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Abstract

This is a lecture note for the course DS-GA 3001 〈Natural Language Understanding
with Distributed Representation 〉 at the Center for Data Science1, New York University
in Fall, 2015. As the name of the course suggests, this lecture note introduces readers
to a neural network based approach to natural language understanding/processing. In
order to make it as self-contained as possible, I spend much time on describing basics of
machine learning and neural networks, only after which how they are used for natural
languages is introduced. On the language front, I almost solely focus on language
modelling and machine translation, two of which I personally find most fascinating
and most fundamental to natural language understanding.

After about a month of lectures and about 40 pages of writing this lecture note, I
found this fascinating note [47] by Yoav Goldberg on neural network models for natural
language processing. This note deals with wider topics on natural language processing
with distributed representations in more details, and I highly recommend you to read it
(hopefully along with this lecture note.) I seriously wish Yoav had written it earlier so
that I could’ve simply used his excellent note for my course.

This lecture note had been written quite hastily as the course progressed, meaning
that I could spare only about 100 hours in total for this note. This is my lame excuse
for likely many mistakes in this lecture note, and I kindly ask for your understanding
in advance. Again, how grateful I would’ve been had I found Yoav’s note earlier.

I am planning to update this lecture note gradually over time, hoping that I will
be able to convince the Center for Data Science to let me teach the same course next
year. The latest version will always be available both in pdf and in latex source code
from https://github.com/nyu-dl/NLP_DL_Lecture_Note. The arXiv
version will be updated whenever a major revision is made.

I thank all the students and non-students who took2 this course and David Rosen-
berg for feedback.

1 http://cds.nyu.edu/
2 In fact, they are still taking the course as of 24 Nov 2015. They have two guest lectures and a final exam

left until the end of the course.

https://github.com/nyu-dl/NLP_DL_Lecture_Note
http://cds.nyu.edu/
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Chapter 1

Introduction

This lecture is going to be the only one where I discuss some philosophical, meaning
nonpractical, arguments, because according to Chris Manning and Hinrich Schuetze,
“even practically-minded people have to confront the issue of what prior knowledge to
try to build into their model” [77].

1.1 Route we will not take

1.1.1 What is Language?
The very first question we must ask ourselves before starting this course is the ques-
tion of what natural language is. Of course, the rest of this course does not in any
way require us to know what natural language is, but it is a philosophical question I
recommend everyone, including myself, to ponder upon once a while.

When I start talking about languages with anyone, there is a single person who
never misses to be mentioned, that is Noam Chomsky. His view has greatly influenced
the modern linguistics, and although many linguists I have talked to claim that their
work and field have long moved on from Chomsky’s, I can feel his shadow all over
them.

My first encounter with Chomsky was at the classroom of <Automata> from my
early undergrad years. I was not the most attentive student back then, and all I can
remember is Chomsky’s hierarchy and how it has shaped our view on languages, in this
context, programming/computer languages. A large part of the course was dedicated
to explaining which class of languages emerges given a set of constraints on a set of
generating rules, or production rules.

For instance, if we are given a set of generating rules that do not depend on the con-
text/meaning of non-terminal symbols (context-free grammar, CFG), we get a context-
free language. If we put a bit of constraints to CFG that each generating rule is such
that a non-terminal symbol is replaced by either a terminal symbol, a terminal symbol
by a non-terminal symbol or an empty symbol, then we get a regular grammar. Sim-
ilarly to CFG, we get a regular language from the regular grammar, and the regular
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language is a subset of the context-free language.
What Chomsky believes is that this kind of approach applies also to human lan-

guages, or natural languages. There exists a set of generating rules that generates a
natural language. But, then, the obvious question to follow is where those generating
rules are. Where are they stored? How are they stored? Do we have separate generating
rules for different languages?

1.1.2 Language Understanding
Understanding Human Language Those questions are interesting, but out of scope
for this course. Those questions are the ones linguists try to answer. Generative linguis-
tics aims at figuring out what those rules are, how they are combined to form a valid
sentence, how they are adapted to different languages and so on. We will leave these to
linguists and continue on to our journey of building a machine that understands human
languages.

Natural Language Understanding So, let’s put these questions aside and trust Chom-
sky that we, humans, are specially designed to store those generating rules somewhere
in the brain [30, 21]. Or, better yet, let’s trust Chomsky that there’s a universal gram-
mar built in our brain. In other words, let’s say we were born with this set of generating
rules for natural languages, and while growing, we have adapted this universal gram-
mar toward our native tongue (language variation).

When we decide to speak of something (whatever that is and however implausi-
ble that is), our brain quickly picks up a sequence of some of those generating rules
and starts generating a sentence accordingly. Of course, those rules do not generate a
sentence directly, but generates a sequence of control signals to move our muscles to
make sound. When heard by other people who understand your language, the sound
becomes a sentence.

In our case, we are more interested in a machine hearing that sound, or a sentence
from here on. When a machine heard this sentence, what would/should a language un-
derstanding machine do to understand a language, or more simply a sentence? Again,
we are assuming that this sentence was generated from applying a sequence of the
existing generating rules.

Under our assumption, a natural first step that comes to my mind is to figure out
that sequence of the generating rules which led to the sentence. Once the sequence is
found, or in a fancier term, inferred, the next step will be to figure out what kind of
mental state of the speaker led to those generating rules.

Let’s take an example sentence “Our company is training workers” (from Sec. 1.3
of [77]), which is a horrible choice, because this was used as an example of ambiguity
in parsing. Regardless, a speaker obviously has an awesome image of her company
which trains its workers and wants to tell a machine about this. This mental state is
used to select the following generating rules (assuming a phrase structure grammar)1:

(ROOT

1 Stanford Parser: http://nlp.stanford.edu:8080/parser
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(S
(NP (PRP$ Our) (NN company))

(VP (VBZ is)
(VP (VBG training)

(NP (NNS workers))))))

pa

1.3 The Ambiguity of Language: Why NLP Is Difficult 17

Philosophically, this brings us close to the position adopted in the later
writings of Wittgenstein (that is, Wittgenstein 1968), where the mean-
ing of a word is defined by the circumstances of its use (a use theory ofuse theory of

meaning meaning) – see the quotations at the beginning of the chapter. Under this
conception, much of Statistical NLP research directly tackles questions of
meaning.

