for the semantic feature FEMALE.®

Taken together, these points show that accounting for selection restrictions syntactically would duplicate
much of the work aready being done by the semantic component. Thisisnicely illustrated by the following
example (given in (Fodor, 1977, p. 98)):

(46) a Thiscorpse admires sincerity.
b. Thisdead man admires sincerity.
¢. Thisman that | proved that John was mistaken in believing to be alive admires sincerity.

Fodor notesthat “the fact that the subject phrase of [46¢] refersto a dead man is determined by the meanings
of prove, mistaken, believe, and alive and by the way in which these words are combined . . . in other
words, by the SEMANTIC content of the whole noun phrase.”

SFor further debate, see (Katz, 1970; McCawley, 1971).
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Regarding Katz and Fodor’s use of selection restrictions in disambiguation, McCawley argues con-
vincingly that selectionally anomal ous sentences must be assigned semantic representations, since, as noted
earlier, anomalous constituents can be part of non-anomalous sentences. As aresult, Katz and Fodor’s
mechanism of identifying semantic anomaly with an empty set of readingsis untenable.

McCawley also shows that the disambiguation mechanism proposed by Katz and Fodor leads to
unacceptable results. He notes that if king has just two readings, one related to monarchy and the other to
chess, then when (47) isinterpreted,

47) It is nonsenseto speak of aking as made of plastic.

the monarch reading will be ruled out, leaving only the unintended reading, “It is nonsense to spesk of a
chess piece king as made of plastic.”

In general, McCawley takes issue with disambiguation based only on a privileged set of semantic
markers identified with the meanings of words. He points out that the word priest has the semantic feature
MALE associated with it not as an element of meaning, but as a fact about the current state of the world,
since otherwi se di scussions about all owing women to become priestswoul d necessarily concern sex-change
surgery (cf. alowing aunts to become uncles). On Katz and Fodor’s theory, MALE therefore cannot be a
semantic marker for the word, and thus can play no rolein disambiguation. However, thisis contrary to the
intuition that

(48) The landlord knocked the priest up.

is easily disambiguated, rejecting the “caused to become pregnant” reading in favor of the reading “The
landlord awakened the priest by knocking on his door.””

3.34 Sdection restrictionsand inference

McCawley’sposition on (48) raises adifficult issue concerning the status of selection restrictionsin linguistic
theory. Although he does not say so explicitly, it appears that he takes the disambiguation of this sentence
to be an application of selection restrictions— in this case, a selection restriction based on a property that
he has just identified as “based on factua information rather than purely on meaning” (McCawley, 1968,
p. 130).

Kastovsky (1980), discussing McCawley’s position, argues that thisis indeed the case. He attributesto
McCawley the following contrast:

(49) a Myarmisbleeding.
b. The arm of the statueis bleeding.

and asserts that, similar to the priest example, the oddness of (49b) is based not meaning-rel ated properties
but on “extralinguistic probabilities.” In particular, he says, “[-BLOOD] is not part of the inherent feature
specification of statue”’ (p. 74).

On the one hand, it seems to me that Kastovsky is not giving enough credit to the compositionality
of meaning and to inter-feature relationships: [-ANIMATE] is uncontroversially an “inherent” feature of

"Thisis a British usage: “1f you knock someone up, you knock on the door of their bedroom or of their house during the night in
order to wakethem” (Sinclair (ed.), 1987). The point still standsfor American English, of course: with the feature MALE unavailableas
aselectional feature of priest, it would not be possible to account for the intuition that speakers of American English find the sentence
anomalous.
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statues, and inferring the absence of blood from the absence of animacy falls within the scope of whatever
mechanism permits the inference of ANIMATE from HUMAN, since blood is definitionally associated with
vertebrates and invertebrates, hence living things, at least according to the American Heritage Dictionary.
Thus an appropriate compositional interpretation of the arm of the statue would lead to a true selectiona
violationin (49b). On the other hand, as Kastovsky points out, this may not be the desired result. A “minor
extralinguistic miracle” could render the sentence perfectly acceptable; indeed, people have been known to
establish shrines around statues of religious figures because they believed those statues, though inanimate,
were literally bleeding.

Kastovsky’spositionleadsto afairly complicated state of affairs: how isoneto determinewhich features
of meaning are “inherent” and which are not? For example, according to Kastovsky, (45b) standsin contrast
to (45a) because the feature MALE is inherently a part of father and presumably aso because the feature
FEMALE isinherently a part of buxom. Yet one could imagine talk-show host Geraldo Riveraintroducing a
guest in the following way:

(50) Now introducing John Smith, looking lovely after his breast-augmentation surgery. This
buxom father of two makes hisliving in Las Vegas as afemale impersonator...

Similarly, if another “minor extralinguistic miracle’ of the medica variety permitted Jane Jones to produce
sperm cells, Geraldo would almost certainly seek to have her on the show, and he might justifiably make the
following introduction:

(51 Jane Jones, former supermodel, is now a buxom father of two.

Examples like these would seem to suggest that notion of “inherent” featuresis not clear cut — and in fact
most predicates are likely to be even less clear than those involving features MALE and FEMALE.

The problemisnot restricted to cases involving miracles of onekind or another. Drange (1966) illustrates
the difficulty in distinguishing ordinary false sentences from semantic anomalies with the following series
of sentences:

(52) a Englishmen like coffee better than tea.
Squirrelslike coffee better than tea.
Protozoalike coffee better than tea.

Bacteria like coffee better than tea.

Milkweed plantslike coffee better than tea.
Stones like coffee better than tea.
Electronslike coffee better than tea.

Quadratic equations like coffee better than tea.

Qe ~o 200

He comments,

[Perhaps] thisdifferenceisnot so much adifferencein kind asa differencein degree. Sentences
(8)—(h) seem to be arranged in a graded series in such away that it is not at al clear where
alineis to be drawn to distinguish the “factually incorrect” sentences from the “semantically
incorrect” sentences (or the false from the meaningless). (p. 16)

Ultimately Drange argues that the difference isin fact a matter of kind — i.e. that one can draw aclear line
distinguishing false expressions from type crossingsin (52). However, his criterion for where to draw the
line appeals to anotion he calls “unthinkability,” for which | find his arguments unconvincing.
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Drange acknowledges that even if (52) does illustrate a difference in kind, it may also illustrate a
differencein degree. He comments,

There are many propertieswhich Englishmen share with thingswhich like coffee better than tea
that are not possessed by quadratic equations, such asbeing aphysical object, beingalive, having
organs of taste, and so on. On the other hand, there are very few properties which quadratic
equations share with thingswhich like coffee better than tea, and it seems that Englishmen have
all of them also. Itisin this sense that the difference between (a) and (h) might be said to be
one of degree. (p. 17)

There are two thingsto note about this statement. Thefirst isthat property comparisons of the kind Drange
is discussing need not involve inherent or definitional properties — having organs of taste is neither a
definitional aspect of human beings, animals, etc. nor a necessary component of the verb likes. Indeed,
when Drange includes tastebuds in the discussion he is acting on a fact about the world, namely that a
preference for coffee over teawill be determined on the basis of taste and not, say, color.

The second thing to note is that the kind of property comparison Drange suggests, taken in its simplest
form, will be unilluminating. He points out that any concept possesses an infinite number of irrelevant
property descriptions of the following kind:

(53) a The property of not being composed of exactly one stone.
b. The property of not being composed of exactly two stones.
c. The property of not being composed of exactly three stones.

Since any two concepts share an arbitrarily large number of properties, the notion of “fewer” or “more’
propertiesin common will not suffice.

The discussion thus far seems to suggest that selection restrictions may involve inference about factual
knowledge at least to some extent. A more forceful argument, in favor of viewing selection restrictions as
unequivocally inferential, is made by Johnson-Laird (1983), who writesthat “the notion that it ispossibleto
formulate exhaustive and definitive selectional restrictions on the different senses of words turnsout to be a
fiction” (p. 234). He supportsthisview using the following example:

(549 Alcock and Brown were the first to fly X from the USA to Ireland.

(55) a Alcock and Brown were thefirst to fly an aeroplane from the USA to Ireland.
b. Alcock and Brown were thefirst to fly a bicycle from the USA to Ireland.
c. Alcock and Brown were thefirst to fly the Atlantic from the USA to Ireland.

Johnson-Laird notes that it is necessary to capture at least the three senses of fly illustrated here, which
suggest argument selectional restrictions along the following lines:

(56) a x (human, animal, or machine) controlsthe path through the air of y (vehicle)
b. x (human) takesy (physical object) in an aircraft.
¢. X (physical object) travelsin the air over y (geographical region)

The prablem, he points out, is that these restrictionsfail to constrain the arguments properly, permitting a
sentence like (57a) to have interpretation (57b):
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(57) a | saw the Azores, flying the Atlantic.
b. | saw the Azores as they were flying over the Atlantic.

It seems clear that ruling out flying islands by appealing to a more specific selectional constraint in (56c)
will be difficult. And, more to the point, doing so leads to a converse problem when the context supports
such an interpretation, as, for example, in a science fiction story about how the earth explodes.

The aternative that Johnson-Laird proposesrelies on inferentia processes involving factual knowledge.
He argues that the crucia question in interpreting (57a) is whether it is possible for the Azores to travel by
air over the Atlantic ocean, a question that “can only be decided by making an implicit inference based on
genera knowledge.” That is, the question “hinges on questions of fact, as well as on a knowledge of the
meanings of words’ (p. 235). The information Johnson-Laird hasin mind is the following:

(58) a Anidandisaland mass entirely surrounded by water.
b. Land masses are parts of the earth’s surface that are fixed relative to other such parts (barring
earthquakes).
c. An ocean is a body of sat water that covers a large and relatively fixed part of the earth’'s
surface.
d. If xisafixed part of y then x travelswhen y travels, but x does not travel with respect toy.
e. The Azores areislandsin the Atlantic Ocean.

Noticethat information about word meaning is not formally distinguished from factual knowledge; a so note
how nullifying the second piece of information — e.g. in the context of a science fiction story — would
change the interpretation of (57b).

Although strictly semantic informationisnot formally distinguished from general world knowledge, one
could argue that some selectional restrictions make reference only to senses of expressions — for example,
the subject of love as human or animal. Johnson-Laird expresses skepticism about thisclaim, noting that “in
a context where the dish ran away with the spoon, there may be nothing anomal ous about a chair’s falling
inlovewith atable” (p. 236). He suggests that what appear to be selectional constraints based on semantic
knowledgeare, infact, just cases of themore general process, with someinferences conventionalized because
of their frequency and predictability. The inferential mechanism is the same, he concludes, whether the
premises involved concern linguistic or factual knowledge.

3.4 Summary and Prospects

34.1 Propertiesof selectional constraints

On the basis of the discussion in the preceding two sections, | will characterize selectional constraints by
enumerating a number of propertiesfor which | find the evidence convincing, and noting issuesthat seem to
me to remain unresolved.

The following properties seem adequately demonstrated:

1. Selectiona constraints hold of congtituents and not simply lexical items. Thisisdemonstrated by the
contrast between nei ghbor and buxom neighbor, only the second of which would violatearequirement
for the feature MALE.
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2. Selectiona constraints are not strictly syntactic. This is demonstrated, e.g., by the existence of
predicates selecting for semantic features (e.g. semantic rather than syntactic gender), and of verbs
like devein that refer to semantic classes (e.g. shrimp and prawns).

3. Selectiona constraints are not restricted to a small, privileged feature vocabulary. Examples like
devein and diagonalize demonstrate that verbs can select for small, specific semantic classes rather
than large, abstract ones.

4. Selectional violations cannot be interpreted as meaningless in the strict sense of a total absence of
readings, first, because even selectionally deviant sentences generate entailments, and second, because
distinct anomalous constituents in embedded (especialy report and belief) contexts lead to distinct
interpretationsof the full sentence.

5. Selectiona constraints are applied in a positive way to assist lexica disambiguation. This seems to
be convincingly demonstrated by Katz and Fodor, despite the flaws in their particular disambiguation
mechanism as noted by McCawley.

Other properties of selectional constraints seem unresolved. In particular:

1. Are selectiona constraints restricted to “semantic”’ properties? Katz and Fodor’s treatment, Chom-
sky’s syntactic variant, the arguments of Drange and Kastovsky, and the bulk of the philosophical
literature reviewed by Horn all would seem to agree that selectiona constraints have to do with (at
most) elements of meaning, and not general knowledge. McCawley seems to admit factual knowl-
edge at least into the discussion of disambiguation (e.g. the probable but not definitional mal eness of
priests), and perhaps a so into selectional constraints (thisisKastovsky’sinterpretation, at least); Horn
groups negative category mistakes in with a pragmatic class of metalinguistic negations, but doing so
does not preclude the possibility that the categories involved in selectional phenomena may refer only
to elements of meaning. Johnson-Laird argues that selectional constraints should be viewed as part of
agenera inferentia framework, and that putatively semantic selectiona properties cannot ultimately
be distinguished from factual constraints.

2. Are selectional constraints categorical or graded? Few of the authors explicitly discuss whether
or not the selectional status of an argument is an all-or-nothing matter. When selection is taken
to refer exclusively to semantic properties, the constraint usually takes the form of a categorical,
necessary and sufficient condition and no other aternativeis considered. When factual propertiesare
discussed, there are some passing references to the probabilistic nature of such facts (e.g. Kastovsky’s
mention of “extralinguistic probabilities’), but it is not clear whether uncertainty, inferential support,
or other aspects of extralinguistic processing are intended to result in partia or graded satisfaction of
congtraints. Of the authors considered here, only Drange explicitly discusses the apparent gradedness
of anomaly judgements. Whether or not the satisfaction of selectiona constraintsisamatter of degree,
the positive application of selectional constraints in interpretation (items 4-5, above) suggests that
arguments may interact with selectiona constraintsin a more flexible way than is usually supposed.

3.4.2 A dilemma

The unresolved i ssues present adilemmato someone interested in el aborating an empirically adequate theory
of selectional constraints. Suppose, for the sake of argument, that onewere to accept the view that selectiona
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constraints represent necessary and sufficient conditions, phrased only within a semantic vocabulary; that
is, that they concern only senses of expressions and not any accompanying factual knowledge. Such an
approach seems clearly to be equival ent to adopting a decompositional, definitional theory of description for
mental categories. On such atheory, a category is completely defined in terms of (a Boolean combination
of) features such as ANIMAL, FLIES, HAS WINGS, and so forth — the only difference is that in the case of
selectional constraintsthedefinitionrefers not to anindependent category label (e.g. BIRD) but to applicability
conditionsfor the argument position of a predicate (e.g. x in bl ue(x) ).

Definitional theories, however, suffer from some well known problems. Armstrong et al. (1983, p. 268)
report:

[The] definitional theory isdifficult to work out in the required detail. No one has succeeded in
finding the supposed simplest categories (thefeatures). It rarely seemsto bethe case that all and
only the class members can be picked out in terms of sufficient lists of conjectured elemental
categories. And eliminating some of the apparently necessary properties(e.g., deleting feathers,
flies, and eggs so as to include the down-covered baby male ostriches among the birds) seems
not to affect category membership. Generally speaking, itiswidely agreed today in philosophy,
linguistics, and psychology, that the definitional program for everyday lexical categories has
been defeated — at least in itspristineform.

Johnson-Laird’s (1983, chapter 10) discussion of selection restrictions, described briefly above, is of course
also acritique of the definitional approach.

It is possible to adopt a decompositional theory without requiring necessary and sufficient conditions;
thisis the usual interpretation of prototypetheory (Rosch et a., 1976). However, Armstrong et al. (1983)
point out that, to the extent that a prototype theory makes use of features, it will have many of the same
problems as a definitional theory: “it is not notably easier to find the prototypic features of a concept than
to find the necessary and sufficient ones’ (p. 272). Furthermore, in contrast to one of the main advantages
of definitiona theories, adopting a theory of prototypes makes difficult (Armstrong et al.: “atogether
hopeless’) a compositional account of phrase and sentence meanings (Osherson and Smith, 1981).8

A review of the literature here would constitute too much of a side-trip, unfortunately; for a start
see (Fodor et a., 1980; Smith and Medin, 1981; Armstrong, Gleitman, and Gleitman, 1983; Smith and
Osherson, 1988),. The main point here isthat even if constraintsare not viewed as necessary and sufficient,
the identification of an adequate, exhaustive set of primitive selectiona (more generally, semantic) features
seems on empirical groundsto be difficult if not impossible to sustain.

Now consider the aternative view, the position that selectional constraints are connected not with
semantic primitives and meaning but with inferences and factual knowledge. This is the line suggested
by Johnson-Laird, and it seems consistent with Horn's classification of negative category mistakes within
amuch broader set of pragmatic issues. A theory of selectional constraints on this view becomes equally
problematic, albeit for entirely different reasons. Where for a definitional theory the problem is not being
able to find a complete and adequate set of features within the confines of the semantic representation, for
a pragmatic or inferential theory the problem is that anything goes: it will be necessary to represent and
make i nferences about not only word meaning proper but also other facts ranging from social moresto naive

8However, see (Kamp and Partee, in progress) for a defense of the prototype theory. They ascribe many of Osherson and Smith's
criticisms concerning compositionality not to prototype theory per se but to the choice of fuzzy logic as a supporting mechanism, and
they propose an alternative formulation of prototype theory having a different probabilistic/semantic substrate that appearsto resolve
many of the problems.
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physics. To say that such atheory is not within our current reach would be an exercise in understatement:
researchers in artificia intelligence sometimes call problems like this “Al-complete,” signifying that a
solution would be tantamount to solving the Al problem itself.

34.3 A proposal

The dilemma | have just described has to do with the vocabulary in which selectional constraints are
expressed: at one extreme the vocabulary consists of arelatively small set of semantic primitives, and at the
other extreme selectional constraints can bring in practicaly the entire representationa arsena of human
reasoning. | see no way to reconcile the two positions — if we unlock the door to conceptual rather than
than strictly semantic representations and processes, | see no principled way to avoid opening it to its widest
extent. Instead, | am going to propose asolution that avoidsthisdifficult issue, and at the same time remains
well motivated and empirically sound.

Since there is no in-between position, | will accept a dichotomy between the semantic and inferential
viewpointsand focus on thelatter. Although thismay seem dismissiveon the semantic side, | prefer to think
of thedistinctionas anal ogousto the dichotomy Horn draws between descriptive and metal i ngui stic negation:
acategory mistake may be taken to have asimple truth value in descriptive terms, but the interesting part of
the action is outside the formal semantics.®

The proposal has two components.

1. The first component is a taxonomic representation of noun concepts of the kind discussed in Sec-
tion 2.4.1, in which the central relationships are hyponymy (1s-A) and synonymy. Although an 1S-A
taxonomy can be interpreted in many different ways, recall that | grounded the formalizationinarea
tionship that might be called “plausible entailment”: following (Lyons, 1961), the entail ment relation
is based on the ordinary judgements of the language user, such that “one sentence implies another if
in saying the one we are prepared to say the other” (Sparck Jones, 1964, p. 54). The synonymy of
two words — properly, word senses — hinges on the existence of representative sentences in which
the words can be substituted while still preserving exactly the same set of plausible entailments.'©

This choice of representation will alow me to bypass the most serious unresolved issue, namely the
problem of how to coherently discuss sel ectional constraintsin terms of general inference without first
understanding how to represent the knowledge behind such inferences. The notions of “features’ or
“properties’ haveno place at al inthetaxonomy: if two wordsare companionsin asynonym set, then
by definition there is some set of representative sentences in which they are mutually substitutable
according to ordinary judgements. However, and thisis the crucial point, the mechanism for making
thosejudgementsisentirely irrelevant. What mattersisthat thetaxonomy exist, not that the criteriafor
individua classifications be fully specified. Genera inferentia mechanisms may ultimately account
for the taxonomy, but the theory of selectional constraints| propose need not explain how.

9There may also be an analogy hereto Kamp and Partee’s (in progress) proposal for integrating prototypetheory with truth-theoretic
semantics: there, real-valued characteristic functionsrepresent “ constraints on the possible completions of atwo-valued partial model”
(p- 27). In what follows, selection will constitute a probabilistic relationship over a space of conceptual classes; perhaps Kamp
and Partee's proposal could be extended so that this probabilistic framework also serves as a constraint on relationships within a
truth-theoretic model.
10| have been deliberately vague about what | mean by “representative.” The best characterization | can come up with is another
appeal to ordinary judgements: a context is representativeif an ordinary speaker would agree that the usageis not particularly creative
or unusual. Although thisis unsatisfying, it is no worse than the admonition to interpret a sentence “literally” in order to identify the
reading on which it is anomalous (Drange, 1966, p. 12).
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Simply stated, then, my hypothesis is that a conceptua taxonomy of this kind implicitly encodes
(most of) the inferences needed to account for selectional constraints. Thisleaves open the possibility
that, although the taxonomy is a useful construct for present purposes (i.e. until a correct theory
of inference is available), people really do apply selectional constraints in the form of inferences
computed using factual knowledge. A stronger version of the hypothesisis that a taxonomy of this
kind is psychologically real, and that the “true”’ theory of selectional constraintsreally does involve
stored conceptual knowledge rather than on-lineinferences.

Notice that this strategy accommodates Drange’s objection to property comparisons (Drange, 1966,
p. 17). He quite correctly observes that any two concepts will share an infinite number of properties
in common. A definitional theory provides one way out, by restricting the relevant properties to an
exhaugtive, finite set of features. The strategy adopted here provides a different way out, via the
generally useful tactic of reducing infinites to a finite set of equivalence classes.’* Notice also that
although the taxonomy represents not “linguistic’ but “factual” relations between words, it does so
in a minimal way, adhering to what Miller calls the “standard lexicographic line” in distinguishing
between lexical concepts and general knowledge (see footnote 14 in Chapter 2). As | have noted,
that such a minimal extension will suffice is admittedly no more than a hypothesis, but | hope the
remainder of this chapter will show it to be a plausible one.

. The second component of my proposal concerns the formalization of selectiona relationshipswithin

thevocabulary of thetaxonomy | havejust described. Onestrai ghtforward approachwouldbesimply to
reformul ate Katz and Fodor’s theory using the conceptual classes themselves as features. Thisoption
would improve on their account of selection restrictions by greatly expanding the base of primitives,
in accord with McCawley’s arguments (see properties 2 and 3, above). However it must be rejected, |
think, sincelikethe semantic theory it fail sto account for the meaningful interpretation of selectionally
deviant utterances in embedded contexts, the partial meanings ascribed to selectional violations even
in matrix utterances, and the subtle effects of selectional constraints on lexical disambiguation (see
properties 4-5).

The dternative, which | will elaborate in the next section, moves away from idea of restrictions, and
toward a characterization of selectional phenomena in terms of preferred association.*? The way in
which an argument satisfies and fails to satisfy the preferences of a predicate will account for how it
isinterpreted, whether or not the combined expression constitutes what would traditionally be called
a selectiona violation. In order to accomplish this, some forma means of representing preferences
will be necessary. Having aready moved away from traditional analyses by eliminating semantic
features, | will diverge still further in the next section by formalizing the preference relationship
probabilisticaly using the tools of information theory.

1170 state this more precisely, let W be the set of word forms. On the theory proposed here, the set of properties may beinfinite, but
the set of equivalence classes of propertiesis indexed by P (W) and therefore finite. (See Table2.3.)
2This may parallel the relationship between selectional restrictionsand “lexical solidarities” discussed by Kastovsky (1980).
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3.5 Sdection as|nformation

3.5.1 Intuitions

The dternative view of selectional constraints | am proposing can be phrased as follows: rather than
restrictions or hard constraints on applicability, a predicate preferentially associates with certain kinds of
arguments, and these preferences constitute the effect that the predicate has on what appears in an argument
position. For example, the predicate bl ue does not restrict itself to arguments having a tangible surface
— the sky is blue, and so is ocean water even deep below any apparent surface — but its arguments are
gill far from arbitrary. The effect of the predicate is that its arguments tend to be physical entities and to
have surfaces. Similarly, the verb admire, interpreted in the particular sense “to have a high opinion of,”
has an effect on what appears as its subject; these tend to be physical, animate, human, capable of the higher
psychologica functions, and so forth, though it may well be that no Boolean combination of these properties
isboth necessary and sufficient. In some cases the effect a predicate has on itsargument is quite strong: one
isunlikely to find the (numerical) predicate even applied to anything but positiveintegers, though zero and
the negative integers are dso fairly likely. In other cases — e.g. the predicate snmoot h — the effect isless
dramatic.

Expressions that fail to observe preferences are nonetheless interpreted in accordance with them. For
example, if someone told you in all seriousness that

(59 Milkweed plantslike coffee better than tea,

you might think they were uttering something absurd, but you could legitimately expect them to believe that
milkweed plants are capable of fedling pleasure, expressing a preference, or some other property typicaly
expected of the subjects of like. Similarly, as McCawley (1968) pointsout,

(60) My aunt isabachelor.

may raise an eyebrow, but it will nonetheless typically be interpreted as meaning that the aunt is unmarried.
Thus the violation of one expectation does not necessarily imply that others are not met. Incidentally, if the
speaker were just beginning to learn English, one might plausibly adjust one’ s belief according to a different
preferenceif the context supported it; e.g., concluding that aunt was mistakenly used in place of uncle. This
isthe kind of context dependence stressed by Johnson-Laird (1983).

Katz and Fodor’s (1964) use of selection restrictions in disambiguation can be recast as an inferentia
process based on preferences. In the straightforward cases, its behavior isvery much the same; for example,
in

(61)  John hit the baseball.

the reading of baseball as a physical object will be a better match for the preferences of hit than its reading
as akind of game. In addition, though, the inferential view makes sense of some of the problematic cases
that McCawley noted, such as (60), above, and

(62) It is nonsenseto speak of aking as made of plastic.

In the latter case, what is crucia isthat the applicability of the predicate MADE-OF-PLASTIC to king is ruled
out not locally by compositional semantics — leading erroneoudly to the interpretation “It is nonsense to
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speak of a chess piece king as made of plastic” — but as part of a global inferential process, which takes
into account the embedding of the proposition within the matrix predication “1t is nonsense that S.”

| am not going to attempt a formal characterization of the inferential process | have been discussing,
though see (Johnson-Laird, 1983, chapter 11) for atheory of comprehension that is a good match for the
views presented here. The point | wishto stressisthat theissues under consideration here are prerequisiteto
any theory of interpretation. All thetheories of category mistakes reviewed by Horn (1989) presuppose that
the question “can predicate P apply to argument x 7’ has ayes-or-no answer, and any theory consistent with
the discussion of examples (59) through (62) will require some way of answering the more genera question
“what could P( x) mean?’

3.5.2 Formalization
Prior and posterior distributions

Rephrasing theproblem intermsof preferencesnaturally suggestsaprobabilistictrestment. Asaprerequisite,
however, it isimportant to be clear about two distinctionsconcerning the status of probabilities.

The first distinction concerns the “logica” versus the “empirical” view of probability. The theoretical
treatment here is based on the former conception — something like the probabilities one would find by
peering into the head of the language user. This standsin contrast to empirical view, in which probabilities
are defined in terms of what one would observe as the experimental sample grew infinitely large.® Second,
one must always distinguish probabilitiesfrom statistical probability estimates based on observed samples.
If afair coin comes up heads six times and tails four times, the probability p(heads) is still exactly % even
though the usua probability estimate in this case would be % .

Formally, let P bearandomvariablerangingover theset {ps, . . ., pm } Of predicates under consideration,
and let C' bearandom variablerangingover theset {c1, . . ., ¢ } of classesin thetaxonomy, with C' berelated
to P by a particular predicate-argument rel ationship, such as subject-verb, verb-object, or adjective-noun.4
Given this probabilistic framework, the intuitive notion of “preference’ can now be phrased more precisely
asthefollowing question: what effect doesthe choice of aparticular predicate p; have on the distribution of
c?

Figure 3.1 illustrates how this might work for a particular verb, grow, with respect to classes of direct
objects. The top of the figure represents what the distribution of argument classes might be regardless of
the particular predicate. As the figure shows, some classes are a priori simply more likely to be referred
toin direct object position, and some less likely; for example, absent any other information, animals might
be more likely to be mentioned in direct object position than legumes. However, given the particular verb
grow, this distribution changes to the one shown at the bottom of the figure: some classes (e.g. animals)
become much lesslikely, and others (e.g. legumes) become much more likely.

It is this relationship, the change between the prior distribution, p(c), and the posterior distribution,
p(c|p;), that constitutes selectiona preference. On this account, the features or properties that govern
selectional constraints remain entirely hidden. Selectiona relationships are characterized entirely by the

BThereisalong history of debate concerning theinductive (or logical) view of probability asdistinguished from empirical probability.
Thefirst chapter of (Bulmer, 1967) contains one extremely brief but useful introduction to the distinction. See also (Bar-Hillel, 1964,
chapters 15 and 16) for discussion specifically with regard to information theory.

141 will only be considering predicates corresponding to surface syntactic relationships, but this is easily generalized. | will also
consider only one argument of a predicate at atime, which will lead to empirical difficulty in some cases. For example “ The dinosaur
devoured the village” and “ The mouse devoured the village” will differ in selectional status with regard to the direct object, owing to
the nature of the subject.
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Figure 3.1: Example of a prior distribution and a posterior distribution

probabilisticrel ationship between a predicate and the classes of itsarguments. Since classesin thetaxonomy
aredefinedintermsof “ plausibleentailment,” general inferential processesplay aroleinthischaracterization.
However, thisroleisan indirect one, and there is no need to presuppose that those processes are represented
or even representable.

Constraintsand Information

The probabilistic characterization of selectional relationshipsjust described relies on the notion of a“differ-
ence” between two probability distributions. Thisideacan beformalized using thetool sof information theory
(Shannon and Weaver, 1949), providing not only a precise definition but also an illuminating interpretation
of what it means for a predicate to constrain an argument “weakly” or “strongly.”

Recall from the discussion in Section 2.2 that in information theory the entropy of arandom variableis
ameasure of how uncertain the outcome is, on average. For example, if X represents the possible outcome
of afair coin flip, then itsentropy H(X') will be high. If the coinisunfair — having, say, a90% to 10% bias
in favor of coming up heads — then the entropy of X will be quite low. To take a more relevant example,
suppose 1V ranges over nounsin English, and that it corresponds to the next word given the introduction

(63) The cook basted the

The entropy of W in this case will be relatively low, since it is overwhelmingly likely that the next word
will be one of asmall set of words such as turkey or roast. On the other hand, if W isintroduced by

(64) The cook enjoyed the

then its entropy will be much higher, since any of an enormous number of completionsis reasonably likely
— the chef might enjoy abook, the opera, or the company of the butler. (The use of entropy to measure the
predictiveness of contextslike these is discussed in (Treisman, 1965; van Rooij and Plomp, 1991).)
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In information theory, entropy or uncertainty is generally identified with quantity of information. To
understand why this correspondence makes sense, consider how the informational state changes when an
actual event occurs, if you aready knew the underlying probability distribution. In the case of the heavily
biased coin, actua flipstell you little more than you aready knew: it will tend to come up heads, whichis
unsurprising, given the distribution, and therefore conveys very littleinformation. On the other hand, the
fairer the coin, the less information you begin with: since you don’'t have any ideawhat to expect, every flip
of acompletely fair coin will be maximally informative. Examples (63) and (64) are ana ogous.

Formally, entropy (information) is defined as:

1
zx: p(z) log @, (3.1

and the quantity of information obtained by observing a single z is equated with log ﬁ Notice that,
consistent with the intuitive description just given, the more surprising (less probable) something is, the
more informative it will be.> With that in mind, entropy can be seen as informativeness “on average’:
H(X) is aweighted average of information taken over al possible values for X. Since the logarithm is
conventionally taken to the base 2, the standard unit of information isthebit, short for “binary digit.” (I will
not el aborate on the reasoning behind the particular mathematical formin (3.1); see (Khinchin, 1957, pages
9-12) for a nice exposition of thispoint and (Cover and Thomas, 1991) for a very readable introduction to
information theory as awhole.)

Relative entropy is an information-theoretic measure of how two probability distributions differ, which
is precisaly the question under consideration here. Given two probability distributionsp and ¢, their relative
entropy isdefined as

X
D(p | 9) Zp )log mg (32)
Like entropy, the relative entropy is a weighted average; moreover, rewriting equation (3.2) as
1
)[lo —log—— 33
Dy || 9) Zp llog 5 — 109 5] (33)

makes it clear that what is being averaged is the difference at each point between information according to
distribution ¢ and information according to distribution p. A useful interpretation of the definition comes
fromthinking of probability distributionsasmodels: relativeentropy can beinterpreted asthe cost, measured
in bits of information, of using ¢ as amodel when the truedistributionis p.

Notice that under this interpretation, it would not make sense for relative entropy to ever be negative:
any model ¢ that isnot exactly correct should incur apositive cost relative to the perfect model of p, namely
pitself. Andthisis, infact, the case: an important theorem of information theory isthat D(p || ¢) isalways
greater than or equal to zero, and equal to zero if and only if p = ¢ (Cover and Thomas, 1991, p. 26).

Thisfact can seem counterintuitive, since equation (3.2) shows that relative entropy isthe sum of many
terms of the form [p(z) log %(%]' each of which may be positive (when p(z) > ¢(z)), negative (when
q(z) > p(x)), or zero. Although it might seem as if the positives and negatives could balance out even
when p and ¢ are different, this turns out not to be the case. Consider two simple examples, supposing

15Since log p(—i) = — logp(z), thisis the same as the definition given in Chapter 2.
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Figure3.2: Simpledistributionsto illustrate relative entropy

that = can take on only two values, 2 or z,. First, consider the case where p(z1) = 2, p(z2) = 1, and
whereg(z1) = 1, ¢(z2) = 2 (see Figure 3.2(a)). Here, the probability of z1 islower in ¢ thanin p, and the
probability of =, ishigher by exactly the same amount. Although the two might therefore seem to balance
each other out, the relative entropy between the two distributionsis positive; specifically,

T
D(pllg) = Xx:p(ﬂfﬂog%
= %Iog3+%log%
= Zlog?)— %Iog3
= %Iog&

Asasecond example, supposethat 21 and z, have the same probability in p, and differ fromthat valueinthe
model ¢ by equal but oppositeamounts (see Figure 3.2(b)). Inthis case, although both «; and z, have equa
weight in the “true” distribution, and their valuesin ¢ change in equal and opposite directions, the relative
entropy nonetheless turns out to be positive:

D(p |l 9)

}Io 2+}I0 2
20951 31993

= %(IogZ—HogZ—IogS)
= %(Iog4—log?>)

— }|0 ﬂ’

= 3logz.

Working through further examples like these, it should become clear that, despite one's intuitions, it is
impossibleto “trick” the definition into balancing out for non-identical distributions!
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Relativeentropy can be applied straightforwardly to the probabilistictreatment of selectional constraints.
Theprior distribution of classes, p(¢), representsan “ uninformed” model of what thedi stribution of arguments
looks like, one that does not take the predicate into account at al. The posterior, p(c|p;), is the true
distribution of argument classes for a particular predicate p;. So, treating the former as ¢ and the latter as p
in equation (3.2), the difference between the two distributionsis quantified as:

D(telp) [ e)) = 3Pl log ('p;) (3.4)

In information-theoretic terms, equation (3.4) measures the information provided about a random variable
(C, the class of the argument) by an event (P = p;, i.e. observing the predicate). Smyth and Goodman
(1992) discusswhy thismeasure, which they call the j-measure, isthe appropriate oneto usefor that purpose.

At this point, | will try to heed the admonition of Bar-Hillel (1964, chapter 15) against confusing
various ideas of what information is. Although Shannon and Weaver (1949) explicitly tried to avoid
interpreting “information” in terms of semantic content, Bar-Hillel notes that their use of the term has
often not been carefully distinguished from the notion of meaning, with undesirable results. In the present
work, | have followed Bar-Hillel in adopting the logical view of probabilities for theoretical purposes,
though for computationa purposes the theory is of necessity implemented using statistical probability
estimates. | think this succeeds in addressing one of Bar-Hillel’s concerns. The other major concern is to
adequately di stingui sh between the quantity of information and semantic content. To be perfectly clear, | am
identifying the selectional preference of a predicate with the overal difference (or “change’) between the
prior distribution of argument classes and the posterior distribution conditioned on the predicate. Although
guantitative, the definition preserves content — thisiswhat | hope to have conveyed visualy in Figure 3.1.
Equation (3.4) concerns quantity rather than content: it encapsul ates the difference between the distributions
as ascalar, measured in bitsof information, that | will call selectional preference strength.

Selectiona preference strength is very much like the idea of selectiona range — intuitively, some
predicates are selectionally more restrictive than others. However, since | have dispensed with explicit
features, it isno longer possibleto identify selectional range extensionally as the set of argumentsfor which
aBoolean combination of featuresistrue. Instead, onthemodel just proposed, theintuitionthat apredicate's
selectional constraints can be narrow or wide, strong or weak, has an information-theoreticinterpretation.

Consider a predicate that strongly constrains the nature of its arguments, i.e. one that would intuitively
be said to have a narrow selectional range. In this case, the posterior distribution — the distribution of
argument classes conditioned on the predicate — will be very different from the prior distribution, with
those classes that satisfy the predicate’s preferences increasing their share and classes that fail to satisfy it
decreasing in probability. As aresult, the relative entropy will be high and the predicate will have a high
selectional preference strength. For a different predicate that places weaker constraintson itsarguments, the
overall difference between the two distributionswill not be as great. Asaresult, the selectional preference
strength will be low.

Perhaps most interesting, in this model the selectional preference strength of a predicate is not just a
number, but anumber with a precisely specified meaning. Asdiscussed above, relative entropy is measured
in bits of information, and can be interpreted as the cost of assuming that the distributionis ¢ when the real
distributionis p. When p and ¢ are assigned as in equation (3.4), thistrandates into the cost of assuming
the distributionis p(¢) when itisredly p(c|p;) — that is, the cost of not taking the predicate into account.
Therefore in a very direct way, the selectional preference strength of a predicate can be understood as the
amount of informationthat it carries about itsargument. | will explorethisinterpretationfurther in Chapter 4.
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3.6 Predicted Behavior

Sinceselectional preferenceisnow in some sense arel ationship between apredi cate and the entire conceptua
space of arguments, it isnolonger clear what it would mean for a particul ar argument to satisfy a selectiona
preference, or to violate one. Thisis not surprising given the inferential view that being taken here, since,
as Johnson-Laird (1983) argues, the ability of an argument to appear with a predicate is less a yes-or-no
decision and more a function of how easily the predication can be accommodated given information about
word meanings and context. In addition, it is consistent with the intuition, noted by Drange (1966), that
judgements of selectional fit are a matter of degree rather than categorical. In accord with thisview, rather
than attempting to define the notion of an argument satisfying apredicate, | will consider inthe probabilistic
setting what the consequences are for interpretation when a predicate is applied to an argument.

| will assume, or rather continue assuming, that in the lexicon each noun is mapped to a set of concepts
in the taxonomy, corresponding to its different senses. For example, the noun baseball might be mapped
to two concepts, one which is a hyponym of the concept (bal I ) (in the sense of a “round object that is
hit or thrown or kicked in games’), and the other of which is a hyponym of the concept (fi el d gane).1®
A noun will be said to “belong to” any class in the taxonomy having one of its concepts as a hyponym,
directly or indirectly. Thus baseball belongs to not only the class (bal | } but aso to others such as
(game equi prent ), (artifact ), and (entity), by virtue of itsfirst sense; and by virtue of its second
senseit belongsto (out door gane), (sport ), and (human acti vi ty), among others. In addition, | will
assume that a compositional procedure exists for mapping noun phrase arguments to sets of conceptsin the
taxonomy — such a procedure would, for example, yield different mappingsfor the arguments my armand
the arm of the statue.

Unlikearguments, predicateswill betreated simply as symbols. One might argue that they, too, fit within
ataxonomy, but thisis not apoint | will pursue further.

| will take for granted the existence of the prior and posterior probability distributions described above,
reminding thereader that these aretheoretical (abstract,logical) probabilitiesrather than empirical probability
estimates. (I might also point out that the prior distribution is the same for al predicates, though for the
sake of discussion it is useful to talk about each predicate as having both a prior and a posterior.) Given
these distributions, the selectional preference of the predicate — that is, the difference between the two
distributions— can be seen as consisting of a data point for each class in the taxonomy, corresponding to
each term of the sum in equation (3.4). (The strength of preference istherefore merely the result of adding
all these pointstogether.) For example, using Figure 3.1 as amode for the distributionsfor grow, three of
those data points are:

p({l egune)|grow)
p((l egune))

ani nal }|grow)
p({ani mal })

(65) a p({l egune)|grow)log

b. p({ani mal }|grow) log al

Given aparticular predicate and itsdistributions, | will call the data point corresponding to a class ¢ the
selectional behavior of the class with respect to the predicate. Thisforms the basisfor a measure that | will

16For the remainder of this discussion | am adopting labels from the WordNet taxonomy, asindicated by angle brackets.
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call selectional association:

Alpic) = ni (clpy) log p(p('p)) 35)

The selectional association of a predicate for an argument class is simply the “data point” just under
discussion, with the additional complication of adivisor that is constant given the particular predicate. The
divisor will simply be the selectional preference strength of the predicate, as defined in equation (3.4); that
is,

ple)
Itisincluded in the definition in order to obtain a measure of predicate-argument association on a scale that
isin some sense independent of how strongly or weakly the predicate sdlects overall.t’

When a noun appears as the argument of a predicate, the relevant question is now clear: what is the
selectional behavior of the classes to which the noun belongs? For some of those classes, the predicate
determines little or no change between the prior and posterior distribution; in those cases, A(p;, ¢) will be
relatively small.*® For some classes, the posterior probability leaps up compared to the prior probability;
in those cases, the value of A(p;, ¢) will be positive and the class can be said to be “selected for” (to a
greater or lesser extent). Finally, athird set of classes will exhibit amarked drop between the prior and the
posterior probability; in those cases the class can be described as “ selected against.” 1t should be noted that
since changes are weighted by the posterior probability, classes that are sel ected against will have less of an
overall influence on selectional preference strength than classes that are selected for.

What is particularly important here is that the selectiona behavior must be considered not for any
particular class to which an argument belongs, but for each of those classes. This providesthe basisfor some
important observations about selectional behavior in cases that would traditionally be construed in terms of
an argument “satisfying” or “violating” the selection restriction of a predicate.

First, consider what happens when the argument satisfies the selectiona restriction for a predicate with
intuitively strong selectiona constraints (e.g., eat turkey). In such acase, there will clearly be some class
or set of classes that the predicate “selects for,” in the probabilistic sense just described. The good fit of
the argument to the predicate can be determined by its membership in a class for which the selectiona
association is high.

Second, consider what happens when the argument sati sfies the sel ection restriction for a predicate with
intuitively wesk selectional constraints (e.g. enjoy movie). Here, the probabilistic behavior is similar to the
previous case, except that the selected-for classes are not marked as clearly by dramatic shifts between the
prior and posterior distribution. In this case, the nounisamember of at least one of the selected-for classes,
but the val ue of selectional association iscomparatively low, though positive, for even the strongest of them.

Third, consider what happens when the argument viol ates the selection restriction of a predicate. If the
argument is selectionaly inappropriatein the intended sense, but appropriate in another, unintended sense,
then it isthelatter sense that will emerge on the basis of selectional association. For example, consider the
interpretation of

i = Zp(dpi)mg Plelps) (3.6)

(66) The music is brown.

"Note that including »; doesnot resultin 0 < A(p;, ¢) < 1, since the contribution of aclass to selectional preference strength may
be either positive or negative. Clearly, however, Zc A(pi,c) = 1foral p;.

18This is not perfectly accurate, since the changeis weighted by the conditional probability p(c|p;). For classes that are strongly
predicted given the verb, even relatively small differences between the prior and posterior may be magnified significantly.
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On the expected interpretation of music asamember of classes (sound), (sense experi ence), andsoon,
thisisastandard selectional violation, afact that will be reflected in zero or negative sel ectional association
between brown and those classes. However, music can aso be interpreted as a physical object, eg. a
(creation)or(artifact }. These classesfit the selectiond restriction of the predicate, and thus they will
emerge as the classes for which selectional association is positive, with the magnitude being greater or less
according to how strong or weak the constraintsare. Asaresult, the selectionally appropriate interpretation
of music as an argument for brown — its selectional profile, if you will — emerges from the predicate’s
association with selected-for classes to which the word belongs. (Cf. example (12) in Section 3.1.)

At first glance, there would seem to be afairly direct analogy between the process just described and the
Katz-Fodor account of disambiguation based on selection restrictions. However, it must be stressed that
the present account locates selectiona preference within the inferential component rather than within local
and strictly semantic interpretation. Thus other factors, such as the contextual appropriateness of alternative
senses of the argument, may certainly play arole. If the discourse or situationa context preferentially
supports the interpretation of music in its physical-object sense — for example, if my friend has found
the libretto of The Mikado on my shelf and is now looking for the score — | can utter (66) and it will be
selectionally perfectly appropriateinitsintended sense. And if the context makes unavailablethe aternative
reading of music — for example, if | am listening to classical music on the radio — then (66) will sound
anomal ous.*®

In addition, considering another example makes it clear that what is going on is closer to the flexible
accommodation that McCawley describes in interpreting

(67) My aunt isabachelor.

than to a disambiguation procedure based on the strict matching of selectional features. Although the word
aunt does not belong to the class (mal e), it certainly belongs to (per son), with which bachelor will also
be associated. Thus the selectiona profile of aunt in the context of bachelor may support the successful
interpretation of (67), albeit not as strongly as uncle would have. Note, too, that adopting the account
of selectional preference proposed here does not preclude the encoding of necessary (or even definitional)
descriptions of predicates when they are available; thus (67) might be (to some extent) acceptable at the
selectional or inferential level, but at some other level ruled anomalous.

3.7 Empirical Behavior

3.7.1 Computational apparatus

| have explored the empirical behavior of the model by means of a computationa implementation. The
implementation is fairly faithful to the theoretical model, with the exception of several simplifications that
are for the most part unproblematic.

The most significant modification, of course, isin the nature of the probabilitiesused. It is possibleto
construct the theoretical foundationsof amodel according to thelogica view of probabilities, but in practical
terms the probabilities of the model must be estimated statistically on the basis of some source of evidence.
Asdiscussed in Section 2.2, | have adopted the statistical technique of maximum likelihood estimation, not

191 have not worked out the interaction of selectional preferencewith context. The most straightforward approach, | think, would be
to assumethat thereis somefinite set " of relevant contextual features and to condition all the probabilitieson~y € I'; e.g. to calculate
selectional preferencestrength as D(p(c|ps,~y) || p(c|v)).
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only for its smplicity, but aso to avoid presupposing a solution to the problem of estimation from sparse
data; however, that concern is not relevant here. | am convinced that the behavior of this model is not
particularly sensitive to the estimation technique used, at least at a general level, since in earlier versions
of thiswork | computed probabilities using the Good-Turing estimate (Good, 1953) and obtained entirely
comparable results. (See Appendix A.)

The selectional relationship | have explored most thoroughly is the one that holds between verbs and
their direct objects. Inthework | will describe here, estimates of verb-object co-occurrence probability were
arrived at by constructing alarge combined sample from the following sources:

1. Associated Press (AP) news stories (1989)

2. TheBrown corpus (Francis and Kucera, 1982), specifically the parsed version of the corpus appearing
in the Penn Treebank (Marcus, Santorini, and Marcinkiewicz, 1993)

3. TheWall Street Journal (1988-89), which can aso be found in parsed form in the Penn Treebank.

4. Transcribed parental speechfromtheChild LanguageDataExchange (CHILDES) database (MacWhin-
ney and Snow, 1985; Sokolov and Snow, to appear)

5. Verb-object norms collected from human subjects.?

In addition to verb-object relations, | have to some extent explored subject-verb relationships, using the
Brown corpus and the Associated Press samples; adjective-noun combinations, using the Brown corpus and
the Wall Street Journal; noun-noun modification, a so using the Brown and Wall Street Journal corpora; and
preposition-object rel ationships, using the Brown and CHILDES corpora

Using samples of naturally occurring text as the basis for probability estimates required two additional
simplifications. First, since |l have no procedure for compositionally interpreting noun phrases, probabilities
were estimated from a sample containing verbs together with the head of the direct object noun phrase.
Althoughin principlethis could lead to mideading results (you don’t buy soldiers, athough you might buy
atoy soldier), modifiers rarely seem to have such aradical effect on the classes of the head noun. Second,
since text corporaare not lexically disambiguated in advance, | have treated predicates as atomic symbols,
which often conflates the selectional behavior of multiple senses. For example, the selectional behavior of
the verb play isinfluenced in thismodel by the fact that it appears not only with direct objects like baseball
and game, but also with piano and violin, and with role and part.

This second simplification is not as troublesome as it might first appear. When a verb has severd very
different senses, itsdistribution of argument classes tendsto have distinct “clumps,” that is, to appear multi-
modal. However, the existence of several strongly preferred categoriesisnot necessarily aproblem, sincethe
interpretation of asingle predicate-argument combination takes into account only those classes within which
the argument appears. So, for example, the classes (nusi cal instrunent ), (artifact ), and so forth
will have little bearing on the interpretation of play baseball, and the classes (sport ), (acti vity), and so
forth will have little bearing on the interpretation of play piano. Furthermore, the criteriafor distinguishing
verb senses are at present so poorly understood that avoiding terms like “homonymy,” “polysemy,” and so
forth could be viewed as appropriately cautious rather than inappropriately simplistic.?! Finally, assuming

20| am extremely grateful to Donald Hindle for making the AP data available to me, and to Annie Lederer for making available the
verb-object norms. Noticethat all subcorporaexcept the last one contain naturally occurring data.

2LThis may be a classic instance of the computer programmer’s claim, “It's not a bug, it's a featurel” — but sometimes the
programmer is correct.
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that predicates were distinguished in advance would lead to a chicken-and-egg problem with respect to
language acquisition — for example, see (Gropen, 1993) for an argument that selectional constraints are a
necessary component in children’sacquisition of multiplesenses for asingle verb. (Also see Chapter 4.)

| have adopted WordNet (Beckwith et al., 1991) as a computationa model of the noun taxonomy, as
discussed in Chapter 2. Although like any other dictionary WordNet has its idiosyncracies, in principle it
has been constructed according to the theoretical taxonomic model argued for here. | believe this makes it
unique among other dictionaries, certainly dictionariesthat are available on linefor computational purposes.

3.7.2 Traditional examples

I will organizethisdiscussion around exampl esthat have occurred over the course of the preceding sections.??
To begin with, consider some of the classic examples of category mistakes, such as:

(68) a The number two isblue.
b. Socratesiseven.

As it happens, both two and Socrates are included in the WordNet taxonomy, despite its understandably
limited coverage of numbers and proper names. Space precludes a detailed presentation of the entire
selectional profile for any predicate-argument combination, but in general looking at the single class that
maxi mi zes selectional association will provide a good idea of how the model is behaving. Thisiswhat is
shown in the following table:

(69)
| Predicate | Argument | Maximum | Class |
blue two -0.16 | (mreasure)
even two 3.99 | (nunber)
blue Socrates 266 | (entity)
even Socrates 0.03 | (person)

Clearly two isan inappropriate argument for blue, since even the most strongly associated class to which it
belongsissalected against (i.e. has anegative selectional association with the predicate). On the other hand,
the application of even totwo isfine. Conversely, Socrates isin selectiona terms an appropriate argument
for blue, by virtue of being a physical entity, though note the class (per son} has a selectional association
of -0.13 (not shown in the table). When even is applied to Socrates, the resulting selectional association is
relatively indeterminate; | suspect that the marginally positive value results from noise in the sample from
which probabilitieswere estimated.
To take two of Chomsky’s best known examples,

(70) a Colorlessgreen ideas sleep furioudly.
b. Sincerity may admire the boy.

the resulting selectiona behavior is summarized as follows:

2|n this section, | have multiplied all values of selectional association by 100 in order to avoid a needless proliferation of decimal
places, and asamatter of notation | will represent the application of predicate Pto argument x asP x. Probabilitiesfor the adjective-noun
and subject-verb relationships described in this section were estimated using the Brown corpus; for verb-object relationships| used the
collection of samples described above.



64

(71)

| Predicate | Argument | Maximum | Class |

sleep idea -0.26 | (psychol ogi cal feature)
admire sincerity — | —

In both cases, the subject-verb relationship fails to yield a positive value for selectional association. The
dashes arising from the predication admire sincerity indicate that the predicate never had as its subject any
member of any classtowhich sincerity belongs; | regard such cases asindicating asel ectionally inappropriate
predication.

The behavior of the subject-verb model for

(72) a Quadratic equations do not move in space.
b. Quadratic equations do not watch the Newmarket horse races.
¢. Quadratic equations do not go to race meetings.

is captured in the following table:

(73)
| Predicate | Argument | Maximum | Class |
move equation -0.07 | (deed)
watch eguation — | —
go equation 0.10 | (comuni cati on)

As predicted, a description of equations as moving or watching will be sdlectionally unacceptable.?® How-
ever, the behavior of the predication go equation leads to an interesting observation. Treating the subject of
averb as independent of the complement has led in this case to an unexpected result, for although equations
cannot go to race meetings, one should not concludethat they cannot go. For example, it makes perfect sense
to say that an equation should go at thetop of thepage. Thus, given only thelimitedinformation availableto
the mode, its assignment of (weak) selectional plausibility to the predication in (72c) is not inappropriate.

Having considered some examples of selectional violations, | will turn to some of the other effects of
selectional constraints. First, it must be reiterated that selectiona constraints are viewed here as part of a
more general inferentia system, in contrast to the Katz-Fodor treatment of selection restrictionsas semantic
constraints on compositional interpretation. To take a concrete example of this, the verb-object combination
frighten sincerity is ruled selectionally inappropriate by the implemented model (i.e. no class to which
sincerity bel ongs has a positive selectional association with frighten), but this does not make

(74) a Itisnonsenseto spesk of frightening sincerity.

a selectional violation. | assume that the embedded predication would be evaluated in the context of the
matrix clause, confirming — at least in part on the basis of the selectiona relationship — that “nonsense” is
an appropriate description.

A similar point holdstrue for arelated example discussed earlier:

(75) It isnonsenseto speak of aking as made of plagtic.

23The “best” classis often not particularly meaningful if the selectional association is negative. Class (deed) containswords that
denote completed actions; this includes equation in its sense as the act of making two things equal.
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Although according to the implemented model the predication plastic king does indeed favor interpreting
king as a chess piece (i.e, (arti fact )), the matrix clause in a sense reverses the interpretive process. In
particular, an interpretive procedure, identifying conditions under which the sentence would be true, would
presumably rulethe “chess piece” interpretation out because it is selectionally appropriate and therefore not
nonsense, at least on selectional criteria. On those same criteria,

(76) It is nonsense to speak of aking as being amonarch.

would be judged odd, since the acceptability of the predication in the embedded clause is inconsistent with
what isbeing asserted about it in the matrix sentence.

Turning to other cases of disambiguation, consider the interpretations of baseball as both a physical
object and as agame.

(77) a | hitabasebal to John and he caught it.
b. | played some baseball yesterday afternoon.
c. | watched some baseball yesterday afternoon.

The verb-object relationshipsin these examplesyield selectional relationships summarized in the following
table:

(78)
| Predicate | Argument | Maximum | Class |
hit baseball 4.48 | (obj ect)
play baseball 2.73 | (game)
watch baseball 1.90 | (di version)

Asadirect object for theverb hit, theinterpretation of baseball asaphysical object rather than agameemerges
quiteclearly. Thisbecomes even more apparent in looking at the selectional profile for this predication; that
is, selectiona association of the verb with al the classes to which the argument belongs:

(79)

| Value | Class containing baseball |
4.48 | (obj ect)
4.27 (art ifact)
225 | (
0.13 | (bal I')
(
<

0.11 | (garme equi pnent )
0.07

equi pnent )

-0.00

sport)
-0.00 | (gane)
-0.01 | (di version)
-0.01 | (contest)

-0.27 | (group action)
-0.34
-0.85

activity)
act )

<
(
(
(
-0.01 | (conpetition)
(
(
(
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When the verb is play, the profile is more or less inverted, with the classification of baseball as a game or
competition emerging as the most strongly selected for by the verb. Interestingly, when the verb is watch,
the most strongly associated class turns out to be (di ver si on):

(80)

| Value | Class containing baseball |

1.90 | (di version)
1.33 | (obj ect)
126 | (artifact)
1.23 | (equi prent )
0.79 | (conpetition)
{
{

0.66 | (contest)
0.65 | (act)

Interestingly, however, the selectiona behavior of the predication, taken as a whole, shows quite a bit of
ambiguity, since the “physical object” interpretation of baseball is also supported by strongly associated
classes such as (obj ect ) and (ar ti f act ). Thisaccords withmy intuitions, since | can imagine taking my
son to a park to watch baseball there, or (afew years from now) telling him to watch the baseball carefully
as he'strying to catch it.2*

The ambiguity of score, from the discussion of McCawley (1968) earlier, shows similar behavior in the
implemented mode.

(81) a John has memorized the score of the Ninth Symphony.
b. The score of the Ninth Symphony is lying on the piano.

The word score is highly ambiguous: it has six senses in WordNet other than its musica interpretation,
including among them agroup of twenty things, ameasure or abstraction (“thescoreis2to 1inour favor”), a
psychological feature (score as akind of evaluation or assessment; also “facts about the actual situation,” as
in“Hedidn’t know the score”), and an act or accomplishment (“He turns, shoots...score!”). Despiteall those
senses, the selectional profile of the predication memorize score clearly favorsthe intended i nterpretation:

(82)

Value | Class containing score |

129 | (musi cal conposition)

1.04 | (creation)
0.89 | (nusic)
0.71 | (art)
-0.13 | (measure)
-0.15 | (abstracti on)
-0.15 | {(psychol ogi cal feature)
-0.17 | {(group)
-0.19 | (act)
{

-0.74 | (entity)

24Clearly the determiner also plays animportant role in disambiguation— “ hit the baseball” vs. “play some baseball” — but the main
point regarding selectional constraints stands regardless of whether additional evidencefor resolving the ambiguity is also available.



67

In contrast, when score appears as the subject of liein (81b), the selectiona constraints favor what would
appear to be entirely extraneous senses of the word.

(83)

| Value | Class containing score |

0.76 | (psychol ogi cal feature)
0.65 | (abstracti on)

0.14 | (obj ect)
0.07 | (nusic)
0.07 | (musical conposition)

Looking at the sample of verb-object co-occurrences from which the model was constructed, thisis easily
explained. Lie, when used in subject position, very often concerns features of menta life (84) and abstract
concepts (85):

(84) a Theonly hopefor West Berlin liesin acompromise which will bring down the wall and reunite
the city.
b. The artisticinterest, then, liesin what the encounter may be made to represent...
¢. Regardless of where personal sympathies may lie as between the parties, failure to recognize
these changed conditionswould be to ignore the facts of life.

(85) a Thedanger lay in the American delusion that nuclear deterrence was enough.
b. The cemetery slumbered just behind it, and the way lay through the village and close to the
sea.
c. Although he still didn't speak to anyone, he grew fond of saying, “ The futureliesin Asia,”
when the opportunity arose...