1.3 The Ambiguity of Language: Why NLP Is Difficult

An NLP system needs to determine something of the structure of text –
normally at least enough that it can answer “Who did what to whom?”
Conventional parsing systems try to answer this question only in terms
of possible structures that could be deemed grammatical for some choice
of words of a certain category. For example, given a reasonable grammar,
a standard NLP system will say that sentence (1.10) has 3 syntactic anal-
yses, often called parses:

(1.10) Our company is training workers.

The three differing parses might be represented as in (1.11):

(1.11) a. S

NP

Our company

VP

Aux

is

VP

V

training

NP

workers

b. S

NP

Our company

VP

V

is

NP

VP

V

training

NP

workers

Figure 1.1: A parse of “Our company is training workers”

The machine hears the sentence “Our company is training workers” and infers
the parse in Fig. 1.1. Then, we can make a simple set of rules (again!) to let the
machine answer questions about this sentence, kinds of questions that imply that the
machine has understood the sentence (language). For instance, given a question “Who
is training workers?”, the machine can answer by noticing that the question is asking
for the subject of the verb phrase “is training” acted on the object “workers” and that
the subject is “Our company”.

Side Note: Bayesian Language Understanding This generative view of languages
fits quite well with Bayesian modelling (see, e.g., [84].) There exists a hidden mecha-
nism, or a set of generating rules and a rule governing their composition, which can be
modelled as a latent variable Z. Given these rules, a language or a sentence X is gen-
erated according to the conditional distribution P(X |Z). Then, understanding language
(by humans) is equivalent to computing the posterior distribution over all possible sets
of generating rules and their compositional rules (i.e., P(Z|X).) This answers the ques-
tion of what is the most likely mechanism underlying the observed language.

Furthermore, from the perspective of machines, Bayesian approach is attractive. In
this case, we assume to know the set of rules in advance and let the latent variable Z
denote the specific configuration (use) of those rules. Given this sequence of applying
the rules, a sentence X is generated via the conditional distribution P(X |Z). Machine
understanding of language is equivalent to inferring the posterior distribution over Z
given X .

For more details about Bayesian approaches (in the context of machine learning),
please, refer to [13] or take the course DS-GA 1005 Inference and Representation by
Prof. David Sontag.
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Understanding vs. Using What’s clear from this example is that in this generative
view of languages, there is a clear separation between understanding and using. In-
ferring the generating rules from a given sentence is understanding, and answering a
question based on this understanding, using, is a separate activity. Understanding part
is done when the underlying (true) structure has been determined regardless of how
this understanding be used.

To put it in a slightly different wording, language understanding does not require its
use, or downstream tasks. In this road that we will not take in this course, understanding
exists as it is, regardless of what the understood insight/knowledge will be used for.
And, this is the reason why we do not walk down this road.

1.2 Road we will take

1.2.1 Language as a Function
In this course, we will view a natural/human language as “a system intended to com-
municate ideas from a speaker to a hearer” [110]. What this means is that we do not
view a language as a separate entity that exists on its own. Rather, we view a whole
system or behaviour of communication as a language. Furthermore, this view dictates
that we must take into account the world surrounding a speaker and a hearer in order
to understand language.

Under this view of language, language or rather its usage become somewhat similar
to action or behaviour. Speaking of something is equivalent to acting on a listener, as
both of them influence the listener in one way or another. The purpose of language
is then to influence another by efficiently communicate one’s will or intention.2 This
hints at how language came to be (or may have come to be): (evolution) language
has evolved to facilitate the exchange of ideas among people (learning) humans learn
language by being either encouraged or punished for the use of language. This latter
view on how language came to be is similar in spirit to the behaviourism of B. F.
Skinner (“necessary mediation of reinforcement by another organism” [97].)

This is a radical departure from the generative view of human language, where
language existed on its own and its understanding does not necessarily require the
existence of the outside world nor the existence of a listener. It is no wonder why
Chomsky was so harsh in criticizing Skinner’s work in [30]. This departure, as I see
it, is the departure toward a functional view of language. Language is a function of
communication.

1.2.2 Language Understanding as a Function Approximation
Let’s make a large jump here such that we consider this function as a mathematical
function. This function (called language) takes as input the state of the surrounding
world, the speaker’s speech, either written, spoken or signed and the listener’s mental

2 Chomsky does not agree: “it is wrong to think of human use of language as characteristically informa-
tive, in fact or in intention.” [31].
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state3 Inside the function, the listener’s mental state is updated to incorporate the new
idea from the speaker’s speech. The function then returns a response by the listener
(which may include “no response” as well) and a set of non-verbal action sequences
(what would be the action sequence if the speaker insulted the listener?).

In this case, language understanding, both from humans’ and machines’ perspec-
tive, boils down to figuring out the internal working of this function. In other words, we
understand language by learning the internal mechanism of the function. Furthermore,
this view suggests that the underlying structures of language are heavily dependent on
the surrounding environment (context) as well as on the target task. The former (con-
text dependence) is quite clear, as the function takes as input the context, but the latter
may be confusing now. Hopefully, this will become clearer later in the course.

How can we approximate this function? How can we figure out the internal working
mechanism of this function? What tools do we have?

Language Understanding by Machine Learning This functional view of languages
suddenly makes machine learning a very appealing tool for understanding human lan-
guages. After all, function approximation is the core of machine learning. Classifica-
tion is a classical example of function approximation, clustering is a function approxi-
mation where the target is not given, generative modeling learns a function that returns
a probability of an input, and so on.