The situationisfurther complicated by the “tell afalsehood” sense of lie, and the fact that people can appear
as the subject for either sense.

All things considered, it is still worth noting that the sense of score as aphysical object does nonethel ess
win out over itssense asamusical composition in (83). In addition, the story changes considerably if score
istaken to bethe object of either lie or lay (in some dia ects the former can be used transitively to mean the
latter):

(86)
| Predicate | Argument | Maximum | Class |
lie score 4.06 | (obj ect)
lay score 2.78 | (obj ect)

If John were to have laid the score of the Ninth Symphony on the piano, my example would have been
much cleaner, but overall | believe the preceding discussion supportsthe point of view for which | have been
arguing.

To takeafina example, recall Drange’ s (1966) series of exampl es, which seem to suggest agraded rather
than categorical distinction between empirical falsehoods and selectiona violations.
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(87) a Englishmen like coffee better than tea.
Squirrelslike coffee better than tea.
Protozoalike coffee better than tea.

Bacteria like coffee better than tea.

Milkweed plantslike coffee better than tea.
Stones like coffee better than tea.
Electronslike coffee better than tea.

Quadratic equations like coffee better than tea.

JTQ -~ o 20T

(I recommend that before continuing, the reader decide for himself or herself the answer to the following
guestion: if you were asked to divide these ei ght sentences into groups by drawing horizonta lines wherever
you wanted to, where would you draw the lines?)

The resultsin the verb-object model are as follows:

(88)
| Predicate | Argument | Maximum | Class |
| like | Englishman | 5.35 | {per son) |
like squirrel 516 | {life form
like protozoa 516 | {life form
like bacteria 516 | {(life form
like milkweed 516 | {life form
like stone 3.26 | {(entity)
like electron 3.26 | {(entity)
| like | equation | -0.30 | {comuni cati on) |

Looking at specific numbers, | am surprised by the strength of association between likeand (entity) as
its subject; at present | have no explanation for this. On the other hand, looking only at the groupings, the
progression from peopleto lifeforms to entities to more abstract concepts strikes me as entirely reasonabl e,
though given the choice | might take a more anthropomorphic view of squirrels and a less anthropomorphic
view of milkweed plants. It seems to me that (88) is a thorough illustration of what | have been driving
at: adefinitional model of selectiona constraints could draw only a single distinction in the above table,
contrary to my intuition (and, | hope, the reader’s as well); furthermore, to my knowledge no inferentia
mode capable of making any more distinctionsthan that has been worked out in the necessary detail.

3.7.3 Argument plausbility

Another empirical test for the information-theoretic model of selectional constraints arisesin the context of
research into on-line processes during sentence comprehension. A great deal of recent work suggests that
the plausibility of argumentsplaysaroleinlocal syntactic disambiguation decisions: summarizing areview
of relevant psycholinguistic studies, Ferstl (1993, p. 31) concludes that “sel ection restrictions seem to have
an immediate effect in sentence processing.”

These effects are demonstrated using stimuli likethefollowing, taken from (Holmes, Stowe, and Cupples,
1989):
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(89) a The secretary read the article was aready out of date.
b. The secretary read the fashion was already out of date.
(90) a The scientist showed the sample was necessary for her project to succeed.
b. The scientist showed the travel was necessary for her project to succeed.
(91) a The mayor recognized the author was worn out.
b. The mayor recognized the pocket was worn out.

Holmes et al. describe the distinctions in terms of (a) “plausible” versus (b) “implausible” objects, and
in general psycholinguistic researchers seem to commit only to a notion that might be called “pragmatic
plausibility,” “argument typicality,” or “loca semantic fit,” rather than selection restrictions as traditionally
construed by linguists (see, eg., (Boland et a., 1989; Tanenhaus, Garnsey, and Boland, 1991; Pearlmutter
and MacDonald, 1993; MacDonald, in press, MacDonald, in revision; Tabossi et al., in press)).

In generdl, the psycholinguists determine the plausibility or typicality of verb-argument combinations
by pre-testing. For example, Holmes et al. asked subjects to rate sentenceslike

(92) a Thetenant remembered the reply.
b. The tenant remembered the smoke.

on a 1-to-5 scale, and Tabossi et al. (in press) evaluated “agenthood” and “patienthood” by asking subjects
to answer questionslike

(93) a How common isit for areporter to interview someone?
b. How common isit for someone to interview areporter?

on ascae from 1to 7. These ratings can be used simply to confirm that the data in plausible-argument and
implausible-argument conditions are in fact adequately distinguished, or they can be used as predictors of
some aspect of on-line processing, such as reading time in a self-paced reading task.

Psycholinguistic studies of this kind are clearly relevant to the model of selectiona constraints | have
proposed. Totheextent that plausibility or typicality ratingsreflect selectional constraintsrather than on-line
inferential processes — and | think this may be to a great extent — judgements made by human subjects
represent empirical dataagainst whichthemodel can be evaluated. Furthermore, to the extent that thismodel
accurately reflects some aspect of human performance, it provides an important (and, | think, previously
unavailable) methodological tool, not only for experimental design but aso for the implementation of full-
scale computational models of the psycholinguistic theories being proposed and debated. In this section |
will explore thefirst of these issues, namely the evaluation of the model against human ratings; | consider
the second in more detail toward the end of Chapter 4.

Asafirst step, | investigated the behavior of the implemented model using data from (Holmes, Stowe,
and Cupples, 1989, Appendix 2) concerning verbsthat have abiasin favor of taking NP complements. These
consisted of sixteen pairs of sentences, three of which | have shown in examples (89)—91). The verb-object
combinationswere constructed according to the experimenters’ intuitions, and, as just mentioned, sentences
like (92) were then rated for plausibility on ascale of 1 (low plausibility) to 5 (high plausibility) by human
subjects. Holmes et al. report a mean rating of 4.5 for the sentences containing plausible objects, and a
mean rating of 2.2 for implausible objects.

In Table 3.1 1 show the sixteen verb-object combinati ons, together with the maxi mum val uefor selectional
association in my implemented model and the class that achieved that maximum. As | noted earlier,
selectional goodness of fit between averb and an argument isin principleafunction of the entire selectiona
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Plausible Implausible
Verb Object [ Max | Class Object | Max | Class
see friend 442 | (entity) method | -0.02 | {net hod)
read article 6.26 | (witten comm ) fashion | -0.00 | (f ashi on)
find label 0.06 | (conmuni cati on) fever 2.35 | {(evi dence)
hear story 4.63 | (conmuni cati on) issue 4.63 | (communi cati on)
write letter 7.85 | (writing) market 031 | {(artifact)
urge daughter | 10.31 | (agent ) contrast | 0.31 | (rel ation)
warn driver 10.66 | (agent) engine 725 | {entity)
judge contest 158 | (contest) climate | 022 | (state)
teach language | 1.96 | (cognition) distance | 1.76 | (psych. feature)
show sample 207 | (psych. feature) travel 0.92 | (happeni ng)
expect visit 254 | (act) mouth 0.06 | (reply)
answer request 514 | (speech act) tragedy | 3.70 | (communi cati on)
recognize || author 0.62 | (agent) pocket | -0.00 | {concave shape)
repeat comment | 6.02 | (social relation) | journa 6.02 | (social relation)
understand || concept 413 | (psych. feature) session 269 | (social relation)
remember || reply 0.00 | (answer ) smoke 749 | {entity)

Table 3.1: Selectiona association for NP-bias verbs

profile, not just the single “best” class, but taking the maximum provides a useful and frequently accurate
upper bound.

Thevauesinthetableare encouraging: mean maximum valuesfor plausibleand implausibleobjectsare
respectively 4.3 and 2.4, and thedifferenceissignificant (t(15) = 1.9, p < .08).%° In general, themost strongly
selected-for class of aplausible argument represents an entirely reasonable interpretation among a typically
large number of classes — for example, the object in read articleis interpreted as written communication
rather than as a grammatical term and the object in warn driver isinterpreted as a person rather than as a
golf club.

Most of the mistakes in the table arise when an intuitively implausible object turns out to have some
unanticipated, plausible use with respect to the verb. For example, fever is classified as a symptom and
therefore as aform of evidence, and therefore plausible as the object of find — e.g.

(94) We brought Johnny to the doctor to find out why he's been so cranky, and the doctor found a
fever together with amild ear infection.

The word distance, as an object for teach, is being interpreted as a psychologica feature, in the sense of
emotional distance. Although one can construct sentences where thisinterpretation is not implausible,

(95) At the finishing school, the girls were taught not only the fine points of etiquette, but also
distance and al oofness.

what is going on might be viewed as an undesirable overgeneraization. It arises because in Word-
Net 1.2, anything that is an instance of (know edge) (eg. history, science) is also an instance of
(psychol ogi cal _feature).

5The similarity of these numbersto the means obtained by Holmes et al. is purely accidental, of course; there is no relationship
between their ratings scale and the scale used here.
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Plausible Implausible
Verb Object | Max | Class Object | Max | Class
say phrase -0.00 | (phrase) pencil 26.25 | (entity)
know teacher | 10.31 | (entity) traffic 272 | (group)
swear oath 0.61 | (curse) exit 1211 | {(entity)
argue point 0.68 | (content) order 1.00 | (act)
prove theorem 147 | (psych. feature) || battery 128 | (abstraction)
forget outcome | 146 | (psych. feature) || weekend 0.93 | (tine)
deny charge 557 | (speech act) summer -0.08 | (tine period)
claim victory 1.99 | (wi nni ng) library -0.00 | {col | ection)
doubt sincerity | 1.76 | (attri bute) champagne | 0.03 | (al cohol )
decide match 296 | (event) award 0.19 | (transferred property)
learn truth 155 | (cognition) trial 155 | (cogni tion)
redlize mistake 3.22 | (psych. feature) | vehicle 0.03 | (conveyance)
confess || fault 148 | (act) brake -0.23 | (artifact)
believe || witness | 1311 | (life form journey 0.23 | (change)
explain || decision | 5.14 | (psych. feature) || audience 0.90 | (social relation)
discover || route 458 | (obj ect) opera 458 | (object)

Table 3.2: Selectiona association for clausal-bias verbs

In other cases, the word tragedy is quite unexpectedly interpreted in its sense as a dramatic composition,
and thus aform of communication, and, even more unusual, smoke is being interpreted as a physical object
meaning cigarette. Thisleadsto the counterintuitiveratingsin the last line of the table, since in the sample
from which probabilities were estimated, the direct objects of remember tend to be things having physical
reality (especialy people) rather than forms of communication.

As a second test, | used the data on clausal-bias verbs from (Holmes, Stowe, and Cupples, 1989) —
that is, verbs that prefer a clausa rather than an NP complement. Table 3.2 shows the results: other than
two whoppingly wrong decisions (for say and swear), the trend is clearly for the model to assign greater
selectional plausibility to those verb-object combinations that were judged more plausible on intuitive
grounds. On inspection of the corpora used to estimate probabilities, it becomes apparent why the model
is so seriously misguided in those two cases. The AP sample of verb-object co-occurrences is, it appears,
heavily contaminated by what i s probably asystematic misanaysisfor verbslike say, report, swear, conclude,
etc., most likely when they appear inverted at theend of aclause, and perhaps a so because they can introduce
embedded clauses without an intervening complementizer. For example:

(96) a “I'minnocent,” swore the prisoner as he wasled tojail.
b. “AAAARRRRGGGH!” said Charlie Brown.

(97) a Thewarden swore the prisoner was guilty as sin.
b. Snoopy says Charlie Brown needs to lighten up.

Of the twenty most frequent objects for say in that sample, thirteen are members of theclass (enti ty); the
distributionis enormously skewed toward the most frequent object, which isa special token denoting proper
names (mapped to class (per son) in the WordNet taxonomy, and therefore also a member of (entity}).
For swear fifteen of the top twenty objects are members of (entity). It aso cannot help that the word
thing, also a frequent object of say, is classified only as a physica entity in WordNet Version 1.2 (I believe
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thisis corrected in later versions); as aresult theclass (ent i t y ) gets erroneous support from examples like
the following:

(98) a The apostle Paul said the same thing...
b. One can make them say the same thing only by not listening to them very carefully and hearing
only what one wants to hear.
¢. How can you say such athing?

Other than those most obvious problems, | find the results for this second group of examples analogous to
the first experiment and therefore very encouraging.

A stronger result than what | have just described would be a correlation between plausibility ratings
assigned by human subjects and the values assigned by the implemented model. This was not possible to
test using the stimuli just described, since Holmes et al. reported only the average ratings for plausible and
implausible combinations. However, other authors such as Taboss et al. (in press) and Trueswell (1993)
report the mean typicdlity rating for each of their test items, and | hope to use these data in future work.

3.8 Other Computational Approaches

Many computational approaches to selectiona constraints have appeared in a form that is more or less
similar to the view proposed in (Katz and Fodor, 1964): in implemented systems, something anal ogous
to Boolean applicability conditionsis often associated with each argument of a predicate.?® For example,
Schank (1986, p. 172) describes using “simple world knowledge rules’ tied to conceptual rules, so that “the
conceptud rule that actors can act would be modified by lists of what could do what according to semantic
categories, such as ‘animals can eat,’ ‘planes can fly,” and so on.” Similarly, severa of the natural language
interfaces developed a BBN (e.g. see (Ayuso et a., 1989)) have used variants of the KL-ONE formalism
to taxonomically represent world knowledge, implementing selectiona constraints using that formalism’s
notion of “rolerestrictions’ (Woodsand Schmolze, 1991). It seems fair to say that areview of thisapproach
to selectional constraintsin a computationa setting would in fact amount to areview of most of the natural
language processing literature — this would no doubt raise a great many interesting issues (for example,
cooperative responses when a selectional constraintisviolated), but it isan enterprisel think it best to avoid
here.

Of dl the computationa approacheswithwhich | am familiar, Preference Semantics (Wilks, 1986; Wilks
and Fass, 1992) isthe oneto which the present proposal seems most similar. Preference Semantics abandons
the formalization of selectiona constraints as restrictions — to use Wilks's (1986) term, “stipulations’ —
and instead interprets applicability conditions as preferences that can be satisfied or not satisfied and till
yield some interpretation. Wilks (1986, p. 199) writes:

It is very important to note that a preference is between aternatives. If the only structure
derivable does not satisfy a declared preference, then it is accepted anyway.

A crucial component of preference semantics is the notion of “semantic density”: the more preferences that
are satisfied, the more preferred isthe overall interpretation. For example, the sentence

2 0ften the practical approachto selectional constraintsadoptedin these systemsisdifficult to relate to formal semantic considerations
of the kind discussed in Sections 3.2 and 3.3, though for an interesting exception see the computational approach to presuppositionand
entailment described in (Weischedel, 1986).
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(99 The big policeman interrogates the crook.

might have two possible interpretationsinitially, one in which crook is interpreted to mean a criminal, and
the other in which it denotes a shepherd’s staff. In both cases, there are satisfied preferences between big
and policeman, and between policeman and interrogates, but the | atter interpretation has one fewer satisfied
preference than the former since interrogate preferably describes something done by humans to humans.

It isimportant to note that these preferences are encoded in lexical entriesthat are essentially decompo-
sitional, expressed in avocabulary of 80—100 primitive semantic units. For example, Wilks (1986) givesthe
following “semantic formula’ for interrogate:

(100) ((MAN suUBJ) ((MAN OBJE)(TELL FORCE)))

This indicates a preference for humans as subject and object, and also indicates that the denoted action is
one of forcing, in this case forcing to tell something. It is aso important to note that the interpretation of
sentences is accomplished by matching possible interpretation against abstract “semantic templates’ that
encode the possible structures that messages can take; for example, MAN FORCE MAN. Interpretations for
which no matching template can be found are discarded — and as Wilks (1986, p. 197) points out, this
commits Preference Semanticsto the hypothesisthat thereisa“finite but useful inventory of bare templates
adequate for the analysis of ordinary language; alist that can beinterpreted as the messages that people want
to convey at some fairly high level of generdity.”

The brief summary | have just given fallsfar short of an adequate description of Preference Semantics,
but I hopeit will sufficein order to identify the major pointsof similarity and dissimilarity with the proposal
| have made in this chapter. The point of view | have adopted isto avery great extent consistent with the
Preference Semantics enterprise; in particular, selectional constraints are discussed in terms of preference
rather than restriction, and in Preference Semantics they are interpretablein quantitativeterms viathe notion
of “semantic density” (though Wilks (1986) distances himself from a probabilistic viewpoint). At a more
genera level, the present proposal isin agreement with the stressin Preference Semantics on paying attention
to “words of a hormal vocabulary, and with many senses of them, rather than with single senses of simple
object wordsand actions’ (Wilks, 1986, p. 194).

There are also some important differences between the two approaches, most notably the question of
lexical decomposition. Although | recognize that selectiona constraints are only one part of a more general
interpretive process, and therefore that some more elaborated representation of actions and participantswill
ultimately be necessary, | am distrustful of attemptsto represent meaning exhaustively and decompositionally
using a small(ish) set of primitives. Although | offer no alternative solution at present, | am encouraged
in thinking that such a solution may be possible by the fact that the current model contains no explicit
“enumeration” of selectional properties. For example, the selectional profile of interrogate crook is:



74

(101)

| Value | Class containing score

9.38 | (person)
9.35
9.21

(
{(life form
6.33 | (entity)
0.96 | (wrongdoer )
0.95 | (bad person)
(
(
(
(

0.44 | (crimnal)

0.09 | (i npl enent )

-0.02 | (article of commrerce)
-0.26 | (artifact)

-0.37 | (obj ect)

which makesimmediately apparent the correct reading of thedirect object in (99). Althoughthe disambigua
tion here is accomplished using a taxonomic representation of houn meaning, the preference of interrogate
for its direct object argument is not an enumerated set of properties except in the sense that the prior and
posterior probability distributionsrange over the entire conceptual space.

Turning to corpus-based models, much of the recent activity in statistical methods for natural language
processing is related to the approach | have been pursuing, in the sense that any model involving lexical
co-occurrence probabilitiesis, appropriately construed, a model of selectiona constraints. A more clearly
relevant subset isthe set of probabilistic model sinvolving word classes; thesewerethe subject of theliterature
review in Sections 2.3 and 2.4. However, only afew recent proposals make explicit reference to sel ectional
congtraints. Grishman and Sterling (1992; 1993) have adopted a frequency-based approach: a relationa
triple (e.g. [eat,subject,Fred]) is ruled out on selectiona grounds if it did not appear in the training data
some minima number of times. In their earlier paper, Grishman and Sterling used a manually-constructed
noun classification hierarchy to generalize the selectiona patternsin the training corpus; however in more
recent work they have shifted to a smoothing technique based on a distributional measure of noun similarity
(seediscussionin Section 2.3). A similar approach is taken by Sekine et al. (1992), who cluster words on
the basis of distributional similarity and usethe clustersin identifying selectional patterns. A third approach
of thiskind is seen in the work of Velardi and colleagues (Velardi, 1991; Velardi, Pazienza, and Fasolo,
1991; Basili, Pazienza, and Velardi, 1991; Basili, Pazienza, and Velardi, 1992) — they, too, focus on the
acquisition of relational triples, expressed using a relatively small set of semantic tags within a restricted
domain.

| think the proposal | havemadein thischapter differsfrom previous corpus-based approachesin anumber
of important ways. First, unlikemost existingwork on extracting sel ectional constraintsfrom corpora, | have
committed from the outset to working with unconstrained data rather than limited subdomains; as a result,
the questions of how the proposal will “scale up” or how “transportable” it is are much less of a concern.
Second, my emphasis has been on redefining the notion of selectiona preference, not extracting a catalogue
of selectional patterns from corpora. The latter, though an important problem, is more closely related to
the “traditional” view of selectional constraints, since associating a set of classes with the argument of a
predicate i s equivalent to specifying a digunctive (hence Boolean) applicability condition on that argument.
A third closaly related point isthat | have attempted to make sure that the model of selectional constraintshas
areasonably well-specified semantics, something that is not done in most computational proposals (though
see (Velardi, 1991) for an interesting discussion on the relationship between corpora and various forms of
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semantic knowledge). In particular, | have grounded the 1S-A relationship in the “plausible entailment”
definition of synonymy and hyponymy, carefully distinguished the semantic characterization of selectiona
congtraints from the inferential characterization, and defined the central ideas of the proposal — selectiona
preference strength and selectional association — in terms of relative entropy, an information-theoretic
relationship that iswell understood and has a clear, intuitiveinterpretation.

3.9 Summary

To sum up the main points of this chapter, | reviewed the “semantic” and “inferentia” views of selectiona
congtraints, finding empirica problemswith the former and practical problemsin formalizing the latter. As
an dternative, | proposed formalizing selectional constraints in inferential terms, but “hiding” the actua
inferential processes within the definition of a conceptual taxonomy by grounding the taxonomy in the
notion of “plausible entailment.” | then defined selectiona constraints in terms of preference, using an
information-theoretic rel ationshi p between predicates and the taxonomic classes of arguments.

The rest of the chapter was devoted to a discussion of the expected behavior of the model, and a
demonstration of actual behavior by means of a computational implementation. Two sets of empirical data
were considered: the set of “traditiona” examples from the literature that were introduced over the course
of thediscussion, and stimuli containing “ plausible” and “implausible’ predicate-argument combinations as
determined using ratings tasks with human subjects.

In the chapters that follow, | will consider applications of this model. In Chapter 4, | demonstrate a
relationship between selectional preference strength and the argument realization properties of a class of
verbs in English, and sketch how the computational model | have proposed might fit into a model of verb
acquisition. In Chapter 5, | explore the application of the implemented model to the practical problem of
syntactic disambiguation in unconstrained text.



Chapter 4

Selectional Preference and I mplicit
Objects

In this chapter, | investigate one application of the model proposed in Chapter 3, exploring
the relationship between sel ectional constraintsand argument omissibility for verbsin English.
It has been observed that the ability of some verbs to omit their objects is connected with
the inferability of properties for that argument; | argue inferability can to a great extent be
identified with the selectional information carried by the verb. This hypothesis is supported
by a computational study: the first experiment demonstrates that verbs permitting implicit
objects tend as a group to select more strongly for that argument than obligatorily transitive
verbs; the second experiment demonstrates that the tendency in practice to drop the object of
verbs correlates with selectional preference strength; and a third experiment investigates the
inferability of direct objects for verbs that do and do not require a salient antecedent for that
argument in order for it to be omitted. | concludethe chapter with a discussion of some possible
implicationsof this study for accounts of verb acquisition by children.

4.1 Overview

In thischapter, | apply the definition of selectional preference proposed in Chapter 3 to alinguistic problem,
namely the question of how it arisesthat direct objects are optiona for some transitiveverbs in English and
not for others. | begin by defining the syntactic phenomenon of interest, which has sometimes been referred
to asintrangitivization or object deletion. | restrict my attention to just those omissions that are licensed on
thebasisof lexical propertiesof theverb —that is, | am concerned with object omission asacase of diathesis
alternation (Levin, 1989). After discussing the relationship between selectional constraints and properties
of implicit objects, | develop the hypothesisthat strong selectional preference isin fact a requirement for
verbs that participate in implicit object alternations, and that strength of selectional preference is connected
with how easily properties of arguments can be inferred.

76
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4.2 Implicit Object Alternations

Diathesisalternationsare variationsin thewaysthat verbs syntactically realize their arguments. For example,
(102) shows an instance of the well-known dative alternation, and (103) shows an instance of the causative-
inchoative alternation (Levin, 1989):

(102) a. John gave the book to Mary.
b. John gave Mary the book.
(103) a. John opened the door.
b. The door opened.

Such phenomena are of interest because they stand at the border of syntax and lexical semantics. explaining
why averb expresses its semantic content in a particular syntactic form is part of understanding the nature
of itslexical representation.

In this chapter, | focus on a particular set of diathesis alternations having to do with the optionality of
direct abjects in English. Related terms in the literature include object deletion, intransitivizations, null
complements, implicit objects, and optional arguments (not to be confused with the implicit arguments of
(Roeper, 1987)). The god of this section is to define precisaly the phenomenawith which | am concerned.

Intuitively, the focus is on transitive verbs for which the direct object, when omitted, is nonetheless
understood. | will call such omissions object-drop phenomena, and the verbs for which they are possible
object-drop verbs. | will refer to omitted (null, implicit) objectsof such verbs as dropped or implicit objects.
In terms of traditional syntactic subcategorization (see, e.g., (Akmajian and Heny, 1975, p. 56ff)), these are
the verbs whose subcategori zation frames specify an optional NP direct object:

o
H__ (NP |

In descriptions based purely on phrase structure, these are verbs having both a transitive and an intransitive
expansion, asisthe case for sing in the following fragment from (Gazdar et a., 1985, p. 110):

(104)

(105) a VP — H[1]
b. die, eat, sing, run, . ..
C. runs
(106) a. VP — H[2],NP
b. sing, love, close, prove, . . .
c. provethetheorem

Crucialy, it is the lexical representation of such verbs that is taken to license the omission of the
direct object. That is, it isimportant to distinguish between lexically conditioned phenomena, which are
relevant to thisinvestigation, and non-lexically conditioned phenomena, which are not. Thisdistinctionis
inspired by thedistinctionthat Fellbaum and Kegl (1989) draw between discourse-conditionedand lexically-
conditioned intransitivity. Their class of lexically-conditioned intransitivizationsis essentialy equivalent
to Levin's (1989) indefinite object alternation, and | have extended it to include what Cote (1992) cals
the specified object alternation. The latter aso appears to be lexically specified, but additionally requires
that the context provide a salient antecedent for the null object. (See Section 4.2.3 for details) Since the
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specified object alternation interacts so strongly with discourse context, | have chosen to identify Fellbaum
and Kegl’s discourse-conditioned cases using the more neutral term non-lexically conditioned.

421 Non-lexically conditioned object omission

Let us consider the difference in more detail, beginning with non-lexically conditioned object omissions.
Although Englishis not noted for its ability to drop the arguments of verbs — as contrasted with Japanese,
for example, in which subject-drop and object-drop are both quite frequent — there are in fact many
circumstances in which a transitive verb in English may appear without its direct object. Non-lexically
conditioned intransitivizationsfrequently involve habitual, characteristic, or repeated activitiesor properties
of the subject:

(107) a | thought you said your dog doesn't bite!
b. That isnot my dog.

(108) Pussycats esdt, but tigers devour.
(109) Religion integrates and unifies. [From the Brown Corpus]

Contrasts or progressions al so appear to license the omission of direct objects:

(110) a Youwash, I'll dry.
b. It slices! It dices! [FromaTV commercia for the Veg-O-Matic]*
c. ..the order to load, prepare for action and be on the dert. [From the Collins COBUILD
Dictionary]

(111) a Driver to police officer: If | giveyou $50, will you ignorethistraffic violation?
b. Police officer to driver: You pay, I'll ignore.

Instructions also license this behavior:

(112) a Lather. Rinse. Repeat.
b. Bakefor an hour at 350°.

Phenomena of thiskind do not appear overly sensitiveto the particular verb: acontextinwhichthedirect
object is omissible can be constructed for just about any transitive verb, by creating a situation in which
the verb isinterpreted within one of the above licensing contexts. Thisiswhat leads to the conclusion that
non-lexically conditioned phenomena are an issue of grammar (and discourse), and not a matter of lexical
representation.

4.2.2 Lexically-conditioned object omission

Even when lexically unconstrained syntactic or discourse processes are excluded from consideration, there
are still numerousways inwhich transitiveverbsin English can specify the optionality of their complements.
These can be distingui shed a ong three dimensions of the omitted argument: syntactic category, definiteness,
and semantic type.?

LInformants comment that “1t slices! It dices! It devours!” would be equally good.
2Unlike (Grimshaw, 1979; Pesetsky, 1982), | will not be considering at all the more general case of predicates appearing without
their complements, asin
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Thefirst dimensionissyntactic: lexically-conditioned object-drop phenomena may involvethe omission
of asentential argument (113), an NP argument (114), or a PP argument (115):

(113) a | knew that the money had been stolen.

b. I knew.
(114) a | cadled my mother.
b. I caled.

(115) a | contributed ten dollarsto the emergency fund.
b. I contributed ten dollars.

Fillmore (1986) distinguishes finer grammatical types such as indicative that-clause direct objects and
subjunctive that-clause direct objects — e.g. complements of know that... versusinsist that... — but the
coarse three-way distinction according to constituent type suffices for present purposes.

Second, the dropped object may have an indefinite interpretation (117a) or a definite interpretation
(117b). In Fillmorée's terms, thisis the distinction between indefinite null complements and definite null
complements.

(116)  What did John do a noon?
(117) a He ate (though I’m not sure what he ate).
b. He caled (#though I’ m not sure who he called).

Fillmorecomments that a useful test for the distinctionis*“whether it would sound odd for a speaker to admit
ignorance of theidentity of the referent of the missing phrase,” asispresumably the case for the questionable
continuationin (117b).

Third, the semantic type of the object can involvetruth conditions, or it can involve an entity or entities.
(Roughly speaking, these correspond to the typest and e, respectively, found in model-theoretic semantics
— see, eg., (Dowty, Wall, and Peters, 1981).) Arguments involving truth conditions may be interrogative
(118), exclamatory (119), or propositiona (120) (Grimshaw, 1979):

(118) a | wonder how fast Bill can run.

b. | wonder.

(119) a | know how very fast Bill can run.
b. I know.

(120) a | forgot that Bill isarunner.
b. | forgot.

Argumentsinvolvingentitiesare usually expressed syntactically using noun phrases, as one would expect:

(121) a Bill read amagazine.
b. Bill read.

Although the syntax and semantics of the dropped object seem closdly related, Grimshaw argues con-
vincingly that they must be distinguished when specifying the selectional properties of averb. She supports
her claim using the phenomenon of control by concealed questions. The decisive example is reproduced
here as (122) (from Grimshaw’s (113, 114)):

(a) It'samazing how quickly Bill can run.
(b) It'samazing.

Nor will | be considering a possible fourth dimension of variation, namely whether or not the null argument is projected at the level of
syntactic structure (see (Rizzi, 1986)).
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(122) a Bill asked methetime, so | inquired.
b. Bill asked methetime, so | inquired what the time was.
c. *Bill asked methetime, so | inquired thetime.

The concedled question in thefirst clause of (122a) controlstheinterpretation of theimplicit argument inthe
second clause. The contrast between (122b) and (122c) shows clearly that the control relationship holds at
thelevel of semantic typeand not syntactic form: the direct objectsof ask and inquirein (122c) are identical
with respect to syntactic form, and therefore, since the sentence is ungrammatical, it cannot be the case that
inquire selectsitsdirect object on purely syntactic grounds.

Withinthisthree-dimensiona space, only a subset of the phenomenawill be considered here. In termsof
thedimensionsjust defined, thebehavior | will describe as® optionality of direct objects’ can be characterized
asfollows:

e gyntactictype NP
o either definite or indefinite
e semantic type e (entity or entities).

Though only a subset of the full range of null complements, this description still leaves a fair amount of
ground to cover; in addition, any progress made toward accounting for this subset of phenomena can serve
as astarting point in efforts to account for the rest.®

From thispoint on, then, the term obj ect-drop phenomena will refer only to those (Iexically-conditioned)
phenomena that fit within the dimensionsjust given, and object-drop verb and non-object-drop verb should
be understood accordingly. The remainder of this section is concerned with diagnostics that determine
whether or not a particular verb should be considered an object-drop verb.

4.2.3 Diagnostics

The class of object-drop phenomena corresponds to the union of two diathesis aternations: the indefinite
object aternation (I0A) of (Levin, 1989), and the specified object aternation (SOA) proposed by (Cote,
1992). For present purposes, therefore, the linguistic diagnostics used by those authors to characterize the
alternations can be used to demarcate the boundary between object-drop verbs and non-object-drop verbs.

Cote suggests three diagnostics to determine when averb participatesin the indefinite object alternation.
First, the verb cannot have a null object when a salient antecedent is present.

(123) a Did Cheetah eat al the bananas?
b. #Yes, he ate.

Second, the verb’s appearance with a null object can cancel apparent equival ence with an antecedent.

(124) a Did Cheetah eat the bananas?
b. He ate, but not the bananas. He had mangos instead.

Third, the verb’s appearance with a null object can introduce anew entity into the discourse context.

3Pustejovsky (1991, footnote 13) briefly considers the case of dative PP omission, conjecturing that the omission of PP arguments
(asin Cordelia told the story) is related to the semantic “ connectedness’ of the verb-object combination, accounting for the contrast
between Cordelia told the story and * Cordelia told the secret. It may be possible to develop Pustejovsky’s conjecture further using the
argument presented here.
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(125) a Did you cook today?
b. Yes, and it came out délicious.

As noted above, Fillmore (1986) suggests a diagnostic (also adopted by (Rispoli, 1992)) to distinguish
the indefinite object cases from the definite (specified) object cases: for the former, the speaker must be
understood to have a specific antecedent in mind, and it isinfelicitousto indicate otherwise.

(126) a. When | peeked into John'sroom he was reading;
b. now | wonder what he was reading.

(127) a When | peeked into John'sroom he was winning;
b. #now | wonder what he was winning.

A corresponding diagnosticfor picking out verbsthat can take specific null objectsisto construct adiscourse
context where the antecedent is clearly salient.

(128) a. Remember that game we were discussing?
b. Well, John won, and he bragged about it al night.
(129) a. Remember that door we were having troublewith?
b. *Wel, John unlocked, and he promised to make me a copy of the key.

Such a context must be constructed with care, however, in order to avoid creating a discourse context that
supports non-lexically conditioned object-drop phenomena such as those discussed in Section 4.2.1. For
example, (130) should not be considered evidence that lift participatesin the specified object alternation:

(130) a John and Bill will go from bedroom to bedroom looking under mattresses for hidden money.
b. John will lift and Bill will look.

Because the judgements are sometimes subtle, it is helpful to use a dictionary as a point of reference.
| have used the Collins COBUILD English Language Dictionary (Sinclair (ed.), 1987), which has the
convenient property of organizing verb subcategorization information according to verb sense. Thusit is
possible to identify a verb as a likely participant in implicit object aternations simply by seeing whether
some (non-marginal) sense of the verb is annotated with both v and v+0; after which, of course, one can
apply further diagnostics. If no sense of averb permits both the v and v+o frames in thisdictionary, it can
reliably be excluded from consideration.

4.24 Propertiesof implicit objects

Although the participation of a verb in implicit object aternations is usually encoded simply as a set of
structural aternatives — as illustrated by (104) and (105) — it is clear that the alternation has implications
for interpretation, as well. In particular, when a verb’s object is dropped, the missing argument is taken to
havethe propertiesof “prototypical” objectsof theverb. For example, Levin (1989, p. 7) givesthefollowing
example in characterizing the indefinite object aternation (her examples (17a,b)):

(131) a Mikeatethe cake.
b. Mikeate. (— Mike ate something onetypically eats),

and Ellen Prince points out that for many people, (132) isnatural under a“washing dishes’ interpretation,

(132) You wash and I'll dry!
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but humorous in a situation where the speaker and listener are giving the baby a bath.*

These property inferences are, in fact, very much like the inferences drawn when the argument position
is occupied but unspecific. Fodor (1977) comments that selection restrictions have been used not only to
predict semantic anomaly, but aso to provide inferences of thiskind, filling out the meaning of sentences
containing a pronoun in argument position.

(133) a Sincerity admires John.
b. This one admires John.

She writes:

In[(133b)], the subject noun phraseis not specified for animateness, so thereisno direct conflict
with the selection restriction on the verb admire which requires its subject to be animate (or
more precisely, to be capable of higher psychological functions). But the selection restriction on
the verb induces an interpretation of the subject asif it WERE an animate noun phrase. (p. 195)

This relationship between selectional constraints and omitted (or underspecified) arguments appears
in the discussions of a number of authors about lexica representations and how they might be used in
processing. Jackendoff’s (1990, p. 52) discussion of optional complements is one such instance. Within
his representational scheme, the lexical entry for a verb specifies (i) the syntactic form of its complement
— for example, a subcategorization frame — together with (ii) some expression of semantic selection for
that complement, (iii) alexical conceptual structure having open argument positions, and (iv) an annotated
distinction between obligatory arguments and those that are optional. A selectional restriction is considered
to be a part of the verb’s lexical conceptua structure. For example, the lexical entry for drink includes
a selectional restriction on the direct object (more precisely, on the argument position within the lexical
conceptud structure) in the form of the conceptua annotation LIQUID.

Jackendoff suggests that in processing, selectional restrictions are enforced not by means of an inde-
pendent filter, but rather via a mechanism he calls argument fusion: when the lexical conceptual structure
associated with the verb is combined with an overt argument, the conceptua content of the argument is
combined with the (partial) conceptua content already found in the argument position. Should there be a
clash of types — for example, a non-liquid direct object for drink — this fusion cannot take place, and a
selectional violation results. Should an optional argument not be overtly specified, the empty argument of
the verb will nonethel ess be attributed with appropriate “default” features by virtue of the partial conceptua
information withintheverb’'slexica entry. Rizzi (1986, footnote6), in asimilar vein, suggeststhat optiona
arguments correspond to thematic rolesthat are “ saturated” in thelexicon rather than syntactically. Common
to these discussions is the idea that selectional information specified in a verb’s lexical entry is combined
with objects when they are overt, and is ascribed to those arguments when they are omitted.

The evident relationship between selectional constraints and property inferences suggests the following
hypothesis: verbsthat permit implicit objectsselect strongly for that argument. Thismakes senseon intuitive
grounds — relevant properties of omitted arguments are clearly inferred somehow, and the verb seems the
most likely place to look for the relevant information. To state the hypothesisanother way, if averb does not
carry sufficient selectional information to permit the relevant object propertiesto beinferred, then it should
not permit that argument to be omitted.

The following exampl es make the intuition behind this hypothesis quite clear.

“4Personal communication; she attributes the example to Gregory Ward.
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Selectional Profile Selectional Profile
A(v,0) A(v,0)
T profile.need T T profile.eat
9.00 — — 9.00 — —
850 — — 850 — —
8.00 — = 8.00 — —
7.50 - — 7.50 - —
7.00 - — 7.00 - —
6.50 — — 6.50 — —
6.00 — — 6.00 — —
550 — = 550 — —
5.00 — = 5.00 — —
4.50 — — 4.50 - —
4.00 — — 4.00 — —
350 - — 350 - —
3.00 — — 3.00 — —
250 - = 250 - —
2.00 - — 2.00 - —
150 — — 150 — —
100 - - 100 - II d B
0.50 — — 0.50 — —
o W Bkasanll Bl an T W (W
-0.50 [~ = -0.50 [~ -
-1.00 = -1.00 -
| | | | | Classnum x 108 | | | | | lassnum x 108
0.00 1.00 2.00 3.00 4.00 0.00 1.00 2.00 3.00 4.00

Figure4.1: Selectional behavior of need and eat

(134) a John ate something.
b. John ate food.
c. John ate ceredl.

(135) a John needed something.
b. John needed assistance.
¢. John needed help with his homework.

In (134b), the direct object seems to contribute very little additional information over and above (1344).
In example (135b), the direct object seems to contribute more information; after al, John might need any
number of things (a ride to work, a haircut, a new computer password), only some of which are kinds
of assistance. One can imagine how a language might incorporate such informational differences into its
syntactic behavior. In cases like (134b), but not (135b), the direct object contributes so little information
that often it might as well be omitted entirely, and this behavior ultimately becomes incorporated into the
subcategorization of the verb.

The connection between inferability of the direct object and its omissibility is not a new one — similar
observations have been made by (Lehrer, 1970; Rice, 1988; Fellbaum and Kegl, 1989). However, the
formalization of selectiona preference proposed in Chapter 3 provides a necessary link between inferred
information and selectional properties of the verb, and provides a new and formal interpretation of what
information is. Furthermore, unlike traditional characterizations of selectional constraints as sortal restric-
tions, the information-theoretic proposal makes it possible to discuss selection quantitatively rather than in
all-or-nothing terms. Rather than suggesting that need provides no selectiona information at al about its
direct abjects, one need only claim that the information provided is comparatively less than for some other
verbs.

This is illustrated in Figure 4.1, which shows the selectional behavior of the verbs need and eat as
determined experimentally from the Brown corpus, using the computational model proposed in Chapter 3.
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The taxonomic classes from WordNet have been laid out sequentially along the horizontal axis, with each
class taking the z-value corresponding to its unique numerical identifier in WordNet.> The vertical axis
indi cates the magnitude of selectional association between the verb and each concept.® Asthefigure shows,
the verb need (profile at left) does constrain its direct object to some extent, having a stronger selectiona
association with some concepts than others, although the overall effect isrelatively small in magnitude and
not conceptually specific. However, the selectional behavior of eat (profile at right) is markedly different:
qualitatively its pattern of selectional association is far more specific (the highest peak corresponds to the
WordNet class (f ood}), and quantitatively its overall selectional preference strength is much greater. The
ability to quantify selectional constraints in thisway makes it possible to put a precise formulation of the
hypothesis under discussion to an empirical test.

4.3 Experiment 1: Selection and Optionality

431 Procedure

Several computational experiments were carried out in order to test the hypothesis that object-drop verbs
can be distingui shed from non-obj ect-drop verbs on the basi s of selectional preference strength. The genera
procedure was as follows:

e A sample of verbs was chosen, comprising a set of 34 verbs that occur frequently in parental speech
to children.’

e Each verb was classified as object-drop or non-object-drop. A verb was classified as object-drop only
if (a) some sense of the verb is annotated with both v and v+o0 in (Sinclair (ed.), 1987), and (b) that
sense is “close enough” to the central meaning of the verb, as opposed to an extremely specialized
sense. The latter criterion is a question of persona judgement: some sense of each verb in (136)
and (137) permits both subcategorizations, but in cases like (137) | decided the senses permitting the
alternation were too specialized to warrant categorizing the verbs as object-drop.

(136) a John caled (someone) at 3pm.
b. John packed (asuitcase) quickly before leaving.
¢. John stole (some money) and was caught.
(137) a John opened (a discussion) with a question.
b. John showed (awork of art) in New York.
c. Themissilehit (atarget) and exploded.

e For each verb, the selectiona preference strength was calculated as described in Chapter 3. The
experiment was replicated using several different sources for verb-object co-occurrence frequencies,
see details below.®

o Statistical tests were carried out to see if the object-drop verbs did in fact have higher strengths of
selectional preference than their non-object-drop counterparts, as predicted by the hypothesis.

5These unique identifiers correspond to positionswithin a WordNet 1.2 datafile; its size is about 4 megabytes.

6Values of selectional association have been multiplied by 100.

7| am grateful to Annie Lederer for providing this list.

8Recall from Section 3.7.1 that verb senses were not distinguished, although sense distinctions may be relevant (see discussionin
(Fillmore, 1986)).
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In using thisprocedureto test the hypothesis, the WordNet noun taxonomy isassumed to be areasonable
representation of the conceptua taxonomy availableto alanguage user. The psycholinguistic considerations
underlying the taxonomy are presented by Miller (1990a); among others, he includes the following:

1. Clinicd observations of patients with anomic aphasia lend support to the isolation of nouns into a
separate lexical subsystem.

2. A hierarchical organization of the noun lexicon is supported by psycholinguistic evidence concerning
anaphoric nouns and comparative constructions. (E.g., He owned a rifle, but the gun had not been
fired; #A rifleis safer than a gun/#A gunis safer than arifle.)

3. The noun hierarchy strongly reflects function. (Miller comments, “At least since Dunker (1945)
described functional fixedness, psychol ogists have been aware that uses to which athing is normally
put are a central part of a person’s conception of that thing.”)

In (Miller et a., 1990), Miller makes the following general comment:

Beginning with word association studies at the turn of the century and continuing down to the
sophisticated experimenta tasks of thelast twenty years, psycholinguistshave discovered many
synchronic propertiesof the mental |exicon that can be exploitedinlexicography . . . Inasmuch
asit instantiates hypotheses based on results of psycholinguistic research, WordNet can be said
to be a dictionary based on psycholinguistic principles.

As a second assumption, the verb-object samples used in the experiment are taken to be representative
of actual usage. In order to ensure that thisisthe case, the corporaused were as balanced as possible. One
experiment used the Brown Corpus (Francis and Kucera, 1982), which, though smaller than some of the
text corpora now available (about a million words, total), is the largest readily available sample of English
text explicitly designed to be balanced across genres. A second experiment used parental speech from
the CHILDES corpus (MacWhinney, 1991), which is to my knowledge the largest and broadest sample of
parent/childinteractionavailable. A thirdexperiment used datacollected by AnnieLederer in an unpublished
study of verb-object norms.

It is very important to note that no statistics at all were collected concerning the frequency with which
verbs in the study do or do not appear with omitted arguments. Only overt verb-object co-occurrences go
into the estimation of selectional preference strength; therefore the independent measure is not tainted by
information about the property it is being used to predict.

43.2 Reaults

Brown Corpus. Thefirst version of the experiment used a sample of 33,136 verb-object co-occurrences
extracted from the parsed version of the Brown Corpus in the Penn Treebank (Marcus, Santorini, and
Marcinkiewicz, 1993). The Treebank parses encode only surface objects, and since pronoun-antecedent
relationships are not encoded, pronouns in object position were ignored. 1n multiple-noun compounds, the
last noun (reliably the head of the NP) was taken to be the direct object.®

91 am very grateful to Rich Pito for his TGREP utility, which madeit possibleto search for and and extract specific structural patterns
from the Penn Treebank.
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Inthisversion of the experiment the object-drop verbs have significantly stronger selectional preference
strength than the non-object-drop verbs according to a Mann-Whitney U test (Milton, 1964) (N1=15,
mean1=2.97, stdev1=0.98, N2=19, mean2=1.73, stdev2=0.93, U=55,p = .001).

CHILDES. The second version of the experiment used a sample of 34,710 verb-object co-occurrences
extracted from parenta speech in the CHILDES (Child Language Data Exchange System) collection of
parent-child interactions (MacWhinney and Snow, 1985; Sokolov and Snow, to appear). The CHILDES
data are not parsed, so in order to identify the direct objects of verbs, the parental turnsfrom the CHILDES
data were extracted and run through a probabilistic part-of -speech tagger, and direct objectsidentified using
asimple heuristic procedure. Essentially the procedure looked to the right of the verb for either a noun, a
sequence of houns (in which case the last one was identified as the head), or another part of speech such asa
preposition or adverb that would suggest terminating the search without identifying an object. Althoughthis
procedure led to anoisy sample, | inspected a sub-sample by hand and judged the results to be reasonable;
in addition, an earlier version of the experiment applied the same heuristic to the Brown Corpus (before it
was availablein parsed form) and the results were essentially the same as those just described.*?

In this second version of the experiment, the object-drop verbs again have significantly stronger selec-
tional preference strength than the non-object-drop verbs, according to a Mann-Whitney U test (N1=15,
mean1=2.25, stdev1=0.94, N2=17, mean2=1.13, stdev2=0.64, U=37,p < .0005). (Verbsdo and havewere
excluded from the heuristic object-finding procedure owing to their use as both verbs and auxiliaries, hence
the experiment included 32 rather than 34 verbs.)

Human subject data. Thethirdversion of theexperiment used asample of 2,655 verb-object co-occurrences
collected in an unpublished norming experiment by Annie Lederer. Ten subjects were instructed to name
“the top ten things that you...” for each of the 34 verbs — something very much aong the lines of the
“Family Feud” television game show. They weretold to restrict themselves to one-word answers, and to list
fewer itemsif ten did not come to mind easily. |n some cases, subjects gave two-word responses despite the
instructions (e.g. pour orange juice, open car door); in adapting the norms to the experiment reported here
those responses were excluded.

In this third version of the experiment, the object-drop verbs once again have significantly stronger
selectional preference strength than the non-obj ect-drop verbs, according to aMann-Whitney U test (N1=15,
mean1=2.17, stdev1=0.42, N2=19, mean2=1.66, stdev=0.42, U=57,p < .0025).

4.3.3 Discussion

The results of Experiment 1 confirm the hypothesisthat verbs participating in the implicit object alternation
select morestrongly for their direct objectsthan verbsthat do not. Replicationsusing several different corpora
to estimate verb-object co-occurrences lend the result additional credibility: the difference is apparently not
the result of some quirky statistical behavior in a particular corpus.

It isimportant to note, however, that there is no clear threshold separating the two groups of verbs. For
example, using the Brown Corpus data, the three “weakest” object-drop verbs are call, hear, and watch,

WAl parental dataavailablein CHILDES were merged; theseincluded datagathered by the following researchers: Bates, Bernstein,
Bloom, Bohannon, Braine, Brown, Clark, Evans, Garvey, Gathercole, Gleason, Hall, Higginson, Howe, Kuczaj, MacWhinney, Sachs,
Snow, Suppes, Vanhouten, and Warren. See (MacWhinney and Snow, 1985) for details. | am grateful to Eric Brill for his assistancein
tagging the CHILDES data.
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with selectiona preference strengthsranging from 1.52 to 1.97; the three “ strongest” non-object drop verbs
are hang, wear, and open, with selectional preference strengths ranging from 2.93 to 3.35. The resultsusing
other corpora show similar behavior. This might mean that selectiona preference strength is being poorly
estimated in some cases, or it might mean that there are other factors involved in determining whether the
direct object is optional.

Thereissome evidenceto suggest that usage biases may beleading to inaccurate model s of verb selection
in some cases. For example, in the Penn Treebank parses for the Brown Corpusthe direct object distribution
for the verb say is systematically contaminated by time adverbials, asin thefollowing:

(138) a Hestill [VPsays[NP every day] again: “Let there belight”]!
b. Governor Notte[VP said [NP last night]...]

This is one likely explanation for the selectional preference strength of 2.82 for say as estimated from
this corpus. In addition, inappropriate word senses appear to be having undue influence for some low-
frequency verbs. For example, governor, head, official and tool together account for 6 of the 11 direct object
instances observed for the verb hang; these can all be grouped together under the heading (per son, 3174)
if head isinterpreted in its sense as CHIEF and tool is interpreted as PUPPET or SLAVE. If word senses were
disambiguated, the co-occurrence hang head would contribute probability to senses such as BoDY _PART and
tool would be associated with IMPLEMENT and the like, and the overall selectional preference strength would
be lower.

Despite these biases, | am inclined to take the latter position, namely that, even if the estimated values
for selectiona preference strength were completely accurate, selectional preference would not completely
account for omissibility of objects. | take up other factors that might be involved in the general discussion.

4.4 Experiment 2. Selection and Frequency of Omission

The previous experiment investigated the hypothesis that optionality of the direct object is connected to
selectional preference, the rationae being that strength of selectional preference is, as formalized here, a
measure of how easy it isto infer or reconstruct necessary properties of the omitted object. Although the
resultsdo not support acategorical distinction solely onthe basis of selectiona properties, they do show that
selectional propertiesare relevant to lexically-specific syntactic behavior.

Given that selection is relevant to lexical-syntactic properties — that is, lexical knowledge bearing
on syntactic competence — a natural question to ask is whether selectional preference affects syntactic
performance, as well. In particular, if selectiona preference strength measures how much information a
verb carries about its object, then properties of omitted objects should in some sense be more easily inferred
for strongly rather than weakly selecting verbs.

Ease of inference is a subject for investigation by psycholinguistic rather than computationa methods.
However, in performance, a speaker or writer islikely to be influenced by how easy it will be for the listener
or reader to arrive at the correct interpretation. In particular, one would expect that verbs for which the
object isreadily inferable will omit that argument correspondingly more frequently than verbs for which the
object is not easily inferred. In a second experiment, therefore, | have again associated ease of inference
with strength of selectional preference, this time exploring the connection between selectional preference
and the omission of direct objectsin actua performance.
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441 Procedure

In order to determine the frequency with which verbs omit their objects, | extracted from the Brown Corpus
a sample of 100 instances of each verb used in the preceding experiment (or as many instances as were
available, if fewer). For each instance, | used the full sentence in which the verb appeared, together with
the full preceding sentence, to decide whether or not this instance was an example of an implicit object
congtruction. The judgements were made on the basis of intuition, together with the linguistic diagnostics
discussed in Section 4.2.3.

(139) a Inthefullnessof her vocal splendor, however, she could sing the famous scene magnificently.
b. Altogether fifteen virtually unknown Rodgers and Hart songs are sung by a quintet of able
vocalists.
¢. Rouben Ter-Arutunian, in his stage settings, often uses the scrim curtain behind which Mr.
Cole has placed couples or groups who sing and set the mood for the scenes which are to
follow.

For example, (139c¢) was counted as containing an implicit argument instance for sing, and (139a) and (139b)
were not.

In this process, it was more convenient to use the original part-of-speech tagged Brown Corpus rather
than the parsed version found in the Penn Treebank, though thelatter was still used for estimating selectiona
preference strength. Since in the original Brown Corpus the uses of have as auxiliary and verb are not
distinguished, that verb was excluded from the sample, leaving the other 33 verbs from Experiment 1.
Selectional preference strength was determined for each verb in exactly the same fashion described earlier,
for each of the same three corpora.

442 Results

A correlation between selectional preference strength and object omissions emerged in each of the three
versions of the experiment: Brown Corpus (N=33, r=.48, F(1,31)=9.53, p < .01, p(F) < .005),
CHILDES (N=32, r=.36, p < .05, F(1,30)=4.33, p(F) < .05), human subject data (N=33, r=.58,
p < .001, F(1,31)=15.74, p(F') < .0005). Figure 4.2 shows a plot of the relationship using the human
subject data— Strength refers to selectional preference strength, and Implicit isthe proportion (between 0.0
and 1.0) of instances appearing with an implicit object.

Although some verbs deviate by failing to omit their objects despite very strong selection for the
direct object, it is interesting to notice that the converse does not hold: verbs do not omit their objects
frequently unless they possess a high selectional preference strength. | would argue that this pattern reflects
an underlying hard requirement, namely that strong selection is a necessary condition for object omission.
Whatever other sourcesof information may beavail ablefor inferring propertiesof implicit objects, sel ectional
information carried by the verb isa prerequisite.

4.5 Experiment 3: Distinguishing Subclasses of Object-drop Verbs

In Experiment 1, verbs participating in the indefinite object aternation (I0A) and the specified object
alternation (SOA) were combined into a single group. One might predict, however, that the selectiona
properties of verbs in the two subclasses might differ — if a verb requires that an antecedent be available
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Norms

Implicit

Strength

Figure 4.2: Correlation between selection and implicit objects

[ IOA [ SOA ]
drink || call
eat explain
pack || hear
read play
sing pour
steal pull
write || push
watch

Table 4.1: Subclassification of object-drop verbs

in the discourse context, the verb itself might not contribute as much information about the omitted object.
This prediction can be tested using the same procedure as in Experiment 1, replacing the object-drop and
non-object-drop groups with groups of verbs participating in the indefinite and specified object alternations,
respectively.

Table 4.1 showsthe division of the object-drop verbs from the sampleinto those two subclasses. Testing
the predicted difference in selectional preference strength between the two classes yielded the following
results, organized, as before, according to the corpus according to which selectional preference strength was
estimated. (Group 1: 10A; group 2: SOA.)

Brown Corpus: N1=7, mean1=3.43, stdev1=0.75, N2=8, mean2=2.57, stdev2=1.02, U=13, p = .05.
CHILDES: N1=7, mean1=2.51, stdev1=0.80, N2=8, mean2=2.03, stdev2=1.05, U=14, p = .1.

Human subject data: N1=7, mean1=2.14, stdev1=0.54, N2=8, mean2=2.20, stdev2=0.33, U=26, n.s.
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Although these results might optimistically be interpreted as supporting the hypothesis, the difference
between the two groups has not been convincingly demonstrated. One likely explanationisthat the the two
groups — respectively containing 7 and 8 verbs — are too small.

Intheinterest of obtaining resultsfrom alarger sample of verbs, | repeated the experiment using theverb
classification in (Lehrer, 1970). Lehrer divides verbs permitting “ object deletion” into four types:

I. Verbs that imply highly specific semantic objects, with the identity of the object not affected by
discourse context (e.g. eat, read).

[1. Verbsthat imply two or more fairly specific objects; for these the discourse might have an effect on
how the missing object isinterpreted.

1. Verbsthat alow the object to be deleted in certain discourse contexts(i.e. when an antecedent iseasily
identified) without loss of meaning. This group is mutually exclusive with type I, and overlaps with

typell.

IV. All remaining verbsthat permit object deletion (e.g. steal, interrupt). These tend not to be associated
with a highly specific object, and “sometimes behave astype |11 verbs do, but less regularly.”

There seems to be afairly clear correspondence between Lehrer’s Type | and the implicit object alternation
and between Type |11 and the specified object alternation (see Appendix B.7). Lehrer writes:

[Typelll verbs] alow their objectsto be deleted when the object has appeared in the preceding
discourse. Or, looking at the matter from an analytic point of view, the following verbs tend to
‘pick up’ objects from the preceding discourse.

Her types Il and IV were excluded, since their status with regard to the indefinite/specified distinction is
unclear. Using the Brown Corpus to estimate selectional preference strength, Lehrer’s Type | verbs select
more strongly for their objects than the Type Il verbs, according to a Mann Whitney U test (N1=34,
meanl=4.46, stdev1=1.75, N2=42, mean2=3.04, stdev2=1.29, U=356, p < .0001). However, athough
there is a difference when the experiment is done using the CHILDES corpus, it is not significant (N1=27,
mean1=3.32, stdev=1.73 N2=31, mean2=2.86, stdev=1.49, U=359, n.s.). Theempirical evidenceistherefore
suggestive, but not conclusive. The difference between the behavior of the Brown Corpus and CHILDES
samples may result from the fact that they respectively contain edited text and spontaneous speech, but |
have not yet investigated this possibility in detail.

4.6 General Discussion

The experimental results confirm that there is an interaction between strength of selectional preference and
the optionality of direct objects. Experiment 1 shows that verbs permitting the omission of their direct
objects select for that argument more strongly than do verbs for which the object is obligatory. Experiment 2
lends support to the claim that thisrelationship isacausal one, showing that in actual performance thereisa
correlation between sel ectional information and the frequency with which thereader or listener isexpected to
infer an omitted object in practice. Finally, Experiment 3 investigated the claim that selectional information
is connected to ease of inference. It suggests that verbs with external sources of information — salient
antecedentsin the discourse— may select less strongly than verbs for which that informationisunavailable.
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As | pointed out earlier, however, selectional preference information alone is not enough to provide a
categorical distinction between verbs that do and do not drop their objects. In the remainder of this section
| discuss severd other factors that may be connected with the indefinite object alternation, among them
aspectua constraints and taxonomic relationshipsin the lexicon.

4.6.1 Aspectual constraints

The account of implicit object aternations presented here stands in contrast to the more common view
of diathesis aternations as being closdly tied to some specific aspect of the verb’s semantic content. For
example, the dative alternation isrelated to the element of transfer.

(140) a. John gave the book to Mary.
b. John gave Mary the book.

(141) a Johntoldthe story to Mary.
b. Johntold Mary the story.

AsPinker (1989) putsit,

Dativizable verbs have a semantic property in common: they must be capable of denoting
prospective possession of the referent of the second object by the referent of the first object
. . . verbs of communication are treated as denoting the transfer of messages or stimuli, which
the recipient metaphorically possesses. (p. 48)

Pinker goes on to discuss semantic constraints on arange of other argument structure alternations, including
causatives, locatives (spray/load), and passives.