When we approximate a function in machine learning, the prime ingredient is data.
We are given data which was either generated from this function (unsupervised learn-
ing) or well fit this function (supervised learning), based on which we adjust our ap-
proximation to the function, often iteratively, to best fit the data. But, I must note here
that it does not matter how well the approximated function fits the data it was fitted to,
but matters how well this approximation fits unseen data.4

In language understanding, this means that we collect a large data set of input and
output pairs (or conversations together with the recording of the surrounding environ-
ment) and fit some arbitrary function to well predict the output given an input. We
probably want to evaluate this approximation in a novel conversation. If this function
makes a conversation just like a person, voilà, we made a machine that passed the
Turing test. Simple, right?

Problem Unfortunately, as soon as we try to do this, we run into a big problem. This
problem is not from machine learning nor languages, but the definition of this function
of language.

Properly approximating this function requires us to either simulate or record the
whole world (in fact, the whole universe.) For, this function takes as input and main-
tains as internal state the surrounding world (context) and the mental state of the in-
dividual (speaker.) This is unavoidable, if we wanted to very well approximate this
function as a whole.

It is unclear, however, whether we want to approximate the full function. For a
human to survive, yes, it is likely that the full function is needed. But, if our goal is

3 We assume here that a such thing exists however it is represented in our brain.
4 This is a matter of generalization, and we will talk about this more throughout the course.
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restricted to a certain task (such as translation, language modelling, and so on), we may
not want to approximate this function fully. We probably want to approximate only a
subset of this whole function. For instance, if our goal is to understand the process
of translation from one language to another, we can perhaps ignore all but the speech
input to the function and all but the speech output from the function, because often a
(trained) person can translate a sentence in one language to another without knowing
the whole context.

This latter approach to language understanding–approximating a partial function
of languages– will be at the core of this course. We will talk about various language
tasks that are a part of this whole function of language. These tasks will include, but
are not limited to, language modelling, machine translation, image/video description
generation and question answering. For these tasks and potentially more, we will study
how to use machine learning, or more specifically deep learning, to solve these tasks
by approximating sub-functions of language.
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Chapter 2

Function Approximation as
Supervised Learning

Throughout this course, we will extensively use artificial neural networks1 to approx-
imate (a part of) the function of natural language. This makes it necessary for us to
study the basics of neural networks first, and this lecture and a couple of subsequent
ones are designed to serve this purpose.

2.1 Function Approximation: Parametric Approach

2.1.1 Expected Cost Function
Let us start by defining a data distribution pdata. pdata is defined over a pair of input
and output vectors, x ∈ Id and y ∈ Ok, respectively. I and O are respectively sets of
all possible input and output values, such as R, {0,1} and {0,1, . . . ,L}. This data
distribution is not known to us.

The goal is to find a relationship between x and y. More specifically, we are in-
terested in finding a function f : Rd → Ok that generates the output y given its corre-
sponding input x. The very first thing we should do is to put some constraints on the
function f to make our search for the correct f a bit less impossible. In this lecture,
and throughout the course, I will consider only a parametric function f , in which case
the function is fully specified with a set of parameters θ .

Next, we must define a way to measure how well the function f approximates
the underlying mechanism of generation (x→ y). Let’s denote by ŷ the output of the
function with a particular set θ of parameters and a given input x:

ŷ = fθ (x)

1 From here on, I will simply drop artificial and call them neural networks. Whenever I say “neural
network”, it refers to artificial neural networks.
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How well f approximates the true generating function is equivalent to how far ŷ is from
the correct output y. Let’s use D(ŷ,y) for now call this distance2 between ŷ and y

It is clear that we want to find θ that minimizes D(ŷ,y) for every pair in the space
(Rd ×Ok). But, wait, every pair equally likely? Probably not, for we do not care how
well fθ approximates the true function, when a pair of input x and output y is unlikely,
meaning we do not care how bad the approximation is, if pdata(x,y) is small. However,
this is a bit difficult to take into account, as we must decided on the threshold below
which we consider any pair irrelevant.

Hence, we weight the distance between the approximated ŷ and the correct y of
each pair (x,y) in the space by its probability p(x,y). Mathematically saying, we want
to find

argmin
θ

∫
x

∫
y

pdata(x,y)D(ŷ,y)dxdy,

where the integral
∫

should be replaced with the summation ∑ if any of x and y is
discrete.

We call this quantity being minimized with respect to the parameters θ a cost func-
tion C(θ). This is equivalent to computing the expected distance between the predicted
output ŷ and the correct one y:

C(θ) =
∫

x

∫
y

pdata(x,y)D(ŷ,y)dxdy, (2.1)

=E(x,y)∼pdata
[D(ŷ,y)] (2.2)

This is often called an expected loss or risk, and minimizing this cost function is re-
ferred to as expected risk minimization [105].

Unfortunately C(θ) cannot be (exactly) computed for a number of reasons. The
most important reason among them is simply that we don’t know what the data distri-
bution pdata is. Even if we have access to pdata, we can exactly compute C(θ) only with
heavy assumptions on both the data distribution and the distance function.3

2.1.2 Empirical Cost Function
This does not mean that we are doomed from the beginning. Instead of the full-blown
description of the data distribution pdata, we will assume that someone miraculously
gave us a finite set of pairs drawn from the data distribution. We will call this a training
set: {

(x1,y1), . . . ,(xN ,yN)
}
.

As we have access to the samples from the data distribution, we can use Monte
Carlo method to approximate the expected cost function C(θ) such that

C(θ)≈ C̃(θ) =
1
N

N

∑
n=1

D(ŷn,yn). (2.3)

2 Note that we do not require this distance to satisfy the triangular inequality, meaning that it does not
have to be a distance. However, I will just call it distance for now.

3Why?
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We call this approximate C̃(θ) of the expected cost function, an empirical cost function
(or empirical risk or empirical loss.)

Because empirical cost function is readily computable, we will mainly work with
the empirical cost function not with the expected cost function. However, keep in mind
that at the end of the day, the goal is to find a set of parameters that minimizes the
expected cost.

2.2 Learning as Optimization
We often call this process of finding a good set of parameters that minimizes the ex-
pected cost learning. This term is used from the perspective of a machine which imple-
ments the function fθ , as it learns to approximate the true generating function f from
training data.

From what I have described so far, it may have become clear even without me men-
tioning that learning is optimization. We have a clearly defined function (the empirical
cost function C̃) which needs to be minimized with respect to its input θ .

2.2.1 Gradient-based Local Iterative Optimization
There are many optimization algorithms one can use to find a set of parameters that
minimizes C̃. Sometimes, you can even find the optimal set of parameters in a closed
form equation.4 In most cases, because there is no known closed-form solution, it is
typical to use an iterative optimization algorithm (see [42] for in-depth discussion on
optimization.)

By an iterative optimization, I mean an algorithm which refines its estimate of the
optimal set of parameters little by little until the values of the parameters converge to
the optimal (expected) cost function. Also, it is worthwhile to note that most iterative
optimization algorithms are local, in the sense that they do not require us to evaluate
the whole parameter space, but only a small subset along the path from the starting
point to the convergence point.5

Here I will describe the simplest one among those local iterative optimization algo-
rithms, called gradient descent (GD) algorithm. As the name suggests, this algorithm
depends entirely on the gradient of the cost function.6

4 One such example is a linear regression where

• fθ={W}(x) = Wx

• D(ŷ,y) = 1
2‖ŷ−y‖2

In this case, the optimal W is

W = YX>(XX>)−1, (2.4)

where

X =
[
x1; . . . ;xN] ,Y =

[
y1; . . . ;yN] .

Try it yourself!
5 There are global optimization algorithms, but they are out of scope for this course. See, for instance,

[18] for one such algorithm called Bayesian optimization.
6 From here on, I will use the cost function to refer to the empirical cost function.
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Figure 2.1: (blue) f (x) =
sin(10x) + x. (red) a gradient at
x = −0.6. (magenta) a negative
gradient at x =−0.6.

The gradient of a function ∇C̃ is a vector whose direction points to the direction of
the greatest rate of increase in the function’s value and whose magnitude measures this
rate. At each point θ t in the parameter space, the gradient of the cost function ∇C̃(θ t)
is the opposite direction toward which we want to move the parameters. See Fig. 2.1
for graphical illustration.

One important point of GD that needs to be mentioned here is on how large a
step one takes each time. As clear from the magenta line (the direction opposite to
the direction given by the gradient) in Fig. 2.1, if too large a step is taken toward the
negative gradient direction, the optimization process will overshoot and miss the (local)
minimum around x =−0.8. This step size, or sometimes called learning rate, η is one
most important hyperparameter of the GD algorithm.

Now we have all the ingredients for the GD algorithm: ∇C̃ and η . The GD algo-
rithm iterates the following step:

θ ← θ −η∇C̃(θ). (2.5)

The iteration continues until a certain stopping criterion is met, which we will discuss
shortly.

2.2.2 Stochastic Gradient Descent
This simple GD algorithm works surprisingly quite well, and it is a fundamental basis
upon which many advanced optimization algorithms have been built. I will present a
list of few of those advanced algorithms later on and discuss them briefly. But, before
going into those advanced algorithms, let’s solve one tiny, but significant issue of the
GD algorithm.

This tiny, but significant issue arises especially often in machine learning. That is,
it is computationally very expensive to compute C̃ and consequently its gradient ∇C̃,
thanks to the ever increasing size of the training set D.

Why is the growing size of the training set making it more and more computation-
ally demanding to compute C̃ and ∇C̃? This is because both of them are essentially
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the sum of as many per-sample costs as there are examples in the training set. In other
words,

C̃(θ) =
1
N

N

∑
n=1

C̃(xn,yn|θ),

∇C̃(θ) =
1
N

N

∑
n=1

∇C̃(xn,yn|θ).

And, N goes up to millions or billions very easily these days.
This enormous computational cost involved in each GD step has motivated the

stochastic gradient descent (SGD) algorithm [88, 15].
First, recall from Eq. (2.3) that the cost function we minimize is the empirical

cost function C̃ which is the sample-based approximation to the expected cost function
C. This approximation was done by assuming that the training examples were drawn
randomly from the data distribution pdata:

C(θ)≈ C̃(θ) =
1
N

N

∑
n=1

D(ŷn,yn).

In fact, as long as this assumption on the training set holds, we can always approximate
the expected cost function with a fewer number of training examples:

C(θ)≈ C̃M (θ) =
1
|M | ∑

m∈M
D(ŷm,ym),

where M� N and M is the indices of the examples in this much smaller subset of the
training set. We call this small subset a minibatch.

Similarly, this leads to a minibatch-based estimate of the gradient as well:

∇C̃M (θ) =
1
|M | ∑

m∈M
∇D(ŷm,ym).

It must now be clear to you where I am headed toward. At each GD step, instead
of using the full training set, we will use a small subset M which is randomly selected
to compute the gradient estimate. In other words, we use C̃M instead of C̃, and ∇C̃M

instead of ∇C̃, in Eq. (2.5).
Because computing C̃M and ∇C̃M is independent of the size of the training set, we

can use SGD to make as many steps as we want without worrying about the growing
size of training examples. This is highly beneficial, as regardless of how many train-
ing examples you used to compute the gradient, we can only take a tiny step toward
that descending direction. Furthermore, the increased level of noisy in the gradient
estimate due to the small sample size has been suspected to help reaching a better so-
lution in high-dimensional non-convex problems (such as those in training deep neural
networks) [71].7

7 Why would this be the case? It is worth thinking about this issue further.
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We can set M to be any constant, and in an extreme, we can set it to 1 as well. In
this case, we call it online SGD.8 Surprisingly, already in 1951, it was shown that using
a single example each time is enough for the SGD to converge to a minimum (under
certain conditions, obviously) [88].