Although verbs permitting implicit objects do not appear to be linked by any factor so tightly bound to
their semantics, there are some factors connected to aspect that arerelevant. These are most easily described
interms of Vendler’'s (1967) aspectual classes, and their related time schemata. To describe these aspectual
distinctionsvery briefly, activities and accomplishmentsadmit continuoustenses, whereas achievements and
states do not — the former but not the latter are processes, in the sense of “successive phases following
one another in time” (p. 99). Activities and accomplishments are distinguished by the notion of an end or
climax; achievements and states are distinguished by the determinacy of the time period involved. A fuller
discussion can befoundin (Vendler, 1967); for present purposes, the foll owing diagnosticsfor distinguishing
the four classes will suffice:

o Activity from accomplishment:

(142) a For how long did he push the cart? [activity]
b. How long did it take him to write the | etter? [accomplishment]

e Accomplishment from state:

(143) a | amwriting the letter. [accomplishment]
b. *I am knowing the answer. [state]

e State from achievement:

(144) a How long did it take to recognize the painting? [achievement]
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b. *How long did it take to know the answer? [state]
o Achievement from activity:

(145) a For how long did he push the cart? [activity]
b. At what time did he recognize the painting? [achievement]

o Activity from state:

(146) a. | am pushing the cart. [activity]
b. *I am knowing the answer. [state]

o Achievement from accomplishment: 1t

(147) a | wrotetheletter without interruption. [accomplishment]
b. *I recognized the painting without interruption. [achievement]

A generaization that appearsto hold for verbs participating in theindefinite object aternationisthat they
describe processes, specifically accomplishments, when used transitively. Most of Vendler’s diagnosticsfor
accomplishment verbs are captured concisely in (148):

(148) a. What was John doing?
b. John was drinking his coffee.
c. It took John ten minutesto drink his coffee,
d. and he drank it without interruption.

Furthermore, Mittwoch (1971; 1982) argues that verbs with omitted indefinite objects are interpreted as
activities. In (Mittwoch, 1971) she shows that when drink appears without a specified object, or with an
object of indefinite quantity, asin drank beer, the VP must beinterpreted as describing an event that has not
necessarily been completed.

(149) a John drank (beer).
b. *John drank up (beer).
¢. John drank up the glass of beer.
(150) a John drank (beer) for two hours.
b. *John drank (beer) in two hours.

This observation accountsfor the exclusion from the aternation of verb phrases that have only acompleted-
event reading. Since the particle up in phrases like drink up and eat up contributes the semantic feature
[+completive], it isincompatiblewith an unspecified interpretation of the “deleted” NP,

Mittwoch’sargument suggestsa constraint excluding not only verbs appearing with completive particles,
but also verbsthat carry the[+compl etive] featurethemsel ves. Browne (1971) makes asimilar point, phrased
interms of goa-directness. He points out that a common feature of the verbsin (151), which are prohibited
from omitting their objects,

(151) a *Bill devised.

1yVendler does not himself propose this diagnostic, but without interruption contexts do seem to capture what he hasin mind. The
crucial point is even though an achievement can be described as taking a certain amount of time (“It took three hours to reach the
summit”), it does not imply that the described action (reaching the summit) took place at each moment during that period.
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b. *John consumed/devoured.*?

C. *Fred debitted.

d. *Max halved (i.e. cut somethingin two)
e. *The FBI detected.

f. *Selmaignited (i.e. set something on fire)
0. *Moishe exploited.

isthat they all presuppose “progresstoward an end point at which an ideais existent, the drink is completely
gone, the object lies cleft, the FBI isin possession of information, etc.”

To summarize, it appears that verbs with indefiniteimplicit objects are accomplishments when an object
isincluded and activitieswhen it is omitted; furthermore, the indefinite object alternation must not result in
averb phrase that necessarily describes an achievement (completed action, end state).'> However, not every
verb meeting these criteria permits indefinite objects to be omitted. For example, record (in the sense of
recording sounds on tape) fits the aspectua criteria, but failsto omit indefinite objects.

With verbs permitting the omission of specified rather than indefinite objects, the connections to aspect
become less clear.

(152) a Bill had absolutely no idea what the answer was.
b. John knew, because he'd just looked it up.

(153) a The ACL conference wasin Ohio thisyear.
b. About four hundred peopl e attended.

For example, know islicensed in (152b) despite the fact that it denotes a state, is non-completive, and is not
inany sense goal-directed. In (153b), attend is, according to the diagnostics, an activity. However, Fillmore
(1986) comments that

[I1] is particularly striking that the semantic role of Patient (or Theme) appears not to occur
among the definite omissibles. That is, we found no cases of [definite null complements] with
change-of-state verbs like BREAK, BEND, CREATE, DESTROY, MOVE, LIFT, and thelike. (p. 104)

and it is interesting to note that, in addition to the common thematic role involved, al these verbs are
inherently compl etive.

As afina thought along these lines, aspect is only one of a number of the properties associated with
high transitivity that may be associated with failure to omit objects. Hopper and Thompson (1980) identify
degree of trangitivity with set of parameters that includes aspect (telic or atelic), punctuality (whether or
not an action is inherently on-going), volitionality of the agent, affirmation (positive or negative), mode
(correspondenceto an actual event), agency, and affectedness and individuation of the object. Their anaysis
may be a useful starting point for an account of implicit object aternations that takes into account not only
lexical propertiesbut aso features of the discourse context.

L2 sit happens, the points about aspect made here would account for the classic contrast between eat and devour: the latter, but not
the former, entails a completed event of consuming the object. The first definition for devour in the American Heritage Dictionary,
“to eat up greedily,” bringsin not just manner but also the completive particle. However, it worth noting that the claim made in this
chapter also applies. In aninformal experiment, subjects who were asked to produce sentences containing the verb devour frequently
responded with non-food objects like book, opponent, and savings. If those informally gathered verb-object co-occurrence countsare
added to the verb-object norms, then devour turns out to have a much weaker selectional preference strength for its object than eat.

13This last constraint may suggest that steal, which | categorized with the IOA verbs, should be excluded from the 10A verbs.
Although (Sinclair (ed.), 1987) lists steal as permitting frames Vv or v+0 in its core sense, the example they give (Children often steal)
clearly falls into the category of non-lexically-conditioned object omission.
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4.6.2 Taxonomic relationships

Fellbaum and Kegl (1989) adopt the aspectua analysis made by Mittwoch, describing her distinction as
one between telic and atelic interpretations. They go beyond aspect, however, to propose an account of the
indefinite object alternation phrased in terms of a taxonomic organization of verbs that is analogous to an
IS-A taxonomy of nouns.

Central to Fellbaum and Kegl’s account is a distinction between two different kinds of 1s-A relationships
between verbs. They point out that although “nibblingisakind of eating” and “diningisa kind of eating,”
therelationshipin the former but not the latter case involves manner. An analysis of the set of verbsrelated
to eat leads them to conclude that there are, in fact, two different senses of eat in English. One of these, has
roughly the sense of “ingest food in some manner” and the other, roughly, “eat ameal.” Nibbleand dineare
respectively hyponyms of (i.e. subordinateto) these two different senses. Furthermore, they claim that only
the“eat ameal” sense of eat permitsindefinite objectsto be omitted. For the manner-incorporating sense of
eat, the direct argument must be overtly realized. They write:

As Kegl and Fellbaum (1988) have argued, the presence of an obligatory adjunct always
requires the presence of a direct argument. Thisis the reason that these manner verbs, which
have absorbed the adjunct manner phrase, must have ad-structuredirect argument that isovertly
realized at s-structure.

Given this sense ditinction, they argue, the behavior of verbs related to eat falls out of which sense they
are subordinateto. Verbs that refer to manner of eating, like gobble, gulp, and devour, require overt direct
objects. Verbs like to breakfast, to dine, and to snack are intransitive because they have incorporated the
direct object, akind of meal, into the verb itself. The “cross-category linking” of the paper’stitle refers to
the parallel between the hyponyms of the canonical direct object meal — nouns breakfast, picnic, and so
forth — and the corresponding denominal s that are hyponyms of the verb.

Thisaccount is appealing because it offers a clean, semantically-driven account for an interesting range
of data— not just eat and its relatives, but also drink (intransitiveto booze vs. transitive to guzze), play
(intransitiveto drumvs. transitiveto strum), and thelike. However, it does appear to have acentra problem.
Despite Fellbaum and Kegl’'s argument to the contrary, eat does permit the omission of indefinite objects
even when they are not “understood as congtituting some unit of food, i.e. amea” (p. 97). For example,
they argue that (154b) is not an appropriate answer to (154a) because nibbling all day cannot be construed
as making up ameal.

(154) a Haveyou eaten?
b. Yes, I’'vebeen nibbling all day.

However, | would argue that the oddness of (154b) arises less from this fact, and more from the question
it customarily implies — usualy something to the effect of “Do you want to go get lunch?’ Changing
the context makes it clear that the meal interpretation of the omitted object isin fact customary rather than
obligatory: as an exchange between a doctor and a patient, example (154) is perfectly natural.'* Similarly,
if your friend utters (155a) at an amusement park just as you get on the roller coaster, (155b) seems to be a
much more natural response than (155c¢).

(155) a It'sabad ideato eat before doing this!

14| am indebted to Dan Hardt and Jamie Henderson for this observation. Asit turns out, the very same observation can be found in
(Rizzi, 1986, footnote 6).
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b. Uhoh, I’ve been munching pretzelsall day.
c. No problem, I’ ve been munching pretzelsal day.

Salvaging the argument would require that the food referred toin (155b) be construed as ameal, aclaim that
seems untenable. So, although it is true that verbs incorporating manner do not permit implicit indefinite
objects, itisnot at al clear that the rest of Fellbaum and Kegl’s account can be made to work. In particular,
cross-category linking between verbs and nounsin the taxonomy cannot be thewhol e story, since eat accepts
implicit indefinite objects even when they are not construed as meals.

Where Kegl and Fellbaum attempt to trace the indefinite object alternation to a distinction between verb
senses in thelexicon, Rice (1988) would liketo do away with the traditional |exicon entirely. She writes:

These differentia usages|i.e., alternation between transitiveand intransitive—PsSR] do not arise
from separate lexica entries for polysemous verbs. | will suggest, instead, that elements in
thelexicon, if there is such a separate component of grammar, form natural categoriesthat are
subject to prototype effects and that many factors other than intrinsic meaning influence lexical
insertion. (p. 202)

Later she asserts:

In short, whether or not a transitive verb can omit its object . . . cannot possibly reside in the
lexicon as aproperty of certain verbs because alexicon with fixed lexical entries doesnot really
exist. Thelexicon istruly a convenient fiction . . . [Lexical] knowledgeis best thought of as
part of adynamic interconnected network that can access sound, meaning, context, and speaker
intent simultaneoudly. (p. 211)

It is not clear whether the strong form of this argument can be supported: the most suggestive evidence
presented by Rice — cases where contextual influenceslicense otherwiseillicit omissions of thedirect object
— largely coincides with Kegl and Fellbaum’s*discourse-conditioned” intransitivizations. One could claim
that these involvetraditional lexical entriestogether with pragmatically-controlled rules rather than a more
holistic system.

Regardless of how the lexicon is construed, however, Rice posits a hypothesis about conditions for
intrangitivization that is particularly interesting with regard to the hypothesis pursued in this chapter. In
additionto suggesting that averb must have a“ semantically neutral” or “basic-level” statusin order tolicense
an omitted object (echoing Kegl and Fellbaum’s observations about manner incorporation), she comments
that the omitted objects themselves tend to be interpreted as basic-leve entities, illustrating with examples
like (156):

(156) a. John smokes (* Marlboros/cigarettes/* smoking materials).
b. When he goes to Boston, John drives (*a Toyota/a car/* a vehicle).

A similar observationis made by Lehrer (1970), who distinguishesthe “deletable object” from the selection
restriction — for example, identifying the deletable object of drive as car and its selection restriction as
VEHICLE.

However, this characterization seems to me to be too strong. Examples (157) and (158) make it clear
that when these verbs omit their direct objects, the inferences are better described at a higher level.
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| Verb | Class
drink | (beverage)
drive vehi cl e)

{

eat (f ood)
read (writing)
smoke | (rol | _of _t obacco)

Table 4.2: Some verbs and their associated classes of direct objects

(157) a John smokes.
b. Ah! Therefore, John smokes cigarettes!
¢. No— he smokescigars.
(158) a. When he goesto Boston, John drives.
b. Ah! Therefore, when he goesto Boston, John drives a car.
¢. No— hedrivesavan.

The confusion arises, | think, because it is odd to use the label for a superordinate category in contexts
like (156) — afact that arises more from conversationa principles (Grice, 1975) than from inconsistency
with the expectations of the verb. (For example, saying “John drank a beverage,” impliesthat there is some
reason for being less informative than is customary about what he drank.) What isimportant is not that the
words“smoking materials’ be natural in (156a), but rather that al the direct objectsthat are natural there be
amember of that conceptual category. (The traditional superordinate categories may be too broad for this
purpose— it might be odd to utter (156b) if what John drivesto Boston is asnowplow, so perhaps the object
category inferred from drive is more along the lines of “four-wheeled passenger vehicle.”) So, athough |
would argue that basic-level categories are not the appropriate level of description, | agree that indefinite
objects can only be omitted when the intended inferences about them can be captured at an appropriate
“medium” level of abstraction.

Now, athough the selectiona preference criterion proposed in this chapter is expressed in terms of
distributions over classes, rather than single categories, the measure of selectiona association defined in
Chapter 3 produces the kind of behavior that has just been described. Table 4.2 shows severa object-drop
verbs, each together with its single most strongly associated WordNet class.® In each case, the most
strongly associated class fits intuitively as the “right level” of direct objects for the verb — a category that
would seem to contain all the direct objects one could felicitously omit, while excluding most others. For
example, writeismore closely associated with the class of written material s than subordinateslike (essay )
or superordinateslike (communi cat i on), driveis associated with vehicles rather than with cars or general
conveyances (whichwouldincludetrainsand cargo ships), and smokeisassociated with aclass that includes
the more specific cigarettes and cigars but not such non-tobacco narcotics as opium.

Thisbehavior arises naturally from the definition of selectional association between averb v andaclassc
(originally given in Chapter 3, equation 3.5):

e) = 1 clv M
Ae) = p(el)logEES

15These examples were constructed using co-occurrence statistics from the Brown Corpus.
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Consider asingle path through the taxonomy from avery specific classlike (f et t ucci ne) upward through
(t hi ng). Asyou move higher in the taxonomy, to (past a}, the superclass brings in additional objects of
eat, such as spaghetti and ravioli, and still more objects of eat are brought in by continuing on to (f ood).
As a result, moving upward in the taxonomy increases the conditional probability p(c|v) and hence the
selectional association with the verb. However, continuing further upward in the taxonomy, for instance
from {f ood} upto (subst ance), bringsin many wordslike fuel and poison that do not appear with eat. As
aresult, probability p(c) increases without a corresponding increase in p(c|v) and the score is driven back
down. Thus, as this example illustrates, the measure of selectional association tendsto prefer classesin the
taxonomy that are general, but not too general .*

4.6.3 Summary

To summarize, a number of authors have investigated factors other than object inferability that might help
determine whether a verb permitsits objectsto be omitted. These to agreat extent revolve around features
of meaning that may or may not be incorporated in to the verb, such as aspectua distinctions (whether or
not a verb phrase can be interpreted as an activity, whether or not it is inherently completive) and manner.
In severa cases (Fellbaum and Kegl, 1989; Rice, 1988) underlying taxonomic relationships have been
hypothesized among verbs and categories of their arguments in order to account for differencesin behavior.

These semantic factorsappear to account for much of thevariability not captured by strength of selectional
preference. For example, the strongest counterexamples to the selectional preference hypothesis — verbs
that select strongly but cannot omit their objects — appear to be verbs like catch, wear and say that are
difficult to interpret as activities when appearing intransitively. On inspection, at least, these aspectual
digtinctions, taken together with inferability on the basis of selectional preference, appear to provide a
categorical distinction between verbs that do and do not permit implicit objects of the indefinite variety.

It makes sense that object realization depends on how much information is available. The proposal
made here is consistent with intuitive notions about explicit mention, brevity, and clarity, such as Grice's
(1975) maxims of Quantity.!” In addition, the results, particularly in performance, are consistent with what
we aready know about other arguments. For instance, psycholinguistic experiments show that instruments
(e.g. John stabbed Bill with a knife) are mentioned less frequently when typical for the given action (Brown
and Dell, 1987), and “plausibility” of verb-argument rel ationships, often construed in probabilisticterms, is
gaining increased attention in studies of on-line syntactic processing (Carlson and Tanenhaus, 1988; Mac-
Donald, inrevision; Mauner, Tanenhaus, and Carlson, 1992; Pearlmutter and MacDonald, 1993; Tanenhaus,
Garnsey, and Boland, 1991; Trueswell, Tanenhaus, and Garnsey, 1993).

In contrast, although observations regarding aspect, manner, and taxonomy capture predictive general -
izations about which verbs will and will not participate in implicit object alternations, they do so without
providing an explanatory link between the relevant feature of meaning and the particul ar syntactic behavior
it isconnected to. Whatever deep relationship there may be between these factors and argument realization,
an explanation of that connection will have to wait a better understanding of lexical semantics as awhole.'®

18For a discussion of other probabilistic measuresand their relationship to basic levels, see (Hanson, 1990).

17“Make your contribution as informative as is required (for the current purposes of the exchange)” and “Do not make your
contribution more informative than is required.”

18] would conjecture that Grimshaw’s (1990) notion of aspectual prominence might be a useful place to start, since it provides a
direct link between aspect and argument realization.
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4.7 Thoughtson verb acquisition

4.7.1 Plaushbility considerations

The results in this chapter show that two aspects of lexical representation — selectiona constraints and
optionality of an argument — can to alarge extent be predicted on the basis of a corpus of text or transcribed
speech, together with a simple taxonomic organization of noun concepts. Given the simplicity of the
methods used here, a natural question to ask is whether the same ideas can contribute to a model of how
lexical representations of verbs are acquired by children.

A first pointin favor of such an approach istherelatively small number of assumptionsthat are required,
and the psychological plausibility of those that are indispensible. To begin with the taxonomy, itisgenerally
agreed that noun acquisition precedes verb acquisition (Nelson, 1973), and there is evidence to suggest that
observation provides reliable evidence for learning how to map noun forms to noun concepts (Gillette and
Gleitman, forthcoming). Furthermore, children at least as young as three years old can classify pictures of
objectsin the same manner as adults, at least for basic level categories such as TABLE and FISH, and sorting
objects into superordinate categories such as FURNITURE and ANIMAL reaches adult competence by around
thethird grade (Rosch et d., 1976). So, although children’staxonomic criteriamay not match those of adult
taxonomies (much less the specifics of WordNet!), it is plausibleto assume that they distinguish some form
of category membership for observed instances — for example, permitting ared apple and a green apple (or
abunch of green beans, or a cookie) to be counted as instances of some class.*®

The second element of the approach pursued here was observation of a sample of verb-argument co-
occurrences, whichwould seem torequireaprocedurefor identifyingtheargument. Thereisan accumulating
body of evidence suggesting that children may be able to construct a skeletal parse on the basis of prosodic
information (Gleitman et a., 1988; Kemler Nelson et al., 1989; Kemler Nelson, 1989; Lederer and Kelly,
1991), which could provide the basis for such a procedure, and it appears that the statistical methods
demonstrated here are tolerant enough of noiseto make do with very little parse information. For example,
in the experiments done using data from CHILDES (and in earlier pil ot experiments using thetagged Brown
Corpus, done before the parses in the Penn Treebank became available), | found that a very unsophisticated
object-finding procedure — little more than “select the first noun to the right” — yielded a noisy sample,
but one for which the estimates of selectional preference and selectiona association nonetheless yielded
sensible results.

Given these assumptions — that the child can map noun forms to noun concepts, organizes noun
concepts taxonomically, and can identify co-occurrences of verbs with noun arguments — the formalization
of selectional preference proposed in Chapter 3 can be interpreted as a psycholinguistic model, and the
algorithms involved in computing selectional preference from distributional evidence can be viewed as
congtitutingamodel of how such preferences are acquired. Furthermore, the central linguistic result of this
chapter — that selectiona preference is a predictor of object omissibility — represents a starting point for
investigating how that aspect of lexical representation is acquired. The present study demonstrated that the
predictive information is present in the child’s input (represented using parental speech in CHILDES); the
next necessary steps would be, first, to show that children attend to thisinformation, and, second, to show
that they actually make use of it.

1Care is needed to avoid circularity here, since in identifying class relationships to a verb like eat the relevant generalization of
apples and cookies might turn out to be “things that you eat.” Crucially, however, that characterization rests on the concept of eating,
i.e. something like “things that you put in your mouth, chew, and swallow, etc.” and not “things that co-occur with the word-form
feat/.”
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/eat/ \ /apple/

/soup/

EAT

HOLD

Figure 4.3: Schematic view of the verb mapping problem

4.7.2 Relation to bootstrapping

In addition to addressing the question of optiona arguments, the model of selectiona preference proposed
here may be able to provide a necessary element in the general discussion of how verb meanings are
acquired. Figure 4.3 illustrates one interpretation of the scenario confronting the language learner. At the
top are word forms (represented simply as words within slashes) and at the bottom are word meanings or
concepts (represented as words in uppercase). The child is assumed to possess a reliable mapping from
familiar nounsto the conceptsthey represent, hence the arrows from noun formsto noun meanings. Dashed
boxesrepresent higher-level concept classes — such as FOOD or SMALL SOLID OBJECT — which thechild has
acquired on the basis of observed similarities of form, function, or behavior. Finally, solid lines represent
observed argument co-occurrences: at thetop of thefigure are observed co-occurrences between verb forms
and nominal arguments (with respect to a particular argument position), and at the bottom are links between
verb concepts and the classes containing noun concepts that have participated in the event (in a particular
thematic role). Of course, syntactic arguments must somehow be mapped to thematic roles, but thisis an
issue that | will not attempt to address in detail. For the moment let us simply assume that the connection
can be made via (universal) linking rules of the kind discussed in (Pinker, 1989).

Notably missing from the diagram is a connection between verb forms and verb meanings — filling in
thislink isone of the major problemsthelearner must solve.?° In fact, there are really two distinct problems
that need to be considered. The first concerns the identification of a particular verb with a “syntactically
relevant semantic subclass’ of verbs (Pinker, 1989, p. 107); that is, identifying aspects of averb’s meaning
that concern its argument-taking propertiesand the kindsof syntactic aternationsin which it can participate.
The second problem has to do with identifying aspects of verb meaning that do not concern argument
realization — for example, acquiring distinct meanings for verbs like melt and boil, or dide and roll, which
are indistinguishable from the perspective of grammatical behavior. Pinker separates the two using the

2 Assuming that the verb concepts already exist (corresponding to a process Pinker (1989)describes as “ event-category labeling”)
is undoubtedly too simplistic; a more complete model would also have to provide for the generation of hypotheses about what event
conceptsto includein thelower left-hand corner of the figure.
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evocative term “color-blind conservatism”: the real-world color of a verb’s argument will not be relevant
for the first problem, though such cognitive distinctions may be crucia in solving the second one.

The first problem has been a source of some controversy, primarily concerning the sources of evidence
availableto the child language learner. One plausible hypothesisisthat the grammatically relevant features
of verb meaning can be learned by observing the co-occurrence of verb forms and events in the world; for
example, an utterance containing /eat/ coinciding with the activity of eating something. Such a processis
limited, however, by ambiguity in the interpretation of events: a child hearing the word form /pour/ as a
glassisbeing filled with water from apitcher will not know whether to associate /pour/ with pouring or with
filling (or with holding the glass, tilting the pitcher, etc.). Pinker suggests that cross-situational analysis can
be used to resolve the ambiguity:

Theambiguity of what averb meansin asinglesituation, however, iseliminated by the behavior
across situations. Though a given instance of filling acup may be ambiguous between pouring
and filling, pour but not fill will eventually be used when water is putin aglass up to the halfway
mark, and fill but not pour will eventually be used when a glass is left on a windowsill in a
rainstorm long enough to make it full. (p. 254)

Such a solution is intuitively appealing, and gains credibility from empirica evidence (see references
cited in (Pinker, 1989)) and from computational experiments showing that cross-situational learning can be
efficiently implemented and successfully appliedin restricted computational settings(Siskind, 1992; Siskind,
1993b). However, LilaGleitmanand colleagues(Landau and Gleitman, 1985; Gleitmanet al ., 1988; Lederer,
1993) have argued that observation alone does not provide enough evidence to map verb forms to verb
meanings, especially in cases where the described event is closed to observation (i.e. events described by
mental verbssuch asknow and believe), or wherean event supportshypothesized interpretationsfrommultiple
perspectives, asisthecasewith chasing events (which al so contain fleeing), buying events (which a so contain
salling), and so forth. They take thisto mean that learning via observation must be supported by additional
congtraints, and suggest that such constraints are provided by evidence about syntactic subcategorization
availableintheutterance. Evidencefor thisview comesfrom experiments showing that adults perform poorly
on tasks of guessing the verb given an observed scene (Lederer, Gleitman, and Gleitman, forthcoming), that
the syntactic context in which a novel verb isfirst presented influences children’sinterpretation of a scene
described using that verb (Fisher et a., 1994), and that prosodic information in utterances can provide some
phrase structure information and that children attend to such cues (Lederer and Kdlly, 1991; Jusczyk et al.,
1992).

An unresolved difficulty in these discussionsisthe absence of a precise characterization of what it means
for aform of context to constrain hypotheses about verb meaning. For example, a useful indication of how
congtraining a context is, utilized by Lederer et al. (forthcoming) and Gillete and Gleitman (forthcoming),
is the percentage of “correct” responses given by subjects — that is, responses matching the verb uttered
during the scene.?* Of course, simply measuring percent correct can be misleading: if the target verb was
call and most of the incorrect responses to a scene were talk, surely the context should be judged more
informative than a case where the error rate is the same but the incorrect responses are evenly distributed
over awide variety of other verbs. One way to avoid this difficulty, employed by the above-cited authors,
is to consider not the absolute percent correct, but the frequency with which incorrect guesses are in the

2lscenes were presented as videotape clips with the sound turned off.
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“semantic neighborhood” of the target verb. (See (Fisher, Gleitman, and Gleitman, 1991) for detailed
discussion of how semantic neighborhoods are determined.)

The methods applied in this chapter suggest an aternative (or better, additional) measure of contextual
predictiveness, namely the information-theoretic measure of relative entropy. That is, if Y is a random
variable ranging over possible instances of a particular kind of context, and X ranges over events being
predicted, then the predictability of that form of context can be measured by

D(p)llp) = 3 paly)log Ao,
~ p()
Applied to the situation just described, Y might range over videotaped scenes, and X over subjects verb
responses. As discussed in Chapter 3, the relative entropy between aprior distribution p(z) and a posterior
distribution p(z|y) can be interpreted as how costly it would be, on average, to ignore the conditioning
context y. Thiswould seem to be precisely the kind of measure needed in order to evaluate the extent to
which aform of context reduces the space of hypotheses about verb meanings.

Furthermore, using relative entropy makes it possible to consider different forms of context, and com-
binationsof contexts, in a single unified framework where predictability is measured in bits of information.
The solerequirement of such aframework isthat it be possibleto arrive a probability estimates for the con-
texts of interest. Where those are observed scenes, estimates can come from responses generated by human
subjects, asin (Gillette and Gleitman, forthcoming; Fisher et a., 1994); where they are syntactic contexts
such as subcategorization frames, large corpus resources such as the Penn Treebank are an alternative to
experimenta data.

Other forms of context can be considered, as well. In particular, the moddl in Figure 4.3 suggests
that constraints on hypotheses about an unknown verb’s meaning can be derived from knowledge about
characteristic participants in events described by the verb — even if those events themselves are not
witnessed by the learner. To consider an example, suppose that a learner is attempting to figure out what
eventstheverb form/eat/ denotes. Many eventsinvolvingeating a so invol vebiting— asituation anal ogous
to the overlap between pour and fill discussed earlier. Cross-situational anaysis offers one solution: /bite/
will be uttered in some observed situations involving biting but not eating. However, argument/partici pant
rel ationships reduce the reliance of such a strategy on the observation of scenes involving these actions. a
learner who hears references to biting such as (159) will have received evidence that it is possible to bite
thingsyou don't typically eat, even if the correct mapping of /bite/ isis still amystery.

(159) a Betchal bite your nose off if you keep screaming at me.
b. “Why do you want to bitethat cat?’ [Read from a book]

Such predictiveinformationisknown to be useful: Lederer et al. (forthcoming) have shown that in adult
verb-guessing tasks, identifying the participantsin an event provides useful predictive information, even if
the roles are obscured by listing the participantsin alphabetical order. Furthermore, Gropen (1992; 1993)
has argued that children’s categorization of objects in the world plays an important role in acquiring the
meanings of polysemous verbs (i.e. verbs with multiple, related meanings, such as spread: spreading pots
and panson thefloor vs. spreading butter on toast). Gropen pointsout that distinguishing such meaningsis
crucia for models of cross-situational analysis, since otherwise critical elements of meaning— e.g. forceful
contact for the spreading butter sense of spread — will be true in some events and false in others, leading
to their exclusion as core properties of the verb.
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Themodel of selectional rel ationshipsproposed in Chapter 3 and applied here represents one component
in an acquisition modd that takes such information into account. Although such a model is not yet
fully developed, most of the necessary pieces are in place: corpus resources like the Penn Treebank and
CHILDES provide links between the word forms for verbs and their nominal arguments, and WordNet
provides a mapping from noun forms to noun meanings and the superordinate concepts of which they are a
part.

Another possible role for the present model of selectiona relationships concerns elements of verb
meaning that are not grammatically relevant, elements that are are usualy set aside under the heading of
cognitivedistinctionsby Pinker, Gleitman, Grimshaw, and others. For example, Pinker (p. 259) suggests a
way in which achild might infer from (160) that the meaning of the verb encodes the manner of motion of
the ball,

(160) The ball glipped into the room.
but is careful to distinguishthis from inferring what the relevant manner of motionis. He writes:

A grammar can “se€’ the difference between smearing and pouring, or between shouting and
telling . . . because dl of these distinctions can be stated in terms of the privileged semantic
vocabulary thatisavailabletoit. . . . However, agrammar cannot “ see” thedifference between
smearing and smudging, between shouting and whispering, between diding and rolling, or
between coating and covering. (p. 277)

In many cases, e ements of meaning such as manner of motion involve properties of participantsin the
event — for example, rolling is associated with roundness. Therefore one could imagine that selectiona
rel ationships might hel p reduce the space of hypotheses about what particular dimension of meaning averb
encodes. Although the experiments done here are not particularly well suited to demonstrating this, since
neither WordNet nor the corpora used make it easy to isolatethe relevant properties, the data gathered so far
provideoneor two suggestive examples. Using co-occurrence frequenciesfromthe CHILDESdata, theclass
of objects most strongly selected for by roll is (r ound_shape}; oninspection of the lexical co-occurrence
data, it turns out that the two most frequent direct objects of roll are ball and barrel. Regarding whispering
and shouting, objects of shout in the Brown Corpus include abuse, bellicosity, and cry; objects of whisper
include secret and explanation. Browsing Roget’s thesaurus leads quickly to the discovery that secret is
a member of categories 528 (Conceament) and 522 (Interpretation), of which whisper and explanation
respectively are members; shout and cry are both members of category 411 (Cry; vociferation). So, athough
observation of manner is still the most likely clue to the distinction between shouting and whispering, the
nature of their objects (observed cross-situationally) also appears to provide some collateral evidence.

In sum, selectiona relationships represent a source of information likely to be used by children in
acquiring both semantically relevant and cognitively relevant aspects of verb meaning. Although ultimately
psycholinguistic methods must bear the burden of demonstrating what forms of evidence children do and do
not use, mathematical models of the kind proposed here serve an important purpose: they serve as testing
ground for existing proposals, and provide insights that might not be available without first adopting a
computationa frame of mind.



Chapter 5

Semantic Classes and Syntactic
Ambiguity

Inthischapter, | investigatea second application of themodel proposed in Chapter 3, exploring
the use of the implemented model as a statistical method for resolving syntactic ambiguity in
processing unconstrained text. | argue that a number of “ every way ambiguous’ constructions
— in particular, prepositional phrase attachment, coordination, and hominal compounds —
can be resolved by appealing to conceptual relationships such as selectional preference and
semantic similarity, and that class-based, information-theoretic formalizations of these notions
provide a practical way to do so.

51 Overview

One of the most pressing problems facing large-scale natura language applications is the explosion of
analyses permitted by the grammar. Most parsers designed to cover large subsets of English produce an
uncomfortably large number of analyses for even simple sentences; for example, using the Xtag system
(Paroubek, Schabes, and Joshi, 1992), a sentence like (161a) will have on the order of ten to fifteen parses,
including two analyses in which Max meeting Ed isinterpreted as anomina compound.!

(161) a | saw the person that was annoyed by Max meeting Ed.
b. Ed identifies himsdf in terms of who he's met with today. He had a meeting with Max this
morning so right now he's calling himself Max meeting Ed.

Given only the grammar, such an analysis has to be permitted in order to cover cases like (161b), which,
contrived though it may be, illustrates a possible way in which Max meeting Ed could be interpreted as
a compound of three nouns. Church and Patil (1982) point out that perfectly natural sentences can yield
“hundreds, perhaps thousands’ of parse trees. Furthermore, they show that the most serious ambiguity
problems are associated with some of the most pervasive constructions in natural language, including
coordinations, prepositional phrase attachment, and nominal compounds.

1Thisistrue even when part-of-speech tagging is donefirst, since there is a strong tendency to prefer noun rather than verb tagsfor
gerunds. | am grateful to Beth Anne Hockey and Christy Doran for pointing out this example.
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Church and Patil suggest that until it has more useful constraints to resolve ambiguities, a parser
can do little better than to efficiently record all the possible attachments and move on. Acquiring such
congtraints and using them is the subject of this chapter: | argue that syntactic choices can to a great extent
be constrained by such semantic/conceptual relationships as lexical (selectional) preference and semantic
similarity. | substantiatetheclaim by showing that class-based, information-theoreticformalizationsof these
rel ationshipshel p in making accurate disambiguation decisions.

The chapter is structured asfollows: | begin in Section 5.2 with abrief summary of the major families of
strategies that have been proposed for resolving syntactic ambiguity. In Section 5.3, | consider a particular
instance of syntactic ambiguity involving coordination and nominal compounds, developing a collection
of disambiguation strategies that take advantage of different cues to the correct structure. The strategies
are evaluated in a disambiguation experiment using training and test material from the Penn Treebank. In
Section 5.4, | take asimilar approach to the problem of prepositional phrase attachment ambiguity, evaluating
theresultsin acomputational experiment and comparing the method to other similar methodsthat have been
proposed.? Finally, in Section 5.5, | briefly consider how techniques of this kind might be applied to the
problem of disambiguating nominal compounds.

5.2 Parsing Preference Strategies

Thereisalong history of research on the use of parse preference strategiesfor resol ving syntactic ambiguity,
aliteraturetoo large to review here. The major approaches can briefly be summarized as follows:

e Structura strategies. The literature on parsing includes a number of strategies based on syntactic
structure that have been argued to account for human performance — and human errors — on
various forms of ambiguity. Among the most frequently cited are right association (Kimball, 1973),
a preference for constituents to attach to the lowest node to the right in the partial parse tree, and
minimal attachment (Frazier, 1979), a preference for choosing the attachment that would result in a
parsetreewith thefewest nodes. Crucially, such strategies depend only on configurationswithin parse
trees, and not on extra-syntactic factors or even the identity of the lexical itemsinvolved.

o Referentia strategies. Mark Steedman and colleagues (Crain and Steedman, 1985; Altmann and
Steedman, 1988) have demonstrated effects of referentia context on human performance in resolving
syntactic ambiguities. They show that sentences usually inducing garden-path effects can often
be interpreted naturally in contexts supporting the non-obvious reading, and that sentences usualy
interpreted without difficulty can be turned into garden paths by appropriate manipul ations of context.
For example, the context set up by (162a) helps override the the usua garden-path effect created
by (162b).

(162) a. Two men on horseback decided to have arace. One man took his horse through the meadow,
and the other chose a shorter route near the barn.
b. The horseraced past the barn fell.

e Lexical preference strategies. Lexical items often have typica kinds of phrases with which they
associate — for example, the following dictionary entriesillustrate a lexical association between the

2Thework in this chapter on prepositional phrase attachment was done in collaboration with Marti Hearst.
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verb ask and prepositional phrasesinvolvingof or for, between put and locative prepositiona phrases,
and between win and prepositional phrases involving for.

ask: To request of or for; solicit.
put: To placein aspecified location; set.

win: To receive as areward for performance.

Lexica preferences of this kind can be used in resolving ambiguous attachments, by choosing to
attach a constituent at the site where preferences are best satisfied. Approaches along these lines have
been suggested by (Ford, Bresnan, and Kaplan, 1982; Wilks, Huang, and Fass, 1985; Dahlgren and
McDowell, 1986; Jensen and Binot, 1987).

An empirical study of these strategies by (Whittemore, Ferrara, and Brunner, 1990) shows that lexical
preference plays a predominant role in predicting prepositional phrase attachments: they observe that in
naturally-occurring data, lexical preferences (e.g., arrive at, flight to) provide more reliable attachment
predictionsthan structural strategies, though referential success isaso a contributing factor. Unfortunately,
it seems clear that, outside of restricted domains, hand-encoding of preference rules will not suffice for
unconstrained text. Information gleaned from dictionaries may provide a solution, but the problem of how
to weight and combine preferences remains unsolved.

A more practical alternative may be the automated acquisition of lexical preference relationshipsusing
large corpora, atopic investigated by (Hindle and Rooth, 1991; Hindle and Rooth, 1993; Weischedel et dl.,
1989; Weischedd et al., 1991; Basili, Pazienza, and Velardi, 1991; Grishman and Sterling, 1992). Common
to these acquisition methods is the use of a robust syntactic analyzer to obtain lexica co-occurrences of
interest, together with some quantitative measure of association. Several of these investigations have a so
made use of relationships based on semantic word classes. Since many of these approaches have been
applied to the problem of prepositional phrase attachment, | will defer a more detailed discussion until the
end of Section 5.4.

5.3 Coordination

5.3.1 Cuestothecorrect analyss

Coordinationisoneof themost frequently occurring phenomenain natural text, and ambiguouscoordinations
are acommon source of parsing difficulty. In thisstudy, | investigated a particular subset of coordinations,
noun phrase conjunctionsof the form noun1 and noun2 noun3.® Examples of these includethe following:

(163) a a(bank and warehouse) guard
b. a(policeman) and (park guard)

(164) a Johnisa (businessand marketing) major
b. Johnisan (athlete) and (economics major)

Such structures admit two analyses, onein which nounl and noun2 are the two heads being conjoined (163a)
and one in which the conjoined heads are nounl and noun3 (163b). A natura language system that

3All computational experiments in this chapter were performed using the earlier method for frequency estimation described in
Appendix A.
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analyzed (163b) according the structure in (163a) would be led to conclude that the noun phrase referred
to someone who guards parks and policemen; similarly, analyzing (1644a) according to the model in (164b)
would lead one to conclude that John is a business. In each case, the “incorrect” analysisis one that is
licensed by the grammar and perhaps even by knowledge about what is possiblein theworld, but constitutes
at best a secondary reading.

Aspointed out by Kurohashi and Nagao (1992), similarity of form and similarity of meaning areimportant
cuesto conjoinability. In English, similarity of formisto agreat extent captured by agreement in number:

(165) a severa businessand university groups
b. several businesses and university groups

Semantic similarity of the conjoined heads al so appears to play an important role:

(166) a. atelevision and radio personality
b. apsychologist and sex researcher

Here, it isintuitively obviousthat the correct structureis connected with the fact that televisions and radios
have more in common than televisionsand personalities, and that psychol ogistsand researchers form amore
natural category than psychologistsand sex.

Finally, for this particular construction, the appropriateness of noun-noun modification for nounl and
noun3isrelevant:

(167) a mail and securities fraud
b. corn and peanut butter

In general, phrases conjoining nounl and noun2 are analyzed distributively, so that both are interpreted as
modifying noun3. In (167b) the noun-noun compound corn butter is rather odd, providing a cue that that
structureisinappropriate here.

5.3.2 Approximatingthe cues
Similarity of Form

In order to take advantage of the cues just described, it is hecessary to approximate them in some computa-
tionally tractable way.

The first cue, similarity of form, is not difficult to approximate, since accurate reduction of nouns to
their root form iswell within the reach of automated methods. | reduced nounsto their root forms by doing
a simple morphologica analysis of suffixes in conjunction with lexical information from WordNet. Given
noun, the reduction procedure had the following steps:

1. Seeif nounisaplural on WordNet’slist of exceptiona cases for noun pluralization (e.g. oxen, 0x); if
S0, return the corresponding singular form.

2. For each suffix replacement rule old — new,

(@ If oldisasuffix of noun, strip it off and replace it with new to get noun’

(b) If noun’ isanouninWordNet, halt and return it as the root form.

3. If no suffix-replacement rule applied, return noun itself asthe root form.
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| Old | New | Example |
Ss Ss glass glass
S € bucks buck
s |'s glasses glass
Xes | x boxes box
zes |z quizzes | quiz
ches | ch matches | match
shes | sh wishes wish
ies |y bodies body
es e vases vase
€s € tomatoes | tomato

Table 5.1: Suffix rules for reducing nounsto root form.

Table 5.1 lists the suffix replacement rules, (taken from WordNet 1.2 source code and included here
with permission of the author); ¢ indicates the empty string. Given the algorithm just described, a noun
can be considered plura if it differs from its root form, and singular otherwise. Naturally there are some
unclear cases (e.g. sheep will unconditionally belabelled singular), but in general the simple suffix mappings,
together with WordNet's large vocabulary and exceptionslist, yield excellent results.

Similarity of Meaning

Many factors influence judgements of semantic similarity between two nouns; see, for example, (Cruse,
1986, Chapter 12) for an extensive discussion of considerations entering into judgements of synonymy.
In addition, as discussed in Chapter 2, a great many researchers are investigating techniques for deriving
measures of word similarity onthe basis of distributional behavior. Inthe present investigation, | have opted
to use taxonomic relationships in WordNet as the basis for an information-theoretic similarity measure.
Likethe formalization of selectional preference proposed in Chapter 3, this has the advantage of combining
inductive, quantitative methods with an existing broad-coverage source of lexical knowledge. Furthermore,
to the extent that relationshipsin WordNet can be given a formal semantic interpretation (see Chapter 2,
Section 2.4.1), the similarity measure proposed here can be viewed as both mathematically and semantically
well founded.

Before considering word similarity, it is helpful to consider the notion of class similarity in ataxonomy
like WordNet. Intuitively, two noun classes in an I1S-A taxonomy should be considered similar when thereis
a specific class that subsumes them both — if you have to travel very high in the taxonomy to find a class
that subsumes both classes, in the extreme case al the way to the top, then they cannot have al that much
in common. For example, (ni ckel ) and (di me) are both immediately subsumed by (coi n), whereas the
most specific superclass that (ni ckel } and (nor t gage ) shareis{possessi on).

The difficulty, of course, is how to measure “specific.” Simply counting 1S-A linksin the taxonomy can
be mideading, since a singlelink can represent a fine-grained distinction in one part of the taxonomy (e.g.
(zebra) 1S-A (equi ne)) and a very large distinction elsewhere (e.g. (car ci nogen} I1S-A (subst ance)).
Counting other kinds of taxonomic links can be even more problematic; for example, (Morris and Hirgt,
1991) point out that unbridled transitivity leads to spurious relatedness judgements through chains like
{ cow,sheep,wool ,scarf,boots hat,snow} .
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‘ Classc Iogwlc)
(coi n, 3566679) 1351
(coin, 3566477) 12.52
(cash, 3566144) 12.45
(currency, 3565780) 11.69
(nmoney, 3565439) 11.27
(tender, 3562119) 11.27
(medi umof _exchange, 3561702) 1121
(asset, 3552852) 9.71
(possessi on, 11572) 8.17

Table 5.2: Superclasses for (nickel, 3567117) and (dime, 3567068)

An dternative to counting links is to consider the information content of a class as a way to measure
its specificity. Information content of a class is defined in the standard way as negative the log likelihood,
or log ch) The simplest way to compute similarity of two classes using this value would be to find the
superclass that maximizes information content; that is, to define a similarity measure as follows:

Smere) = maxflog ] (5.1

p(ei)
where {¢;} isthe set of classes dominating both ¢; and ¢,, and the similarity is set to zero if that set is
empty. For example, classes (ni ckel ) (inthe sense of acoin) and (nort gage ) have only the superclass
(possessi on) in common, with an information content of 8.17; classes (ni ckel ) and (di ne) have al the
common superclasses listed in Table 5.2, the most specific of which yieldsa similarity score of 13.51.4
Onenatural way to measure word similarity isto consider all the classes to which aword bel ongs— that
is, given two houns n; and n,, to compute their similarity as

1
p(ci) 5 (52

where {¢; } isthe set of dl classes containing both n; and ns.

sm(ny, nz) = nlax[log
2

Although thereisnot yet a standard way to evaluate computational measures of semantic similarity, one
reasonable way to judge would seem to be agreement with human subjects on some relevant task. In a
ratings task used by Miller and Charles (1991), subjects were given 30 pairs of nouns that were chosen to
cover high, intermediate, and low levels of similarity (as determined using a previous study), and asked to
rate“similarity of meaning” for each pair on ascale from 0 (no similarity) to 4 (perfect synonymy). Inorder
to get abaseline against which to evauate the performance of the information-theoretic similarity measure,
| replicated Miller and Charles's experiment, giving ten subjects the same 30 noun pairs, five in arandom
order and the other five in the same random order reversed. The subjectswereall computer science graduate
students or postdocs, and the instructions were exactly the same as used by Miller and Charles, the main
difference being that in this replication the subjects completed the questionnaire by eectronic mail (though
they were instructed to complete the whol e thing in a single uninterrupted sitting).

4Class probabilitiesin this case were estimated using a sample of nouns from AP newswire.
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[ nl | n2 | sm(n1,n2) | class |
tobacco | alcohol 10.84 (drug, 1062813)
tobacco | sugar 7.76 (subst ance, 5941)
tobacco | horse 11.85 | (narcotic, 1557422)

Table 5.3: Similarity with tobacco computed by maximizing information

The data from the experiment are given in Appendix C. On average, the correlation between the mean
ratings in Miller and Charles's study and the the ratings of a subject in my replication was » = 0.88,
with a standard deviation of 0.08 (inter-subject correlation in the replication, estimated using leaving-one-
out resampling (Weiss and Kulikowski, 1991), was » = .90, stdev = 0.07). | evaluated the measure in
equation (5.2) by treating it as if it were a subject in the same experiment. Owing to nouns missing from
WordNet 1.2, it was possible to arrive at arating for only 28 of the 30 pairs (93.3%); for that subset there
was a correlation of » = .77 with Miller and Charles's means.® The average human subject correlation
for those 28 stimuli was » = 0.88. As compared against that baseline, it seems clear that athough there
is certainly room for improvement, the information-based similarity measure is an entirely reasonable first
approximation for human similarity judgements.

A problem with the similarity measure in equation (5.2) is that it sometimes produces spuriously high
similarity measures for words on the basis of inappropriate word senses. For example, Table 5.3 showsthe
word similarity for several words with tobacco. Tobacco and alcohol are similar, both being drugs, and
tobacco and sugar are similar, though less so, since both can be classified as substances. The problem arises,
however, in the similarity rating for tobacco with horse: the word horse can be used as a dang term for
heroin, and so the similarity rating is maximized when the two words are both categorized as narcotics. This
iscontrary to intuition.

The experimental evaluation using Miller and Charles's study suggests that cases like thisare relatively
rare. However, the example illustratesamore general concern: in measuring similarity between words, it is
really the rel ationship among word senses that matters, and a similarity measure should be able to take this
into account.

The most straightforward way to do so isto consider all classes to which both nouns belong rather than
taking just the single maximally informative class. This suggests redefining class similarity as follows:

sm(cy,c2) = Y afci)[log Wi)] (5.3)

i

where {c; } isthe set of classes dominating both ¢ and c», as before, and ), a(c;) = 1. This measure of
similarity takes more information into account than the previous one: rather than relying on the single class
with maximum information content, it allows each class to contribute information content according to the
valueof a(¢; ). Intuitively, these o values measure relevance — for example, a(({nar cot i ¢ }) might below
in general usage but high in the context of a newspaper article about drug dealers.

5Class probabilitiesin this experiment were estimated using noun frequenciesin the Brown corpus.
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Equation (5.3) leaves « to be specified externally — by aword sense di sambiguati on al gorithm, perhaps,
or by whatever other means are available. Noticethat if «(c;) isfixed at 1 for the single ¢; maximizing
log p(—i) and at Ofor ¢;, j # 4, then equation (5.3) simply reduces to the “global” measure in equation (5.1).

Appropriateness of noun-noun modification

Judging the “goodness of fit” between a modifier (n,,) and ahead (n;) is not unlike judging the goodness
of fit between a verb and its object — in both cases, the judgement can be made in terms of selectional
association between a selecting word and a class of nouns being selected for. In the case of nomina
modification, since both head and modifier are nouns, there are two selectional relationships that can be
considered: selection of the modifier for the head, and selection of the head for the modifier. That is, for a
particular class ¢;, containing the head, we can define
P(chlnnm) log B2 L)
plelnm) °

Ec p(c|nm) |Og W

A(nm —cp) = (54)

Correspondingly, for aparticular class ¢,,, containing the nominal modifier,

cm|np)lo Blem|nn)
Alem —np) = Plemnn) 100 o6, (5.5)

3. Plelns) log P

The “goodness’ of a particular noun-noun compound n,,, n; can be evauated by examining the strength
of selectional association between modifier and head, and vice versa. The simplest way to do so isto see
whether in either case selectional association exceeds a threshold, . By inspection, 7 = 2.0 seemstobe a
reasonable value for thisthreshold.

Consider, for example, the ambiguous coordinationsin (168):

(168) a They bought a new computer and tel ephone network for the office.
b. They bought a new computer and water cooler for the office.

Selectional associ ationindicatesthat computer network i sareasonablenominal compound, sinceA({conput er , 1277690) —
network) = 2.2, A(computer — (syst em 278118)) = 2.56, network € (syst em 278118}, but that com-
puter cooler isnot, since A(c < cooler) < 2.0 for dl classes ¢ containing computer; A(computer — ¢) <
2.0for al ¢ containing cooler.

It is worth repeating the observation from Chapter 3 that selectiona association between modifiers
and heads accomplishes a limited form of word-sense disambiguation. For example, consider the con-
straintsthat the modifier places on the head in the compound newspaper article: the selectional association
A(newspaper — (news, 2298043)) = 2.08, whereas A(newspaper — (f uncti on_word, 2216900)) =
0.55, in effect showing that in the context of being modified by newspaper, the “news’ sense of ar-
ticle is more relevant than its grammatica sense. Head-modifier constraints behave the same way:
A((materi al , 3886012) — article) = 0.95 and A({press, 2200204) — article) = 2.27, where
(pr ess, 2200204} is the WordNet class glossed as “printed matter in the form of newspapers or mag-
azines.” Thus as a nomina modifier for article, the word newspaper is better construed as printed matter
than as akind of physical material.
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5.3.3 Experiment 1

| investigated the roles of the various cues to coordination by conducting a disambiguation experiment using
the definitionsjust discussed. Two sets of 100 noun phrases of the form [NP hounl and noun2 noun3] were
extracted from the Wall Street Journal (WSJ) corpusin the Penn Treebank and disambiguated by hand, with
one set to be used for development and the other for testing.® A set of simple transformations was applied
to al WSJ data, including the mapping of al proper names to the token someone, the expansion of month
abbreviations, and the reduction of al nounsto their root forms.

Similarity of form was determined as described above, and similarity of meaning was determined
“globally” as in equation (5.2) using noun class probabilities estimated from a sample of approximately
800,000 noun occurrences in Associated Press newswire stories.” For the purpose of determining semantic
similarity, nouns not in WordNet were treated as instances of the class (t hi ng). Appropriateness of noun-
noun modification was determined as described above in equations (5.4) and (5.5), with co-occurrence
frequencies calculated using a sample of approximately 15,000 noun-noun compounds extracted from the
WSJ corpus. (This sample did not include the test data.)

Each of the three sources of information — form similarity, meaning similarity, and modification
rel ationships— was used alone as a disambiguation strategy, as follows:

e Form:

— |f nounl and noun2 match in number
and nounl and noun3 do not
then conjoin hounl and noun2;

— if nounl and noun3 match in number
and nounl and noun2 do not
then conjoin hounl and noun3;

— otherwise remain undecided.
e Meaning:
— If sim(nounl,noun2) > sim(nounl,noun3)

then conjoin hounl and noun2;

— if sm(nouni,noun3) > sim(nounl,noun2)
then conjoin hounl and noun3;

— otherwise remain undecided.
o Modification:

— If A(nounl — noun3) > 7, athreshold, or
if A(nounl — noun3) >,
then conjoin hounl and noun3;

— If A(nounl — noun3) < o and A(nounl — noun3) < o
then conjoin hounl and noun2;

6Hand disambiguation was necessary because the Penn Treebank does not encode NP-internal structure. These phrases were
disambiguated using the full sentence in which they occurred, plusthe previous and following sentence, as context.
7| am grateful to Donald Hindle for making these data available.
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— otherwise remain undecided.®

In addition, | investigated severa methods for combining the three sources of information. These
included:

e “Backing off”
Usethe form strategy if not undecided;
otherwise use the modification strategy if not undecided;
otherwise use the meaning strategy if not undecided;
otherwise remain undecided.

e Voting
Tally the votes of thethreeindividua strategies;
use the majority, if thereisone;
otherwise remain undecided.

e Regression
Represent training instances as vectors of attributes;
represent the two bracketingsas-1 and 1;
perform alinear regression;
classify test instances using the regression equation.

e Decisiontree
Represent training instances as vectors of attributes;
represent the two bracketings as classes;
construct a decision tree classifier;
classify test instances using the tree.

The training set contained a bias in favor of conjoining nounl and noun2, so a structural “default”
strategy — always choosing that bracketing — was used as a baseline. The results were as follows:

| STRATEGY | COVERAGE (%) | ACCURACY (%) |

| Default | 1000 | 66.0 |
Form 53.0 90.6
Modification 75.0 69.3
Meaning 66.0 71.2
Backing off 95.0 811
Voting 89.0 78.7
Regression 100.0 79.0
ID3 Tree 100.0 80.0

Not surprisingly, theindividual strategies perform reasonably well on the instances they can classify, but
coverage is poor; the strategy based on similarity of form is highly accurate, but arrives at an answer only
half thetime. Of the combined strategies, the“backing off” approach succeedsin answering 95% of thetime
and achieving 81.1% accuracy — a reduction of 44.4% in the baseline error rate. Although this confirms
that there is useful predictive power in the meaning and modification strategies, a caveat isin order: this

8Thresholds+ and o were fixed before evaluating the test data.
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reduction in error may not be a thoroughly convincing demonstration of effectiveness since, on the basis of
the above numbers, backing off from form to the default strategy could theoretically be expected to have an
84% accuracy at 100% coverage. This concern was addressed by the experiment that follows.

534 Experiment 2

In order to better evaluate bottom-line performance, | investigated the disambiguation of more complex
coordinations of the form [NP nounl1 noun2 and noun3 noun4], which permit five possible bracketings:

(169) a freshman ((business and marketing) major)
b. (food (handling and storage)) procedures
c. ((mail fraud) and bribery) charges
d. Clorets(gum and (breath mints))
e. (baby food) and (puppy chow)

These bracketings comprisetwo groups, thosein which the conjoi ned heads noun2 and noun3 (a—) and those
in which the conjoined heads are noun2 and noun4 (d—€). Rather than tackling the five-way disambiguation
problem immediately, | used an experimental task of classifying a noun phrase as belonging to one of these
two groups, thus providing a closer parallel to Experiment 1.

| examined three classification strategies. First, | used the form-based strategy described above. Second,
asbefore, | used astrategy based on semantic similarity; thistime, however, selectional association was used
to determine the «; in equation (5.3), incorporating modifier-head rel ationshipsinto the semantic similarity
strategy. That is, given nounl noun2 and noun3 nound, the similarity of noun2 and noun3 was calculated as

sm(noun2, noun3) = Za(ci)[log p(l )], (5.6)
- C;
where {¢; } isthe set of dl classes containing both noun2 and noun3, and
B A(e; — nound) (57)

aler) = >, A(cj —nound)’

Notice that this similarity calculation takes advantage of more information than the “global” similarity.
Intuitively, equation (5.6) computes the similarity of the two nouns in the context of being modifiers to
nound, where therole of context is determined in equation (5.7) on the basis of selectiona association.

Similarly, in calculating the similarity between noun2 and noun4, it was possible to take advantage of
the additional information provided by noun3:

sm(noun2, nound) = Z a(c;)[log p(]c-)]’ (5.8)
afe) — A(noun3 — ¢;) 59
(cs) >-; A(noun3 — ¢;)’ (59)

Here, the similarity of noun2 and noun4 must be considered in light of the fact that noun4 is modified by
noun3.

As athird strategy, | used “backing off” (from form similarity to semantic similarity) to combine the
two individual strategies. As before, one set of items was used for development, and another set (89 items)
was set aside for testing. As a baseline, results were evaluated against a simple default strategy of always
choosing the group that was more common in the development set.
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| STRATEGY | COVERAGE (%) | ACCURACY (%) |

| Default | 1000 | 449 |
Form 40.4 80.6
Meaning 69.7 774

| Backing off | 854 | 816 |

Inthiscase, the default strategy defined using the devel opment set was misleading, leading to worse than
chance accuracy. However, even if default choices were made using the bias found in the test set, accuracy
would be only 55.1%. The resultsin the above tablemake it clear that the strategies using form and meaning
are far more accurate, and that combining them leads to coverage and accuracy that would not have been
possible using similarity of form alone.

The pattern of results in these two experiments demonstrates a significant reduction in syntactic mis-
analyses for this construction as compared to the simple basdline, and it confirms that form, meaning, and
modification relationships al play arole in disambiguation. In addition, these results confirm the practical
effectiveness of the proposed definitions of selectional preference and semantic similarity.

5.4 Prepositional Phrase Attachment

Prepositional phrase attachment is the paradigm case for discussions of syntactic ambiguity. Exam-
ples (170,171, 172), from (Church and Patil, 1982), illustrate both the explosion of analyses as the number
of prepositiona phrases grows and the need for extra-syntactic constraints to sel ect among them.

(170) Put the block [on the table].

(171) a Put theblock [in the box on the table].
b. Put [the block in the box] on the table.

(172) a Put theblock [[in the box on the table] in the kitchen].
Put the block [in the box [on the tabl €] in the kitchen]].
Put [[the block in the box] on the tabl€] in the kitchen.
Put [the block [in the box on the tabl€]] in the kitchen.
Put [the block in the box] [on the table in the kitchen].