This SGD algorithm will be at the core of this course and will be discussed further
in the future lectures.

2.3 When do we stop learning?
From here on, I assume that we approximate the ground truth function by iteratively
refining its set of parameters, in most cases using stochastic gradient descent. In other
words, learning of a machine that approximates the true generating function f happens
gradually as the machine goes over the training examples little by little over time.

Let us go over again what kind of constraints/issue we have first:

1. Lack of access to the expected cost function C(θ)

2. Computationally expensive empirical cost function C̃(θ)

3. (Potential) non-convexity of the empirical cost function C̃(θ)

The most severe issue is that we do not have access to the expected cost function
which is the one we want to minimize in order to work well with any pair of input x
and output y. Instead, we have access to the empirical cost function which is a finite
sample approximation to the expected cost function.

Why is this a problem? Because, we do not have a guarantee that the (local) mini-
mum of the empirical cost function corresponds to the (local) minimum of the expected
cost function. An example of this mismatch between the expected and empirical cost
functions is shown in Fig. 2.2.

As in the case shown in Fig. 2.2, it is not desirable to minimize the empirical cost
function perfectly. The parameters that perfectly minimize the empirical cost function
(in the case of Fig. 2.2, the slope a of a linear function f (x) = ax) will likely be a
sub-optimal cost for the expected cost function about which we really care.

2.3.1 Early Stopping
What should we do? There are many ways to avoid this weird contradiction where
we want to optimize the cost function well but not too well. Among those, one most
important trick is early stopping, which is only applicable when iterative optimization
is used.

First, we will split the training set D into two partitions Dtrain and Dval.9 We call
them a training set and a validation set, respectively. In practice it is a good idea to
keep D much larger than D′, because of the reasons that will become clear shortly.

8 Okay, this is not true in a strict sense. SGD is an online algorithm with M = 1 originally, and using
M > 1, is a variant of SGD, often called, minibatch SGD. However, as using minibatches (M > 1) is almost
always the case in practice, I will refer to minibatch SGD as SGD, and to the original SGD as online SGD.

9 Later on, we will split it further into three partitions.
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Figure 2.2: (blue) Expected cost
function C(θ). (red) Empirical
cost function C̃(θ). The un-
derlying true generating function
was f (x) = sin(10x) + x. The
cost function uses the squared Eu-
clidean distance. The empiri-
cal cost function was computed
based on 10 noisy examples of
which x’s were sampled from the
uniform distribution between 0
and 1. For each sample input x,
noise from zero-mean Gaussian
distribution with standard devia-
tion 0.01 was added to f (x) to
emulate the noisy measurement
channel.

Further, let us define the training cost as

C̃(θ) =Ctrain(θ) =
1

|Dtrain| ∑
(x,y)∈Dtrain

D(ŷ,y), (2.6)

and the validation cost as

Cval(θ) =
1
|Dval| ∑

(x,y)∈Dval

D(ŷ,y). (2.7)

With these two cost functions we are all ready to use early stopping now.
After every few updates using SGD (or GD), the validation cost function is evalu-

ated with the current set of parameters. The parameters are updated (i.e., the training
cost function is optimized) until the validation cost does not decrease, or starts to in-
crease instead of decreasing.

That’s it! It is almost free, as long as the size of the validation set is reasonable,
since each evaluation is at most as expensive as computing the gradient of the empirical
cost function. Because of the simplicity and effectiveness, this early stopping strategy
has become de facto standard in deep learning and in general machine learning.

The question that needs to be asked here is what the validation cost function does
here. Clearly, it approximates the expected cost function C, similarly to the empirical
cost function C̃ as well as the training cost function Ctrain. In the infinite limit of the
size of either training or validation set, they should coincide, but in the case of a finite
set, those two cost functions differ by the noise in sampling (sampling pairs from the
data distribution) and observation (noise in y = f (x).)

The fact that we explicitly optimize the training cost function implies that there is
a possibility (in fact, almost surely in practice) that the set of parameters found by this
optimization process may capture not only the underlying generating function but also
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noise in the observation and sampling procedure. This is an issue, because we want our
machine to approximate the true generating function not the noise process involved.

The validation cost function measures both the true generating structure as well as
noise injected during sampling and observation. However, assuming that noise is not
correlated with the underlying generating function, noise introduced in the validation
cost function differs from that in the training cost function. In other words, the set
of parameters that perfectly minimizes the training cost function (thereby capturing
even noise in the training set) will be penalized when measured by the validation cost
function.

2.3.2 Model Selection
In fact, the use of the validation cost does not stop at the early stopping. Rather, it has a
more general role in model selection. First, we must talk about model selection itself.

This whole procedure of optimization, or learning, can be cast as a process of
searching for the best hypothesis over the entire space H of hypotheses. Here, each
hypothesis corresponds to each possible function (with a unique set of parameters and
a unique functional form) that takes the input x and output y. In the case of regression
(x ∈ Rd and y ∈ R), the hypothesis space includes an n-th order polynomial function

f (x) = ∑
∑

d
k=1 ik=n,ik≥0

ai1,i2,...,ik

d

∏
k′=1

xik
k′ ,

where ai1,i2,...,ik ’s are the coefficients, and any other functional form that you can imag-
ine as long as it can process x and return a real-valued scalar. In the case of neural
networks, this space includes all the possible model architectures which are defined by
the number of layers, the type of nonlinearities, the number of hidden units in each
layer and so on.

Let us use M ∈H to denote one hypothesis.10 One important thing to remember is
that the parameter space is only a subset of the hypothesis space, because the parameter
space is defined by a family of hypotheses (the parameter space of a linear function
cannot include a set of parameters for a second-order polynomial function.)