® 2 0 T

Resolving the ambiguity in this example seems to require information and inferences about the situation,
since nothing about the lexical items provides constraints on their possible relationships. If al attachment
ambiguities required that level of knowledge, life would indeed be difficult — Hindle and Rooth (1993,
p. 103) comment:

[One€] recent proposal suggests that resolving attachment ambiguity requires the construction
of a discourse modd in which the entities referred to in a text are represented and reasoned
about . . . We take this argument to show that reasoning essentially involving reference in a
discourse model isimplicated in resolving attachment ambiguitiesin a certain class of cases.
If this phenomenon is typicd, there is little hope in the near term for building computational
model s capabl e of resolving such ambiguitiesin unrestricted text.
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Fortunately, however, lexical relationships can provide a great deal of guidance in attachment decisions,
even in the absence of discourse context. As discussed earlier, a study by Whittemore et al. (1990) found
lexical preferencesto be a strong predictor of attachment, asillustratedin (173) (their (4)):

(173) a What istheround trip fare for Aer Lingus and for British Airlinesfrom JFK on August 30 to
Dublin returning September 21?
b. What isthe round trip [fare ... [from JFK] [to Dublin] ...]

The example shows that knowledge about preferred prepositions— in this domain, relationships like fare
from X and fare to Y — suffices to predict the correct attachments solely on the basis of the lexical items
involved.

541 Lexical association

As mentioned earlier, a critical obstacle to using this kind of information on a large scale is the difficulty
in acquiring a collection of lexical preference relationships. Hindle and Rooth (1991; 1993) propose to
overcome this obstacle using corpus-based lexical co-occurrence statistics.

The problem setting adopted by Hindle and Rooth is a sub-case of the genera attachment problem,
involving a choice between just two attachment sites. An “instance” of ambiguous prepositional phrase
attachment in this setting consists of averb, itsdirect object, a preposition, and the object of the preposition.
Furthermore, only the heads of the respective phrases are considered; so, for example, the ambiguous
attachment in (170) would be construed as the 4-tuple (put,block,on,table). I1tselements will be called v, n1,
p, and n2, respectively.

The attachment strategy is based on an assessment of how likely the prepositionis, given each potential
attachment site; that is, a comparison of the values p(p|nl) and p(p|v). For (170), one would expect
p(on|put) to be greater than p(on|block), reflecting the intuitionthat put X on Y is more plausible as averb
phrase than block on Z is as a noun phrase.

Hindle and Rooth extracted their training data from a corpus of Associated Press news stories. A
robust parser (Hindle, 1983) was used to construct a table in which each row contains the head noun of
each noun phrase, the preceding verb (if the noun phrase was the verb’s direct object), and the following
preposition, if any occurred. Attachment decisions for the training datain the table were then made using a
heuristic procedure — for example, given spare it from, the procedure would count this row as an instance
of spare from rather than it from, since a prepositional phrase cannot be attached to a pronoun. Not al the
data can be assigned with such certainty: ambiguous cases in the training data were handled either by using
statistics collected from the unambiguous cases, by splitting the attachment between the noun and the verb,
or by defaulting to attachment to the noun.

Given an instance of ambiguous prepositional phrase attachment from the test set, Hindle and Rooth
used a statistical test to assess the direction and significance of the difference between p(p|nl) and p(p|v),
aprocedure they cdl lexical association. In (Hindle and Rooth, 1991) they used the t-score (Church et dl.,
1991) astheir test, and in (Hindle and Rooth, 1993) they shifted to alog likelihood ratio. In both the earlier
and later versions of the work, the value produced by their test is positive, zero, or negative according to
whether p(p|v) is greater, equal to, or less than p(p|n1), respectively, and its magnitude indicates alevel of
confidence in the significance of this difference.

On aset of test sentences held out from thetraining data, thelexical association procedure used in (Hindle
and Rooth, 1991) (t-score) made the correct attachment 78.3% of the time. For choices with a high level of
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confidence (magnitude of t greater than 2.1, about 70% of thetime), correct attachments were made 84.5%
of the time. Using the log likelihood ratio in (Hindle and Rooth, 1993), they obtained a correct decision
79.7% of the time; for high confidence choices (log likelihood ratio greater than 2.0) they obtained 88.7%
accuracy at 70.6% coverage.

5.4.2 Prepositional objects

The lexica association strategy performs quite well, despite the fact that the object of the preposition
isignored. However, Hindle and Rooth note that neglecting this information can hurt in some cases. For
instance, thelexical association strategy is presented with exactly the same informationin (174a) and (174b),
and is therefore unabl e to distinguish them.

(174) a Britain reopened its embassy in December.
b. Britain reopened its embassy in Teheran.

Furthermore, (Hearst and Church, in preparation) have conducted a pilot study in which human subjects are
asked to guess prepositiona phrase attachments despite the omission of the direct object, the object of the
preposition, or both. The results of this study, though preliminary, suggest that the object of the preposition
contributes an amount of information comparable to that contributed by the direct object; more important,
for some prepositions, the object of the preposition appears to be more informative.

Thus, there appears to be good reason to incorporate the object of the prepositionin lexical association
caculations. Thedifficulty, of course, isthat the dataare far too sparse to permit the most obviousextension.
Attemptsto simply compare p(p, n2|nl) against p(p, n2|v) using the t-score fail dismally, and there is no
reason to think the log likelihood ratio would fare any better.®

We are faced with a well-known tradeoff: increasing the number of words attended to by a statistical
languagemode! will ingeneral tend to increaseitsaccuracy, but doing soincreasesthe number of probabilities
to be estimated, leading to the need for larger (and often impractically larger) sets of training data in order
to obtain accurate estimates. One optionis simply to pay attention to fewer words, as do Hindle and Rooth.
Another possibility, however, is to reduce the number of parameters by grouping words into equivalence
classes, as discussed, for example, by (Brown et a., 1990). Figure 5.1 illustrates the intuition behind such
an approach. Resolving the attachment ambiguity in the figure, it does not really matter that the particular
city is Dalas — it could just as easily be any other city, and the attachment decision would be the same.
Similarly, the specific word staff isnot crucial sinceanumber of other related wordswould produce exactly
the same result. These intuitions suggest that the use of classes may be more than a useful engineering
solution to the problem of data sparseness — the relevant relationshipsrealy do seem to obtain not at the
lexical level, but at the level of classes or concepts.

5.4.3 Conceptual association

The preceding discussion suggests that class-based statistical relationships of the kind exploited in Sec-
tion 5.3 may also be useful for prepositional phrase attachment. One might call such a proposal conceptual
association: calculating a measure of association using the classes to which the direct object and object of
the preposition belong, and selecting the attachment site for which the evidence of association is strongest.

9| attempted this experiment using expected likelihood estimates, asin (Hindle and Rooth, 1991), with data extracted from the Penn
Treebank as described below.
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a. Hefliestwo persona secretaries in from Little Rock to augment his staff in Dallas.

personnel )
team Pittsburgh
crew Berkeley
b. ..augment his group in Newark
organization Columbus
people

Figure5.1: Noun classes in prepositiona phrase attachment

The use of classes introduces two sources of ambiguity. The first, shared by lexica association, isword
sense ambiguity: just aslexically-based methods conflate multiple senses of aword into the count of asingle
token, here each word may be mapped to many different classes in the WordNet taxonomy. Second, even
for asingle sense, aword may be classified at many levels of abstraction — for example, even interpreted
solely as aphysica object (rather than a monetary unit), penny may be categorized as a (coi n, 3566679),
(cash, 3566144 ), (noney, 3565439}, and so forth on up to (possessi on, 11572}.

In the agorithm that follows, the simplest possible approach to these ambiguities was taken: each
classification of the nouns is considered as a source of evidence about association, and these sources of
evidence combined to reach a single attachment decision.

Algorithm 1. Given (v, nl, p, n2),

1. LetCl={c|nl e words(c)}
LetC2={c|n2€ words(c)} = {e21,...,can}

2. Forifrom1lto NV,

c1; = argmax I(c; p, c2.4)
ceCl

3. Forifromlto NV,

IV =1(v;p, i)
Sy = freq(v, p, co4) I}

I = (c14;p, €2,0)
S = freq(cas, p, c2,) I

4. Compute a paired samples t-test for a difference of the means of S™ and S*. Let “confidence” be the
significance of thetest with N — 1 degrees of freedom.

5. Select attachment to n1 or v according to whether t is positive or negative, respectively.
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Step 1 of the agorithm establishes the range of possible classifications for n1 and n2. For example, if
the algorithm istrying to disambiguate the example in Figure (5.1), the verb attachment augment in Dallas
can be construed according to the foll owing various classifications of Dallas:

‘v p c2 ‘

‘augment in Dadlas ‘
(Dal | as)

ur ban_ar ea)
regi on)

city)
| ocation)

(
(
(geogr aphi cal _area)
(
(

In step 2, each candidate classification for n2 is held fixed, and a classification for nl is chosen that
maximizes the association (as measured by mutual information) between the noun-attachment site and the
prepositional phrase. In effect, this answers the question, “If we were to categorize n2 in this way, what
would be the best class to usefor n1?

‘ cl ‘ p c2 ‘
| staif |in Dalas |

soci al _gr oup)
faculty)

synbol ) in  (region)
body)

nusi cal _not ati on)
per sonnel )

{
{
{
{
{
{
{
{

assenbl age)

For example, if Dallasis categorized in class (r egi on), then, of al the classes to which staff belongs,
the one maximizing mutual information would be chosen — in this case, (per sonnel ). Thisis done for
each classification of n2, yielding N different class-based interpretationsfor (nl,p,n2):

‘ cl p c2 ‘
| staif in Dallas |
(gathering) in (dallas)
(peopl e) in  {(urban_area)
(personnel ) in (region)
(personnel ) in (geographical _area)
(peopl e) in (city)
(personnel ) in (location)
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Steps1 and 2 resultin N different classifications of the 4-tuple according to WordNet classes. In Step 3,
each of these is given a score evaluating attachment to the verb and a score evaluating attachment to the
noun, producing a table like the following: ©

Classification | s| s
augment | (gat hering) | in{dal | as) 4554 38.18
augment | (peopl e) in{urban_area) | 28.46 | 1200.21
augment | (personnel } | in{region) 2338 | 31462
augment | (personnel ) | in{geo. _area) | 26.80 | 106.05
augment | (peopl e) in{city) 2861 | 1161.22
augment | (personnel ) | in{l ocation) 2283 | 32085

In the absence of sense disambiguation, there isno way to tell which classification of the nounsis most
appropriate: the best one can do under the circumstances is to ask whether one attachment tends to score
higher than the other across the different classifications. Step 4 implements an extremely brute-force way
of asking this question: at-test for the difference of the means is performed, tresting S™ and S* as paired
samples (see, e.g., (Woods, Fletcher, and Hughes, 1986)). In step 5 the resulting value of t determines
the choice of attachment site, as well as an estimate of how significant the difference is between the two
aternatives. (For thisexample, ¢(3) = 3.57, p < 0.05, yielding the correct choice of attachment.)

In addition to eval uating the performance of the conceptual association strategy in isolation, it is natural
to combine the predictions of the lexical and conceptua association strategies to make a single prediction.
Although better-motivated strategiesfor combining the predictionsof multiplemodelsdo exist (e.g. (Jelinek
and Mercer, 1980; Katz, 1987)), asimpler “backing off” style procedure has been pursued here. The central
idea behind backing off isto use the model making the most accurate predictionsfirst, evenif itscoverageis
poor; in cases where the more accurate model failsto apply (or makes a low-confidence decision), the less
accurate model can be used.

Algorithm 2. Given (v, nl, p, n2),
1. Calculate an attachment decision using lexical association (t-score).
2. If confident (|¢| > 2.1), use thisdecision.

3. Otherwise, calculate an attachment using conceptua association

10The score used here is quite similar, though not identical, to selectional association of the verb and noun for the prepositional
phrase. That would be computed as

freq(p, c2|c1)I(cl; p, c2)

A(el;p,c2) = )
(cLip, c2) Zp, o fred(p’, c2’|c)l(cL;p’, c2')

whereas this score weights mutual information by the joint rather than the conditional probability (frequency) and does not normalize:
S™ = freq(cl, p, c2)l(cl; p, c2).

| used weighted mutual information primarily becauseit was more straightforward to implement, and becauseit can be viewed simply
as using mutual information together with an added factor to give more weight to higher-frequency (and hence more reliable) co-
occurrences. However, using selectional association would be more consistent with the rest of the dissertation and is atopic for future
study.
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4. If confident (p < 0.1), use thisdecision;
5. Otherwise,

(8 If confident decisions only are required, make no decision.

(b) If adecisionisneeded in every case, use the choice made in step 3.

(Note: in earlier work (Resnik and Hearst, 1993; Resnik, 1993), backing off was done from conceptual
association to lexical association, rather than vice versa, by analogy with backing off from bigrams to
trigrams. The poorer results reported in that work reflect the fact that, although conceptua association
gainsinformation by paying attention to the object of the preposition, it sacrifices accuracy by abstracting to
classes)

54.4 Experimental results
Quantitative evaluation

An experiment was conducted to eval uate the performance of the lexical association, conceptual association,
and backing off strategies. The corpus used was a collection of parses from articles in the 1988-89 Wall
Street Journal, found as part of the Penn Treebank. This corpus isan order of magnitude smaller than the
one used by Hindle and Roothin their experiments, but it provides considerably less noisy data, since parse
trees have been produced automatically by the Fidditch parser (Hindle, 1983) and then corrected by hand.

A test set of 201 ambiguous prepositional phrase attachment instances was set aside. After acquiring
attachment choices on these instances from a separate judge (who used the full sentence context in each
case), the test set was reduced by eliminating sentences for which the separate judge disagreed with the
Treebank, leaving atest set of 174 instances.*

Lexical counts for relevant prepositiona phrase attachments (v,p,n2 and nl,p,n2) were extracted from
the parse trees in the corpus; in addition, by anal ogy with Hindle and Rooth’s training procedure, instances
of verbs and nounsthat did not have aprepositional phrase attached were counted as occurring with the“null
prepositional phrase.” A set of clean-up stepsincluded reducing verbsand nounsto their root forms, mapping
to lowercase, substituting the word someone for nouns not in WordNet that were part-of-speech-tagged as
proper names, substituting the word amount for the token % (this appeared as a head noun in phrases such
asrose 10 %), and expanding month abbreviations such as Jan. to the full month name.

When each strategy was required to make a choice, regardless of level of confidence, the resultswere as
follows:

STRATEGY | ACCURACY (%) ‘ COVERAGE (%) ‘

LA 81.6 100.0
CA 79.3 100.0
COMBINED 83.9 100.0

When each strategy was permitted to make a choice only when confident, the results were as follows:

110f the 348 nouns appearing as part of the test set, 12 were not covered by WordNet ; these were classified by default as members
of the WordNet class {(ent i t y, 2383).
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STRATEGY ACCURACY (%) ‘ COVERAGE (%) ‘
LA 92.3 52.3
CA 83.9 67.8
BACKING OFF 88.5 79.9

Theresultsat 100% coverage suggest that conceptual association aloneisnot taking full advantage of the
additional information it has as compared to lexical association; reasons for thisare discussed below. When
levels of confidence are taken into account, it is evident that conceptual association increases coverage (by
about 30%) at some cost to accuracy (about 9%). Combining the two strategies appears to be a successful
way to offset thelossesin thistradeoff: theloss of accuracy (about 4%) isarelatively small priceto pay for
increasing coverage by more than half (53%).

Althoughitisdifficult to make comparisons between experiments using different sets of training and test
data, it isworth noting that the performance of lexical association in this experiment is comparable with the
recent resultsreported in (Hindle and Rooth, 1993) — in particular, they report 92.3% accuracy with 54.3%
of the test cases covered. On their precision-recall curve, their coverage at 88.7% accuracy is 70.6%.

Qualitativeevaluation

The quantitative results reported here could be considered equivocal: using class-based statistics appears to
provide significant improvements in the coverage/accuracy tradeoff, but only a marginal increase at 100%
coverage, at the cost of afair amount of extramachinery. There are severd reasons this may be the case.

The most obviousproblem with conceptual association asimplemented hereisthe cavalier way it handles
multiple class membership. Although the class for nl is chosen with attention to the prepositional phrase
(step 2 of Algorithm 1), all possible classes to which n2 might belong are considered, and worse, weighted
together equally using the paired t-test. Asaresult, athough abstraction to classes may be hel ping with data
sparseness, it is aso throwing in a vast amount of noise, often so much that the relevant relationships are
overwhelmed.

(175) a Another mgjor trick in making a portfolio recession-resistant is choosing stocks in “ defensive’
industries.
b. Biginvestmentsin “domestic” industries such as beer will make it even tougher for foreign
competitorsto crack the Japanese market.
¢. The people with a stake in Nevada's gambling industry believe that they have barely tapped
the potentialy huge family trade.

Consider example (175a). Although the prepositiona phrasein industry never occurs attached to either
choose or stock in the WSJ training data, evidence from sentences like (175b) and (175c) provide evidence
that it can be attached to other nouns like investment and stake having something in common with stock —
something that is captured by the following scores:

‘ v ‘ cl ‘ pc2 ‘ s’
choose | (asset) | in{enterprise) 19.85 | 839.44
choose | (asset} | in{organi zation) | 16.36 | 1084.75

(asset ) | in(social _group) | 15.02 | 1184.62

s |

choose
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Unfortunately, the choice of attachment in this instance aso ends up being influenced by a host of other
completely irredlevant senses of industry. These include interpretations synonymous with the quality of
industriousness, or with the activity of making goods rather than the organizations that engage in that
activity.

‘ cl ‘ pc2 ‘ s s’
(accunul ation) in (i ndustri ousness) 32.40 5.04
(asset ) in{trait) 217.04 | 193.79
(change_of _magni t ude} | in{group_action) 550.55 | 534.99
(change_of _magni tude) | in{attribute) 1087.57 | 1072.66
(i ncrease) in(abstraction) 1302.13 | 1291.68

Althoughin this case conceptua association makes the correct choice despite such interference, irrelevant
classes are having a significant impact on the experimental results.

A second undesirableeffect of thepaired t-test i stheimpact that thenumber of different classmemberships
for n2 has on confidence. The significance of a given value of ¢ is calculated according to the number of
degrees of freedom in the data — the larger the sample, the more degrees of freedom, and the lower ¢ has
to be in order to achieve significance. As the previous example illustrates, irrelevant class memberships
already bring noise to the comparison between the two attachment sites; simply by virtue of their number
they a so tend to inflate confidence.

Finally, the use of mutual information as an association measure, and the weighting of the mutual
information score in order to bias the computation in favor of large counts, warrant further consideration —
mutual information has been criticized for, among other things, its poor behavior given low frequencies, and
alternative measures of association may prove better.

On the positive side, it is clear that class information is providing some measure of resistance to
sparseness of data. As mentioned earlier, adding the object of the preposition without using noun classes
leads to hopelessly sparse data — yet the performance of the conceptual association strategy is far from
hopeless. In addition, examination of what the conceptual association strategy actually did shows that the
relationships being discovered are intuitively plausible — as for example in (1754d), above, where stock,
stake, and investment could all reasonably be viewed as assets or resources. Similarly, although staff belongs
to 25 classes in WordNet — including (nusi cal _not at i on, 2332528} and (r od, 1613297}, for instance
— astaff in Dallasis consistently interpreted as describing a group of personnel or people.

| would arguethat the quantitativeand qualitative facts, taken together, show that conceptual associationis
agood starting point for further work on broad-coverage appli cation of class-based statistical disambiguation
strategies. The central obstacle to improved performance appears to be ambiguity of class membership,
and determination of class membership is atopic that shows signs of yielding to broad-coverage statistical
techniques (Gale, Church, and Yarowsky, 1992a; Yarowsky, 1992; Yarowsky, 1993; Dagan and lItai, to

appear).
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5.45 Reation toother work

A number of other researchers have reached much the same conclusions presented here: thereisagreat deal
of advantage to be gained from combining corpus-based lexical relationships with a model of word class
membership. In the concluding part of this section | discuss several examples of such work being applied to
problems in ambiguity resolution.

Weischeddl et al. (1989; 1991) have investigated the use of a hand-constructed, domain-specific tax-
onomy together with corpus data from the MUC (Message Understanding Conference) evauations for
resolution of prepositional phrase attachment ambiguity. Their methodology has been to manually anno-
tate nouns and verbs in a training sample with semantic tags from the taxonomy — for example, given
“exploded at dawn,” to annotate dawn with (ti me) and explode with (expl osi on event ). Frequencies
of syntactically-mediated lexical co-occurrences, expressed as relationa triples, are then estimated either
using parses in the Penn Treebank (Weischedel et al., 1989) or using partial parses produced by the MIT
Fast Parser (Weischedel et al., 1991). Given lexical frequencies, semantic annotations, and a domain taxon-
omy, conditional probabilities are calculated using a “backing off” procedure: the probability of attaching
a prepositiona phrase BO to attachment site X is calculated directly from the lexica frequencies, if any
{X,P0O} co-occurrences are availablein thetraining sample, and otherwise generaizationsof X and O inthe
taxonomy are considered, with each generalization incurring a penalty. In addition, a probabilistic “closest
attachment” heuristicisimplemented by computing the probability p(d) that 4 words separate the head word
X from the phrase to be attached. On atest set of prepositional attachments not made by the partial parser,
Weischedd et al. report an accuracy of of 66% for the semantic model aone, 75% for the closest attachment
model aone, and 82% for the two combined (by simply multiplying probabilities of the two models). No
figures on the coverage-accuracy tradeoff are reported.

Although the work described by Weischedel et al. isvery similar in spirit to the work described here,
there are a number of important differences in the details. First, the conceptual model used is one that was
designed specifically for the domain, and, though itssize is not reported, is almost certain to be smaller and
probably less fine-grained than the WordNet noun taxonomy. A second difference is the method by which
words are mapped to classes in the taxonomy: manua annotation of each word with a unique semantic
tag effectively solves the word sense disambiguation problem in advance. This may be important, though
there is some reason to believe that within such a restrictive context the word sense problem would be
significantly more constrained in any case (Gale, Church, and Yarowsky, 1992b). A third differenceisthe
combination in their work of alexical or conceptua preference strategy with a purely structura strategy, a
choice that appeared to have a significant effect on the results. Thisis something that should be considered
in future work on conceptual association, since even (Whittemore, Ferrara, and Brunner, 1990) found right
association to be useful as afallback strategy when lexica preference was inconclusive.

Finally, and perhaps most interesting, is the question of finding appropriate levels of generalization
within the taxonomy. Weischedel et al. (1989) comment that, given their manual annotation of concepts,
“the critical issue is selecting the right level of generaization given the set of examples in the supervised
training set” (p. 30). Asdiscussed briefly in Chapter 4, Section 4.6.2, the use of mutual information in the
context of an 1S-A taxonomy has theinteresting behavior of seeking aclassthat isgenerd (increasing p(c|z))
but not too general (or else p(c) will dominate). Thus using the measures proposed here, generalization to
an appropriate level of abstraction may be happening as a side-effect rather than as the result of an explicit
procedure designed for that purpose — notice, for example, the tendency to classify stock as (asset )
given the evidence in example (175) rather than its subordinate (wor ki ng_capi t al ) or the superordinate
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(possessi on}). It would beinteresting to compare the results of such an “automatic” generalization process
with the adaptation of Katz's (1987) backing off procedure that was used by Weischedd et al.

Grishman and Sterling (1992) report on the acquisition of “semantic patterns’ using methods quite
similar to Weischedel et al.: they employed a robust parser to extract relationd triples, and used a set of
manually prepared, corpus-specific word classes to generalize those triples under the assumption that each
word is mapped to aunique, most specific class. A direct comparison with (Weischedd et al., 1991) and the
work reported here is difficult, however, since Grishman and Sterling adopted different evaluation criteria
In one evaluation, they used relational triples extracted from training data as a filter on triples from test
data; this permitted the computation of precision and recall for the filtered set as evaluated against human
judgements on the same data. In another evaluation, they used the extracted relational triplesto filter parser
output, and compared the resulting parses againgt “correct” parses in the Penn Treebank. It is interesting
to note one qualitative similarity between Grishman and Sterling’s results and the results reported in this
chapter: they report that generalizing to classes yields higher recall, but decreases accuracy.

In later work, Grishman and Sterling (1993) have shifted their method of generalization from hand-
constructed semantic classes to a smoothing technique. (This was discussed in Chapter 2, Section 2.3.1.)
Their comparison of the new (smoothing) method with the old (class-based) does not show any conclusive
differences between the two.

(Chang, Luo, and Su, 1992) report on amodel that combines semantically based co-occurrence proba
bilitieswith syntactic and lexical probabilitiesin asingleunified framework. Unlike Grishman and Sterling,
they do not localize relevant co-occurrences by extracting a set of relational triples; instead, they adopt an
annotated context-free formalism in which semantic co-occurrences are made local by percolating semantic
features up the tree.

(176) a [vP(sta,anim) saw(sta) [NP(anim) the boy [PP(loc) in the park]]]
b. [vP(staloc) saw(sta) [NP(anim) the boy] [PP(loc) in the park]]

So, for example, the structure in (176a) would result in semantic features STA (presumably “stative’) and
ANIM (“animate”) co-occurring at the v node, whereas the vrin structurein (176b) would be annotated with
a co-occurrence of stative and locative. In addition, the probabilistic model of information at a node is not
strictly context-free: it takes into account a limited amount of surrounding context, as well. (This appears
to be similar to the probabilistic model proposed in (Magerman, 1993).) Semantic features are taken from a
set of 104 semantic tags (22 of them for nouns), and each word was apparently given a single uniquetag as
part of itslexical representation.

Chang et al. evaluated the contribution of semantic co-occurrences to ambiguity resolution by testing
their model with and without the semantic score, with the evaluation criterion being the frequency with
which the correct parse has the highest probability. Adding semantic scores to the syntactic model increased
the percentage correct from 43% to 58%, about a 35% improvement. It isworth noting that this test was
conducted on an extremely small sample, given the number of parameters in the model — they used 10-fold
cross-validation on a sample of 1000 sentences.



125

(Basili, Pazienza, and Velardi, 1991) describe an investigation of prepositional phrase attachment in the
context of amore general research program on the combination of natural anguage processing and statistical
methods for lexica acquisition, an effort sharing many of the motivations of the present work (Velardi,
1991; Velardi, Pazienza, and Fasolo, 1991, Basili, Pazienza, and Velardi, 1992). Like Weischedel et al., their
method requires human intervention in order to augment a training corpus with annotations from a small,
largely domain-dependent set of semantic tags, and, like Grishman and Sterling, a robust syntactic analyzer
isused to extract tuples of lexical items co-occurring in avariety of syntactic relationships.

Judgements of prepositional phrase attachment are made using a measure that Basili et al. call “condi-
tioned mutual information”:

freq( X, prep, C

(A comparison of this score with the standard information-theoretic definition of conditional mutua infor-
mation (Cover and Thomas, 1991, p. 22) makes it clear that p = freg(prep), which is constant for any
given disambiguation decision.) Intuitively, the score measures the association of the attachment site X
and the class C, given that they are related by prep. This differs somewhat from the intuition followed in
Section 5.4.3, where themutual information | (X; prep, C2) measures the association between an attachment
site and the prepositional phrase as a whole (not taking the preposition as given); more significantly, Basili
et al. do not generalize from words to classes for nouns serving as the potentia attachment site, only for
the abject of the preposition. Despite these differences in detail, the idea behind the association measure is
quite similar to the one that was devel oped independently here.

Results are reported for experiments in two different text genres, one in the commercial domain and
the other in the legal domain. Lexical association was adopted as a basis for comparison using a training
sample extracted from the Italian text by their shallow parsing method.*? The results indicate that their
word-class association strategy isauseful one: inthecommercial domain, an accuracy of 84% was achieved
as compared to 74% for lexical association, and in the legal domain, an accuracy of 68% was achieved
compared to only 49% for lexical association. There is no discussion on assessment of confidence or the
coverage-accuracy tradeoff.

To summarize, the work reported in this chapter bears some important similaritiesto its predecessors, as
well as anumber of interesting differences. From a practical or methodological perspective, al the related
work described in thissection is predicated on the idea that class-based (semantic) rel ationships can provide
a measure of robustness against sparse data, and, furthermore, that surface-structure parsing provides an
adequate level of analysisfor collecting data about semantic co-occurrences. In addition, from alinguistic
standpoint, the authors discussed here seem to agree that the utility of lexical preference as a disambiguation
strategy arises not strictly from lexical relationships, but from the underlying semantic rel ationships they
encode. Findly, Basili et al. make use of an association measure quite similar to the one proposed here.

The investigation in this chapter differs from most related work in its commitment to broad-coverage
knowledge sources and its avoidance of restricted domains. Although WordNet is an imperfect knowledge

2Basili et al. do not say how they resolved ambiguous casesin the training data. However, on p. 7 they comment that the t-score
method “requires a domain-dependent morphologic lexicon augmented with syntactic expectations (complement structure of verbs)”;
this suggests that they viewed Hindle and Rooth'’s disambiguation heuristics as part of the strategy and used them on the training data
in their own experiments.
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source, it does provide a great deal of useful word class information, and the techniques developed here
make use of them without requiring manual encoding in the lexicon (Chang, Luo, and Su, 1992; Grishman
and Sterling, 1992) or, worse, manua annotation of the training corpus (Basili, Pazienza, and Velardi,
1991; Weischedd et a., 1991). Furthermore, unlike most of the related methods, the mapping from words
to classes need not be a unique one, in terms of either word senses or levels in the taxonomy. Instead, as
noted earlier, the association score appears to accomplish something resembling sense disambiguation and
appropriate generalization in the taxonomy as a side-effect (though this requires further study). Finaly, |
have attempted to provide aclear sense of how a class-based strategy affects the tradeoff between coverage
and accuracy, rather than simply reporting the percentage of correct responses. The conceptua association
strategy makes this possible by providing a measure of confidence along with its guess as to the correct
choice.