Given a definition of expected cost function, we can score each hypothesis M by
the corresponding cost CM . Then, the whole goal of function approximation boils down
to the search for a hypothesis M with the minimal expected cost function C. But, of
course, we do not have access to the expected cost function and resort to the empirical
cost function based on a given training set.

The optimization-based approach we discussed so far searches for the best hypoth-
esis based on the empirical cost iteratively. However, because of the issue of overfitting
which means that the optimization algorithm overshot and missed the local minimum
of the expected cost function (because it was aimed at the local minimum of the empir-
ical cost function), I introduced the concept of early stopping based on the validation
cost.

10 M, because each hypothesis corresponds to one learning machine.
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This is unfortunately not satisfactory, as we have only searched for the best hypoth-
esis inside a small subset of the whole hypothesis space H . What if another subset
of the hypothesis space includes a function that better suits the underlying generating
function f ? Are we doomed?

It is clearly better to try more than one subsets of the hypothesis space. For in-
stance, for a regression task, we can try linear functions (H1), quadratic (second-order
polynomial) functions (H2) and sinusoidal functions (H3). Let’s say for each of these
subsets, we found the best hypothesis (using iterative optimization and early stopping);
MH1 , MH2 and MH3 . Then, the question is how we should choose one of those hy-
potheses.

Similar to what we’ve done with early stopping, we can use the validation cost to
compare these hypotheses. Among those three we choose one that has the smallest
validation cost Cval(M).

This is one way to do model selection, and we will talk about another way to do
this later.

2.4 Evaluation
But, wait, if this is an argument for using the validation cost to early stop the optimiza-
tion (or learning), one needs to notice something weird. What is it?

Because we used the validation cost to stop the optimization, there is a chance
that the set of parameters we found is optimal for the validation set (whose structure
consists of both the true generating function and sampling/observation noise), but not
to the general data distribution. This means that we cannot tell whether the function
estimate f̂ approximating the true generating function f is a good fit by simply early
stopping based on the validation cost. Once the optimization is done, we need yet
another metric to see how well the learned function estimate f̂ approximates f .

Therefore, we need to split the training set not into two partitions but into three
partitions. We call them a training set Dtrain, a validation set Dval and a test set Dtest.
Consequently, we will have three cost functions; a training cost function Ctrain, a vali-
dation cost function Cval and a test cost function Ctest, similarly to Eqs. 2.6–2.7.

This test cost function is the one we use to compare different hypotheses, or models,
fairly. Any hypothesis that worked best in terms of the test cost is the one that you
choose.

Let’s not Cheat One most important lesson here is that you must never look at a test
set. As soon as you take a peak at the test set, it will influence your choice in the model
structure as well as any other hyperparameters biasing toward a better test cost. The
best option is to never ever look at the test set until it is absolutely needed (e.g., need
to present your result.)
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2.5 Linear Regression for Non-Linear Functions
Let us start with a simple linear function to approximate a true generating function such
that

ŷ = f (x) = W>x,

where W ∈ Rd×l is the weight matrix. In this case, this weight matrix is the only
parameter, i.e., θ = {W}.

The empirical cost function is then

C̃(θ) =
1
N

N

∑
n=1

1
2

∥∥∥yn−W>xn
∥∥∥2

2
.

The gradient of the empirical cost function is

∇C̃(θ) =− 1
N

N

∑
n=1

(
yn−W>xn

)>
xn. (2.8)

With these two well defined, we can use the iterative optimization algorithm, such
as GD or SGD, to find the best W that minimizes the empirical cost function.11 Or,
better is to use a validation set to stop the optimization algorithm at the point of the
minimal validation cost function (remember early stopping?)

Now, but we are not too satisfied with a linear network, are we?

2.5.1 Feature Extraction
Why are we not satisfied?

First, we are not sure whether the true generating function f was a linear function.
If it is not, can we expect linear regression to approximate the true function well? Of
course, not. We will talk about this shortly.

Second, because we were given x (meaning we did not have much control over what
we want to measure as x), it is unclear how well x represents the input. For instance,
consider doing a sales forecast of air conditioner at one store which opened five years
ago. The input x is the number of days since the opening date of the store (1 Jan 2009),
and the output y is the number of units sold on each day.

Clearly, in this example, the relationship between x and y is not linear. Furthermore,
perhaps the most important feature for predicting the sales of air conditioners is missing
from the input x, which is a month (or a season, if you prefer.) It is likely that the
sales bottoms out during the winter (perhaps sometime around December, January and
February,) and it hits the peak during summer months (around May, June and July.)
In other words, if we look at how far the month is away from July, we can predict the
sales quite well even with linear regression.

11 In fact, looking at Eq. (2.8), it’s quite clear that you can compute the optimal W analytically. See
Eq. (2.4).
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Let us call this quantity φ(x), or equivalent feature, such that

φ(x) = |m(x)−α| , (2.9)

where m(x) ∈ {1,2, . . . ,12} is the month of x and α = 5.5. With this feature, we can fit
linear regression to better approximate the sales figure of air conditioners. Furthermore,
we can add yet another feature to improve the predictive performance. For instance,
one such feature can be which day of week x is.

This whole process of extracting a good set of features that will make our choice
of parametric function family (such as linear regression in this case) is called feature
extraction. This feature extraction is an important step in machine learning and has
often been at the core of many applications such as computer vision (the representative
example is SIFT [74].)

Feature extraction often requires heavy knowledge of the domain in which this
function approximation is applied. To use linear regression for computer vision, it is
a good idea to use computer vision knowledge to extract a good set of features. If we
want to use it for environmental problems, we must first notice which features must be
important and how they should be represented for linear regression to work.

This is okay for a machine learning practitioner in a particular field, because the
person has in-depth knowledge about the field. There are however many cases where
there’s simply not enough domain knowledge to exploit. To make the matter worse, it
is likely that the domain knowledge is not correct, making the whole business of using
manually extracted features futile.
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Chapter 3

Neural Networks and
Backpropagation Algorithm

3.1 Conditional Distribution Approximation
I have mainly described so far as if the function we approximate or the function we
use to approximate returns only a constant value, as in one point y in the output space.
This is however not true, and in fact, the function can return anything including a
distribution [17, 35, 12].

Let’s first decompose the data distribution pdata into the product of two terms:

pdata(x,y) = pdata(x)pdata(y|x).

It becomes clear that one way to sample from pdata is to sample an input xn from
pdata(x) and subsequently sample the corresponding output yn from the conditional
distribution pdata(y|xn).

This implies that the function approximation of the generating function ( f : x→ y)
is effectively equivalent to approximating the conditional distribution pdata(y|x). This
may suddenly sound much more complicated, but it should not alarm you at all. As
long as we choose to use a distribution parametrized by a small number of param-
eters to approximate the conditional distribution pdata(y|x), this is quite manageable
without almost any modification to the expected and empirical cost functions we have
discussed.

Let us use θ(x) to denote a set of parameters for the probability distribution p̃(y|x,θ(x))
approximating the true, underlying probability distribution pdata(y|x). As the notation
suggests, the function now returns the parameters of the distribution θ(x) given the
input x.

For example, let’s say y ∈ {0,1}k is a binary vector and we chose to use inde-
pendent Bernoulli distribution to approximate the conditional distribution pdata(y|x).
In this case, the parameters that define the conditional distribution are the means of k
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dimensions:

p̃(y|x) =
k

∏
k′=1

p(yk′ |x) =
k

∏
k′=1

µ
yk′
k′ (1−µk′)

1−yk′ . (3.1)

Then the function θ(x) should output a k-dimensional vector of which each element is
between 0 and 1.

Another example: let’s say y∈Rk is a real-valued vector. It is quite natural to use a
Gaussian distribution with a diagonal covariance matrix to approximate the conditional
distribution p(y|x):

p̃(y|x) =
k

∏
k′=1

1√
2πσk′

exp

(
− (yk′ −µk′)

2

2σ2
k′

)
. (3.2)

The parameters for this conditional distribution are θ(x)= {µ1,µ2, . . . ,µk,σ1,σ2, . . . ,σk},
where µk ∈ R and σk ∈ R>0.

In this case of probability approximation, it is natural to use Kullback-Leibler (KL)
divergence to measure the distance.1 The KL divergence from one distribution P to the
other Q is defined2 by

KL(P‖Q) =
∫

P(x) log
P(x)
Q(x)

dx.

In our case of function/distribution approximation, we want to minimize the KL di-
vergence from the data distribution pdata(y|x) to the approximate distribution p̃(y|x)
averaged over the data distribution pdata(x):

C(θ) =
∫

pdata(x)KL(pdata‖p̃)dx =
∫

pdata(x)
∫

pdata(y|x) log
pdata(y|x)

p̃(y|x)
dydx.

But again we do not have access to pdata and cannot compute this expected cost func-
tion.

Similarly to how we defined the empirical cost function earlier, we must approxi-
mate this expected KL divergence using the training set:

C̃(θ) =
1
N

N

∑
n=1
− log p̃(yn|xn). (3.3)

As an example, if we choose to return the binary vector y as in Eq. (3.1), the empirical
cost function will be

C̃(θ) =− 1
N

N

∑
n=1

k

∑
k′=1

yk′ log µk′ +(1− yk′) log(1−µk′),

1 Again, we use a loose definition of the distance where triangular inequality is not enforced.
2 Why don’t I say the KL divergence between two distributions here? Because, the KL divergence is not

a symmetric measure, i.e., KL(P‖Q) 6= KL(Q‖P).
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which is often called a cross entropy cost. In the case of Eq. (3.2),

C̃(θ) =− 1
N

N

∑
n=1

k

∑
k′=1

(yk′ −µk′)
2

2σ2
k′

− logσk′ . (3.4)

Do you see something interesting in Eq. (3.4)? If we assume that the function
outputs 1 for all σk′ ’s, we see that this cost function reduces to that using the Euclidean
distance between the true output y and the mean µ . What does this mean?

There will be many occasions later on to discuss more about this perspective when
we discuss language modelling. However, one thing we must keep in our mind is that
there is nothing different between approximating a function and a distribution.

3.1.1 Why do we want to do this?
Before we move on to the main topic of today’s lecture, let’s try to understand why
we want to output the distribution. Unlike returning a single point in the space, the
distribution returned by the function f incorporates both the most likely outcome ŷ as
well as the uncertainty associated with this value.

In the case of the Gaussian output in Eq. (3.2), the standard deviation σk′ , or the
variance σ2

k′ , indicates how uncertain the function is about the output centered at µk′ .
Similarly, the mean µk′ of the Bernoulli output in Eq. (3.1) is directly proportional to
the function’s confidence in predicting that the k′-th dimension of the output is 1.

Figure 3.1: Is this a duck or a rab-
bit? [68] At the end of the day,
we want our function f to return
a conditional distribution saying
that p(duck|x) = p(rabbit|x), in-
stead of returning the answer out
of these two possible answers.

This is useful in many aspects, but one important aspect is that it reflects the natural
uncertainty of the underlying generating function. One input x may be interpreted in
more than one ways, leading to two possible outputs, which happens more often than
not in the real world. For instance, the famous picture in Fig. 3.1 can be viewed as a
picture of a duck or a picture of a rabbit, in which case the function needs to output the
probability distribution by which the same probability mass is assigned to both a duck
and a rabbit. Furthermore, there is observational noise that cannot easily be identified
and ignored by the function, in which case the function should return the uncertainty
due to the observational noise along with the most likely (or the average) prediction.
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3.1.2 Other Distributions
I have described two distributions (densities) that are widely used:

• Bernoulli distribution: binary classification

• Gaussian distribution: real value regression

Here, let me present one more distribution which we will use almost everyday through
this course.