5.5 Nominal Compounds

55.1 Syntactic biasand semantic preferences

Nominal compoundsare another kind of “every way ambiguous’ constructionthat appearsrepeatedly in most
samples of unconstrained text. The phrase water meter cover adjustment screw has 14 possible bracketings,
and it is not difficult to come up with enough additional modifiers (Penn engineering building basement
water meter cover adjustment screw) to produce a not-unnatural phrase with an entirely staggering number
of analyses (1430, in this case!). Furthermore, it is often difficult to make confident judgements about
what analysisis correct for compound nominas — the Penn Treebank avoids the problem by not encoding
NP-internal structure.

Inthislast section | will briefly develop a proposa from (Marcus, 1980) for resolving complex nominal
compounds using a combined syntactic and semantic strategy. At the heart of Marcus's proposal are two
hypotheses: firgt, that thereisasyntactic biasin favor of immediately combining adjacent nouns, and second,
that complex compounds can be handled iteratively looking a no more than three nouns at a time. The
algorithm he proposesis quite simple; | reproduce it here in itsentirety.

e Given anoun phrase consisting of two nounsnl and n2:
— If [n1 n2] issemantically acceptable, then build [n1 n2]
e Giventhree nounsni, n2, and n3:

— If either [n1 n2] or [n2 n3] is not acceptable,
then build the alternative structure;

— Otherwisg, if [n2 n3] is semantically preferableto [n1 n2],
then build [n2 n3];

— Otherwise, build [n1 n2].

Theintuition behind the algorithm i sto combine nouns according to semanti c rel ationshipswhen possible,
but to use the syntactic bias when the semantic preferences are inconclusive. Examples worked through by
hand seemed to support thisintuition, but Marcus was unable to go any further: at the time he proposed the
algorithm, there was no way to measure the relevant semantic preferences. He wrote, “Because | know of
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no technique which can answer the necessary semantic questions, thisprocedure has not been implemented”
(p. 251).

55.2 Implementation

The selectional association between nominal modifiers and their heads, used in Section 5.3, provides
a possible solution to the problem Marcus encountered. Equations (5.4) and (5.5), repeated here for
convenience, are intended precisely to answer the semantic questions asked in Marcus's agorithm.

P(ehlnm) log Pslze)

ple|nm) °
2 Plelnm) 109 =575

A(np —cp) = (5.12)

Cm|nn) log Pemlnn)
Alem —np) = Plemnn) 109 7otz ) (5.12)

3. Plelns) log P

The following auxiliary definitions are also helpful:

A(nl—n2) = maxA(nl— ¢) (5.13)
¢
A(nl —n2) = maxA(c; — n2)
Cj
A(nl,n2) = max{A(nl— n2),A(nl— n2)}

That is, the selectiona association between two nouns is based on the maximum word-to-class selectiona
association, taken in either direction over all possible classes. Given this definition, selectional association
provides“subroutines’ for Marcus's algorithm:

o A phrase[nm] issemantically not acceptableif A(n, m) < 0, and semantically acceptabl e otherwise.
e A phrase[nm] issemantically preferableto [mK] if A(n, m) — A(m, k) > 7, where T isaparameter.

With these subroutines serving to answer the semantic questions, Marcus's agorithm is easy to implement
and evaluate.

5.5.3 QuantitativeEvaluation

As a preliminary attempt at evaluating Marcus's algorithm, | extracted a sample of 200 noun-noun-noun
compounds from the Wall Street Journal corpusin the Penn Treebank, and assigned one of the two possible
bracketings to each, using the sentence the compound appeared in and the previousand following sentences
as context. | omitted five of the cases, either because | simply could not arrive at ajudgement or because a
three-noun compound was hot the correct syntactic structure. The a priori biasin the test set was 64.1% in
favor of combining thefirst two nouns.

Selectiona association was estimated using the same sample of noun-noun co-occurrences used in
Section 5.3; this sample is digoint from the test set, since noun-noun compounds were taken from noun
phrases containing exactly two nouns, and noun-noun-noun compounds were taken from noun phrases
containing exactly three. The resultswere as follows:
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Coverage (%) ‘ Accuracy (%) ‘

7=00 80.5 65.6
=10 80.5 66.2
=20 80.5 68.2
=30 80.5 72.6
T=40 80.5 70.1

The coverage figure (157 of 195 examples) is constant because the algorithm in effect defaults to the
syntactic strategy in the absence of other information; the only time there was no answer was when one
of the nouns was unknown or when both bracketings were semantically unacceptable. Unknown words
are by far the biggest culprit, with 18.5% of the examples containing a noun not covered by WordNet
Version 1.2 — in general, the unknown word is either a hyphenated compound (recall that | have restricted
my attention to single nouns even though WordNet does include compounds), a gerund, or a piece of
specialized terminol ogy.

(177) a college-bowl type competitions
b. real-estate |oan portfolios

(178) a bank consulting firm
b. proprietary operating system

(179) a femae hormone diethylstilbestrol
b. retinoblastoma suppressor gene

In order to provide abaseline against which to evaluate these results, | had the test set (without contexts)
bracketed by an independent judge, and in each case had the judge include ameasure « of confidence in the
choice on a scale from O (not at al confident) to 4 (very confident). These compared to my judgements as
follows:

‘ ‘ Coverage (%) ‘ Agreement (%) ‘

k>0 100.0 80.0
k>1 96.4 80.9
K>2 90.8 814
k>3 65.6 83.6
k>4 159 100.0

Asinthecase of prepositional phrase attachment, the quantitativeresultsare equivocal. On the one hand,
the best performance of the algorithm isonly a 13% improvement over simply guessing the first bracketing.
On the other hand, thisis fully haf the way to the 26% improvement realized by the human judge, if a
generous attitudeis taken about unknown words.

5.5.4 Qualitative Evaluation

A qualitative evauation of the algorithmis quite informative. Table 5.4 shows the test examples that the
algorithm mistakenly bracketed as [n1 n2] n3 when they should have been n1 [n2 n3]; Table 5.5 shows the
converse, examples that were mistakenly bracketed as nl [n2 n3] rather than [n1n2] n3. (These are errors
when r = 3.0.)



Example | A(nl,n2) | A(n2,n3) | A |
bankers acceptance rate 38.02 253 | -35.49
state law enforcers 543 0.07 | -5.36
sports cable channel 4.70 398 | -0.71
winter ski season 342 272 | -0.70
exchange trading practices 2.97 241 | -0.56
estate investment trust 344 3.08 | -0.36
management information system 2.63 232 | -0.30
investment trust funds 3.08 282 | -0.25
executive dining room 0.15 004 | -011
world business competition 2.86 276 | -0.10
adult trade books 245 251 0.06
oil maintenance schedule 2.49 255 0.06
merchandise trade deficit 412 4.37 0.25
% sales tax 1.49 1.88 0.38
sample leave policies 227 2.95 0.67
college entrance examination 1.88 261 0.73
state housing prices 0.88 1.70 0.81
bank trade associations 1.69 251 0.81
takeover stock traders 1.58 244 0.85
farm price index 121 2.09 0.87
home fitness equi pment 0.50 1.65 1.15
business trade groups 1.96 3.32 1.36
world oil markets 0.65 2.08 1.43
% sales boost 1.49 3.07 157
performance plastic materials 0.46 2.22 1.76
record trade deficit 2.46 4.37 1.90
state securities group 181 4.65 2.83
market interest rates 5.35 8.22 2.86

Table 5.4: Incorrect bracketings of [n1 [n2 n3]]

129
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| Example | A(nl, n2) | A(n2,n3) | A |
bone marrow transplants 0.00 319 | 319
beauty product line -0.06 316 | 3.23
shareholder rightsplan 152 529 | 3.76
education services company 1.40 526 | 3.86
cash interest hill 1.59 561 | 401
motor vehicle maker 4.20 9.02 | 481
chief executive officer 11.96 16.80 | 4.83
semiconductor marketing arm 2.95 784 | 4.89
insurance brokerage agency 5.22 1021 | 4.98
restaurant franchise system 231 737 | 5.06
farm income records 121 758 | 6.36
golf club makers 1.69 9.02 | 7.32
printer marketing arm 0.00 784 | 7.84
commodity brokerage firms 0.02 12.20 | 12.17
state loan guarantees 0.56 16.57 | 16.00

Table 5.5: Incorrect bracketings of [[n1 n2] n3]

The genera pattern that emerges is one in which the general direction of the agorithm is correct, but
subtletiesare missed. For most of the casesin Table 5.4, thereisinfact asemantic preferencefor [n2n3], but
thedifferenceisnot great enough to pass thethreshold. For many of these, the[n1 n2] combinationisentirely
plausible— e.g. oil maintenance, farm price, homefitness. In Table 5.5, the pattern is strikingly different.
In general the [n2 n3] combination overwhelms [n1 n2], and in many cases this appears to be justified —
for example, loan guarantees, brokerage firms, income records, marrow transplant, and product line are all
tight collocations. The lesser association of the[n1 n2] combinationsin these cases — stateloan, commodity
brokerage, farm income, bone marrow, beauty product — tends to arise because the collocations have low
frequency in the corpus, even when class membership is taken into account. In some cases, inappropriate
classes are coming into play: income and record associate so strongly because (r ecor d) 1S-A (docunent )
IS-A (possessi on), and collocations like income return, income security, and income tax lead to a very
highvaluefor A(income — (possessi on})).

There is a good chance that many of these problems will disappear when larger corpora are used and
when word senses are taken into account. However, inspection of the incorrect choices aso exposes some
deeper problems. Consider the phrase winter ski season. The training data contain anumber of instances for
which a nominal modifier of season isa sporting activity — baseball season, hunting season, skiing season
— and the association measure captures this generalization, since in each of these cases the highest scoring
class for the modifier is (sport ). However, interpreting ski as amodifier in this category requiresinferring
the relevant rel ationship between ski and skiing, something that may be possiblein this case (perhapsviathe
rel ationship between a sport and itsequipment?) but would probably not be straightforwardto doin general.

As a second example, consider the set of nomina modifiers for the head product. The modifiers of
product in the training set fall, with few exceptions, into the following rough groupings:

e X product = product made from or consisting of X:
basket carbon chemical cocoa cosmetic dairy drug egg film food hardware insulin life-insurance
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mainframe oil paper petroleum plastic polystyrene semiconductor sheet software steel storage-case
system tape textil e tissue tobacco underwear

e X product = product used in activity X:
bi otechnol ogy buil ding busi ness communi cation control dialysisheal th-care home-improvement i nformation-
processing investment packaging plant-science skin-care storage telecommunication

e X product = product used to produce condition X:
animal-health fithess

e X product = product used in location X:
farm home household hospital office

A difficulty with using selectional association to assess semantic preference is that there may not be adirect
mapping between groupings of this kind and classes in the taxonomy. Using selectional association, the
first group of modifiers tends to be categorized as (obj ect ), which seems to be a reasonable fit, but no
single class predominates in this way for the other groups. For example, in the second group words that
can be interpreted both as activities and as objects (e.g. building, business, control) get lumped in with
(obj ect ), and theremainder scattered among rel atively weakly scoring classeslike (communi cat i on) and
(activity).

The problem is reflected in the algorithm’s error on beauty product line. Although under a suitable
interpretation, beauty could be interpreted as a member of the third group — a condition caused by the
product — no such interpretation is available on the basis of the classes to which beauty belongs. Indeed,
the error would remain even if beauty were amember of class (condi ti on): even though health and fitness
are both members of that class, the selectional association A({condi ti on) < product) is quite low.

What appears to be needed here, then, is an understanding of the semantic connection underlying the
modifier-head relationship. This is something that it is difficult to imagine ascertaining automatically
(though see (Basili, Pazienza, and Velardi, 1991; Velardi, 1991) for some discussion of partially automating
the process). To echo the quote from (Hindle and Rooth, 1993) at the beginning of Section 5.4, if deeper
semantic rel ationshipsof thiskind are necessary in general, then it ishard to see how computational models
are going to be able to solve this problem in unrestricted text any time soon.

Fortunately, thismay not be the case. In the current example, athough beauty product line is bracketed
incorrectly, three other items in the test set are bracketed correctly — cement products company, food
products concern, and forest products company. Although further experimentation is necessary, these
examples encourage me to believe that the syntactic head-modifier relationship, mediated by conceptua
classes, will suffice more often than not.



Chapter 6

Conclusions

6.1 Contributions

The core of the dissertation, in Chapter 3, is a new formalization of selectiona constraints in information-
theoretic terms. | think the proposal to treat selectiona constraints from an inferential point of view, but to
“hide” inference within the semantics of ataxonomic representation, isanovel one. In addition, | think that
the time is right to have revived the question of how “information,” in the sense of Shannon and Weaver
(1949), isrelated to semantic content, as discussed by Bar-Hillel (1964), and to the process of interpretation.

The main contribution of Chapter 4 is a new account of one particular kind of diathesis aternation,
an account that, unlike most discussions of verbal diathesis, focuses on the verb-argument relationship
rather than on a particular semantic property of the verb. The computational experiments in that chapter
suggest that the model of selectiona preference proposed here captures important aspects of inferability
for argument properties; in that sense | think it lays the groundwork for a new set of mathematical and
computationa proposals about on-line processing, consistent with discussions of processing in terms of
probabilistic constraints. (See aso the discussion of argument plausibility in Chapter 3.) | think thismodel
may also shed new light on the process of verb acquisition, since bootstrapping proposals are increasingly
coming to recognize the importance of argument propertiesin that process.

In Chapter 5, | think | have demonstrated the utility of using knowledge-based classes in syntactic
disambiguation by statistical methods. Furthermore, unlike most statistical approaches, disambiguation
relies not on just any statistical test, but on an association measure that was independently motivated and
justified in the previous chapters. Admittedly thismay not be of great concern in practical applications, but
at the very least | have provided a starting point, and a set of initial results, for statistical approaches that
make use of a broad-coverage taxonomy in unconstrained text.

Finally, the underlying premise of this work has been that the information-theoretic view of language
as a stochastic phenomenon and the linguistic view of language as a cognitive phenomenon, though often
characterized as being in opposition to each other, are not fundamentally incompatible. | believe that the
resultsin the preceding chapters support this conclusion, and | hope the thesis as awhole will contributeto
making it more widely accepted.

132
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6.2 Thoughtson Future Work

Speculating about possible future directionsis extremely easy, since | have done my best to relate thiswork
to many different areas of intellectua pursuit. In this section, therefore, | will just briefly mention three
directionsthat strike me as particularly interesting.

Word sense disambiguation. Oneissue that came up repeatedly throughout the thesis was word sense
disambiguation — both with regard to the training data, and with regard to the use of selectiona constraints
as away of identifying the most plausible reading of a word in its context as the argument of a predicate.
One straightforward thing to do would be to abandon the uniform distribution of credit among noun classes
— eg., observing drink wine and incrementing (col or )} and (bever age) by equal amounts— and instead
to use an existing word-sense disambiguation technique to obtain a better approximation of how credit
should be distributed. An alternative, suggested to me by David Magerman, would be to construct a hidden
mode! inwhich observed predicate-word co-occurrences providethe datafor re-estimation of predicate-class
probabilitiesusing the EM algorithm.

The relationship between selectional constraints and lexical disambiguation has been in evidence at
least since (Katz and Fodor, 1964), and the behavior of the implemented model suggests that selectional
association in many cases provides strong evidence for a particular sense. This finding is consistent with
Yarowsky’s(1993) claim that local collocational relationshipsprovide areliable source of evidencefor sense
disambiguation when such relationships are present. Yarowsky suggests that class-based collocations may
help resolve some of the problems his method encounters with low recall, and the integration of the present
approach with his technique seems well worth pursuing.

Basic levels. A difference between typical word-sense disambiguation methods and selectional asso-
ciation is that, where senses are typically selected from a “flat” set, the classes under consideration in the
present work are part of amulti-level taxonomy. It has been widely noted that the sel ection of an appropriate
level of abstraction isadifficult problem — for example, Velardi et al. (1991, p. 164) comment, “The most
difficult task . . . istodefine at the appropriatelevel of generality the selectional restrictions on conceptua
relations.”

A small but significant contribution of thethesisisthat the measure of selectional association locates an
“appropriate’ level within the taxonomy automatically, by trading off a marginal class probability (which
goes up as you go higher in the taxonomy) against a conditional class probability (which decreases if you
go too high). In futurework | would like to investigate this property of the measure further, and to explore
the possibility that it isrelated to the notion of basic level categories.

Underlying semantics. Although in Section 2.4.1 | attempted to provide a reasonable discussion of
the semantics behind the taxonomy, and particularly its relationship to inference, further work on thistopic
is needed. Steve Abney points out some necessary elaborations to the notions of “plausible entailment”
and “representative sentence’” — a a minimum, the discussion should be expressed in terms of open
propositions rather than open sentence frames (e.g. A f[Jx(f(z)&sawed-in-two(j, x))] rather than “John
sawed a___intwo"); the notion of “representative sentence” needs to be formulated so as to exclude such
cases as A f[member-of (f, { f1, f2})] (otherwise my criteriawould let any pair of senses be synonyms); and
there needs to be a clearer characterization of what would be excluded as a “plausible entailment” of a
proposition (to prevent the criterion for synonymy from being too strict). The chalenge in thistask isto
make the definitions more formal while at the same time not requiring a complete formalization of human
inference.



Appendix A

Notes on Probability Estimation

A.1 Unit Credit Assignment

Although equation (2.14) represents the correct formalization of joint class-based probabilities, in earlier
versions of this work (Resnik, 1992a; Resnik, 1992c; Resnik, 1993; Resnik and Hearst, 1993) and in
Chapter 5| used the following frequency estimate:

freq(z,c) = > freg(z, w). (AD)
wewords(c)
That is, the joint frequency with = was increased by a unit rather than a fractional amount for each class to
which w belonged. Thisistechnically incorrect as far as the probabilistic model is concerned, sinceit leads
to parre(v, ¢) not being a probability function — notice how the marginal probability of « will be inflated
for those z that tend to appear with nouns belonging to many different classes.

In the next section, | describe in detail how probability estimation was actualy carried out in the work
using that frequency estimate, in particular the use of the Good-Turing estimate rather than MLE. In the
section that follows, | work through asimple example to illustrate how frequency and probability estimates
are done now.

A.2 Good-Turing Estimates

Together with the frequency estimatein (A.1), in earlier experiments| used the Good-Turing (GT) estimator
of probabilities (Good, 1953). The GT estimate is calculated by organizing observations in the sample
according to frequency, so that bin n, represents the number of items that were observed exactly r times,
for example, n, isthe number of items that were observed exactly twice. If k isthe maximum number of
times any item was observed, then

k

Zrnr =N, (A.2)

r=1
where N isthetota size of the sample. In order to estimate the probability of something that occurred »
times, the maximum likelihood estimator would simply use the normalized frequency, i.e.
r

i = (A3)
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Zipf with Averaging
log n[r]

let04 Observed

1le+03

le+02

- W
i

le-01

3

1le-02

logr
1e+00 le+01 le+02

Figure A.1: Example of smoothing in Good-Turing probability estimation

but in contrast, the Good-Turing estimate is calculated by first computing an adjusted frequency r*:

o= (r+ 1)—nr+l. (A.4)
ny
It isthisadjusted frequency that isthen normalized in order to estimate the probability. That is, the estimated
probability for something that occurred » timesin the sampleis given by

k

N* = Z r*n, (A.5)
r=0
R r*
per = W (A.6)

In practice, it is necessary to smooth the n,, — notice that if by chance no item in the sample had an
observed frequency of exactly r, the denominator in equation (A.4) would be zero. Having observed that
aplot of logn, versus logr was very nearly linear, | experimented with smoothing the n,. by fitting the
observed data to the equation

logn, = —m(logr)+ b. (A7)

Asit turnsout, thisis equivalent to saying that
1

ny )
,rm

(A.8)

whichisto say that theclass distributionfollowsZipf'slaw.! FigureA.1 showsanexample of how frequency
estimates were smoothed.

Intheinterest of fidelity to aprobabilisticframework, | have redone most of the experimentsinthisthesis
using the frequency estimate in equation (2.14); this permits a true information-theoretic interpretation of
the proposal made in Chapter 3. (Maximum likelihood is used unless otherwise noted.) I1n the next section |

11 am grateful to Ken Church for pointing this out; for further smoothing subtleties see (Church and Gale, 19xx, pp. 8-9).
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E
{a’7b7c7f}
A D
{a,b,c}  {cf}
B C F
{b}  {c} {f}

Figure A.2: A simple taxonomy

work through a smal example to illustrate exactly how the frequency estimation is carried out and how the
probability estimates are related to the structure of the taxonomy.

Infuturework, | may shift from MLE to the Cat-Cal estimator proposed in (Church and Gale, 19xx), since
it requires fewer statistical assumptionsthan Good-Turing and is better equipped to dealing with fractional
counts. However, | should note that changes in probability estimates do not appear to lead to any great
differences in the reported results. | have found that experiments produce comparabl e results regardless of
the probability estimator used.

A.3 Freguency Estimates Using the Taxonomy

As mentioned in Section 2.4.2, the structure of the taxonomy plays a role not in the formalization of the
sampl e space, but in the estimation of the probability function. In order to examine thisin a bit more detail,
I will work through a simple example.

Consider the taxonomy in Figure A.2. Capital |etters represent the set of class labels, {A,B,C,D,E,F},
and the sets below each label represent the extension of each class, words represented in lowercase. Notice
that each link in the taxonomy corresponds to a subset-superset rel ationship between those extensions.

Suppose that what is observed is a 4-word sample: a, b, ¢, f. Since word a belongs to two classes, A
and E, each of those two classes will have its frequency incremented by % Similarly, when b is observed,
classes B, A, and E will each be incremented by % The entire sequence | eads to the following summary of
frequency assignment:

| a b c f]
BEE
B§l
c i,
Ellii
234%
D 3

Thisresultsin the following frequency and probability estimates:
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Freguency | MLE |
fA)=Z | p(A)=.2708

fB)=1 | p(B)=.0833
Q=1 | p(c)=.0625
fD)=Z | p(D)=.1458
f(E) = p(E) = .3542

f(F) = p(F) = .0833
Asexpected, sincethereare six classes in the taxonomy, the probability space can be viewed as describing a
six-sided die— on any roll of thedig, thereisfor example a0.1458 probability of coming up with D. Unlike
adie, however, the possible outcomes are in fact related: as you move up in the taxonomy from subsets to
supersets, the probability necessarily increases.

Admittedly, there is something counterintuitive about assigning class C a different probability than
classes B and F, given that b, ¢, and f were each observed once. The uniform distribution of credit among
classes for word observationsis at best a brute-force method; in general, the question of how probability
should be assigned to classes in ataxonomy warrants further attention than it has been given here.

wllablm




Appendix B

Experimental Data from Chapter 4

B.1 Experiment 1, Brown Corpus

Object-drop verbs || Non-object-drop verbs
Verb | Strength || Verb | Strength
pour 4.80 hang 3.35
drink 4.38 wesr 313
pack 4.12 open 293
sing 3.58 say 2.82
steal 3.52 like 2.59
eat 351 hit 2.49
push 2.87 catch 247
pull 2.77 do 184
write 254 want 152
play 251 show 1.39
explain 2.39 bring 1.33
read 2.35 put 124
watch 197 See 1.06
hear 1.70 find 0.96
call 152 teke 0.93
get 0.82
give 0.79
make 0.72
have 0.43
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B.2 Experiment 1, CHILDES

Object-drop verbs || Non-object-drop verbs
Verb | Strength || Verb | Strength
explain 4.41 open 241
pack 371 hang 2.03
sing 3.15 wear 2.02
read 2.58 show 1.83
drink 2.38 catch 1.67
write 2.33 hit 131
pour 2.30 give 1.18
steal 2.28 say 0.94
play 213 like 0.89
push 177 bring 0.88
hear 1.67 make 0.77
pull 155 take 0.74
watch 144 find 0.71
eat 1.15 want 0.70
call 0.95 see 0.48
put 0.40
get 0.28

B.3 Experiment 1, Norms

Object-drop verbs || Non-object-drop verbs
Verb | Strength || Verb | Strength
drink 283 say 2.56
play 2.64 wear 2.30
sing 2.63 do 221
pour 257 hang 1.96
eat 247 catch 1.92
call 2.39 hit 191
pull 222 open 1.88
explain 2.20 give 181
write 2.18 want 171
push 1.98 make 1.58
watch 1.86 see 154
read 181 show 142
pack 1.75 put 1.34
hear 171 like 1.30
steal 134 find 1.30
take 1.28
have 123
get 117
bring 1.04
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B.4 Experiment 2, Brown Corpus
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B.6 Experiment 2, Norms

Norms
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0.1
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1.0 15 2.0 25

Strength

B.7 Experiment 3, Verbsfrom Lehrer’s(1970) Verb Classification

Type |: babysit, bale, breathe, conceive, cook, dance, date, draw, dream, drink, drive, eat, fly, hear, hum,
iron, kick, marry, nod, paint, plow, print, read, reap, shrug, sing, smell, sow, spell, spit, swallow, think, type,
wave, weave, write, yell

Type I11: answer, approach, approve, attend, bid, build, cal, change, choose, continue, discontinue, copy,
cut, endure, enter, fail, follow, gain, govern, grab, guess, hoard, judge, know, lead, leave, lose, obey, disobey,
order, pack, pass, pay, play, pour, promise, recall, refuse, remember, resist, spill, wash, waste, watch
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B.8 Experiment 3, Brown Corpus

Typel verbs Typelll verbs
Verb | Strength || Verb | Strength
dance 9.36 guess 5.89
spit 8.50 endure 541
yell 7.44 disobey 5.09
shrug 6.80 fail 5.02
reap 5.93 discontinue 4.98
Sow 5.86 bid 4.86
date 5.86 pour 4.80
weave 5.48 refuse 4.40
hum 5.46 obey 4.20
type 5.09 pack 4.12
spell 5.04 waste 3.89
breathe 4.99 answer 3.60
plow 4.87 wash 347
iron 4.71 resist 3.35
cook 4.48 grab 3.32
drink 4.38 recdll 331
swallow 4.07 judge 3.30
fly 3.99 attend 3.22
nod 3.76 promise 312
conceive 3.72 approve 3.08
kick 3.70 pay 2.85
smell 3.65 cut 2.79
wave 3.64 govern 2.67
sing 3.58 lead 2.56
eat 351 continue 2.52
marry 344 play 251
print 3.25 build 249
drive 3.12 remember 2.37
paint 294 order 2.35
think 2.56 choose 2.19
write 254 gan 217
read 2.35 approach 215
draw 1.95 change 2.05
hear 1.70 pass 201

watch 197
enter 181
know 161
follow 154
call 152
leave 1.48
lose 147
spill 0.00




B.9 Experiment 3, CHILDES

Typel verbs Typelll verbs
Verb | Strength || Verb | Strength
dream 8.64 discontinue 6.97
shrug 6.85 continue 5.87
plow 5.24 gan 5.37
iron 5.09 approach 5.32
type 4.92 lead 4.42
spit 4.64 answer 3.90
nod 4.39 pack 371
wave 3.84 pay 3.58
fly 381 judge 3.35
smell 3.27 copy 3.05
drive 3.23 order 3.02
yell 3.20 choose 2.99
sing 3.15 waste 2.79
marry 2.85 pass 2.68
read 2.58 build 2.67
kick 240 promise 2.56
dance 240 guess 2.55
drink 2.38 follow 250
write 233 spill 2.37
spell 2.32 change 2.35
swallow 2.27 pour 2.30
paint 222 play 213
cook 201 grab 1.90
hear 1.67 wash 1.80
draw 1.60 cut 150
think 1.26 watch 1.44
eat 1.15 lose 1.33

remember 1.23
know 117
call 0.95
leave 0.81

143



Appendix C

Word Similarity Data from Chapter 5

Thefollowingtable givesthe datafrom Miller and Charles's (1991) study, followed by their subjects’ mean
rating, the mean rating in my replication, and the similarity value cal culated using equation (5.2).

| Word Pair | Miller and Charles | Replication | sim |
car automobile 3.92 39| 11.98
gem jewe 3.84 35| 1834
journey | voyage 3.84 35 | 12.27
boy lad 3.76 35| 11.79
coast shore 3.70 35 | 15.09
asylum madhouse 3.61 3.6 | 20.08
magician | wizard 3.50 35 | 17.49
midday noon 342 3.6 | 16.80
furnace | stove 311 26 | 590
food fruit 3.08 21| 547
bird cock 3.05 2.2 | 13.06
bird crane 297 2.1 | 13.06
tool implement 2.95 34| 996
brother monk 2.82 24 | 574
crane implement 1.68 03| 574
lad brother 1.66 12| 590
journey | car 1.16 0.7 | 0.00
monk oracle 1.10 08| 574
cemetery | woodland 0.95 0.6 n/a
food rooster 0.89 11| 465
coast hill 0.87 0.7 | 10.72
forest graveyard 0.84 06| 0.00
shore woodland 0.63 0.7 n/a
monk dave 0.55 0.7 | 574
coast forest 0.42 0.6 | 0.00
lad wizard 0.42 0.7 | 574
chord smile 0.13 01| 624
glass magician 011 01| 465
noon string 0.08 0.0 | 0.00
rooster voyage 0.08 0.0 | 549
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The following plot illustrates the rel ationship between the Miller and Charles means and the calcul ated
similarity value:

Similarity Ratings

Miller and Charles
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