Categorical Distribution: Multi-Class Classification Multi-class classification is a
task in which each example belongs to one of K classes. For each input x, the problem
reduces to find a probability pk(x) of the k-th class under the constraint that

K

∑
k=1

pk(x) = 1

It is clear that in this case, the function f returns K values {µ1,µ2, . . . ,µK}, each
of which is between 0 and 1. Furthermore, the sum of µk’s must sum to 1. This can be
achieved easily by letting f to compute affine transformation of x (or φ(x)) to return K
(unbounded) real values followed by a so called softmax function [17]:

µk =
exp(w>k φ(x)+bk)

∑
K
k′=1 exp(w>k′φ(x)+bk)

, (3.5)

where wk ∈ Rdim(φ(x)) and bk ∈ R are the parameters of affine transformation.
In this case, the (empirical) cost function based on the KL divergence is

C(θ) =− 1
N

N

∑
n=1

log
K

∑
k=1

Ik=yn µk, (3.6)

where

Ik=yn =

{
1, if k = yn

0, otherwise (3.7)

3.2 Feature Extraction is also a Function
We talked about the manual feature extraction in the previous lecture (see Sec. 2.5.1.
But, this is quite unsatisfactory, because this whole process of manual feature extraction
is heavily dependent on the domain knowledge, meaning that we cannot have a generic
principle on which we design features. This raises a question: instead of manually
designing features ourselves, is it possible for this to happen automatically?

One thing we notice is that the feature extraction process φ(x) is nothing but a
function. A function of a function is a function, right? In other words, we will extend
our definition of the function to include the feature extraction function:

ŷ = f (φ(x)).
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We will assume that the feature extraction function φ is also parametrized, and its
parameters are included in the set of parameters which includes those of f . As an
example, α in Eq. (2.9) is a parameter of the feature extraction φ .

A natural next question is which family of parametric functions we should use for
φ . We run into the same issue we talked about earlier in Sec. 2.3: the size of hypothesis
space is simply too large!

Instead of choosing one great feature extraction function, we can go for a stack of
simple transformations which are all learned.3 Each transformation can be as simple
as affine transformation followed by a simple point-wise nonlinearity:

φ0(x) = g(W0x+b0), (3.8)

where W0 is the weight matrix, b0 is the bias and g is a point-wise nonlinearity such
as tanh.4

One interesting thing is that if the dimensionality of the transformed feature vector
φ0(x) is much larger than that of x, the function f (φ0(x)) can approximate any func-
tion from x to y under some assumptions, even when the parameters W0 and b0 are
randomly selected! [34]

The problem solved, right? We just put a huge matrix W0, apply some nonlinear
function g to it and fit linear regression as I described earlier. We don’t even need to
touch W0 and b0. All we need to do is replace the input xn of all the pairs in the training
set to φ0(xn).

In fact, there is a group of researchers claiming to have figured this out by them-
selves less than a decade ago (as of 2015) who call this model an extreme learning
machine [54]. There have been some debates about this so-called extreme learning
machine. Here I will not make any comment myself, but would be a good exercise for
you to figure out why there has been debates about this.

But, regardlessly, this is not what we want.5 What we want is to fully tune the
whole thing.

3.3 Multilayer Perceptron
The basic idea of multilayer perceptron is to stack a large number of those feature
extraction layers in Eq. (3.8) between the input and the output. This idea is as old as
the whole field of neural network research, dating back to early 1960s [89]. However,
it took many more years for people to figure out a way to tune the whole network, both
f and φ ’s together. See [91] and [70], if you are interested in the history.

3 A great article about this was posted recently in http://colah.github.io/posts/
2014-03-NN-Manifolds-Topology/.

4 Some of the widely used nonlinearities are
• Sigmoid: σ(x) = 1

1+exp(−x)

• Hyperbolic function: tanh(x) = 1−exp(−2x)
1+exp(−2x)

• Rectified linear unit: rect(x) = max(0,x)

5 And, more importantly, I will not accept any final project proposal whose main model is based on the
ELM.
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3.3.1 Example: Binary classification with a single hidden unit
Let us start with the simplest example. The input x ∈ R is a real-valued scalar, and
the output y ∈ {0,1} is a binary value corresponding to the input’s label. The feature
extractor φ is defined as

φ(x) = σ(ux+ c), (3.9)

where u and c are the parameters. The function f returns the mean of the Bernoulli
conditional distribution p(y|x):

µ = f (x) = σ(wφ(x)+b). (3.10)

In both of these equations, σ is a sigmoid function:

σ(x) =
1

1+ exp(−x)
. (3.11)

We use the KL divergence to measure the distance between the true conditional
distribution p(y|x) and the predicted conditional distribution p̂(y|x).

KL(p‖p̂) = ∑
y∈{0,1}

p(y|x) log
p(y|x)
p̂(y|x)

= ∑
y∈{0,1}

p(y|x) log p(y|x)− p(y|x) log p̂(y|x).

Note that the first term in the summation p(y|x) log p(y|x) can be safely ignored in our
case. Why? Because, this does not concern p̃ which is one we change in order to
minimize this KL divergence.

Let’s approximate this KL divergence with a single sample from p(y|x) and leave
only the relevant part. We will call this a per-sample cost:

Cx =− log p̂(y|x) (3.12)

=− log µ
y(1−µ)1−y (3.13)

=− y log µ− (1− y) log(1−µ), (3.14)

where µ is from Eq. (3.10). It is okay to work with this per-sample cost function
instead of the full cost function, because the full cost function is almost always the
(unweighted) sum of these per-sample cost functions. See Eq. (2.3).

We now need to compute the gradient of this cost function Cx with respect to all the
parameters w, b, u and c. First, let’s start with w:

∂Cx

∂w
=

∂Cx

∂ µ

∂ µ

∂ µ

∂ µ

∂w
,

which is a simple application of chain rule of derivatives. Compare this to

∂Cx

∂b
=

∂Cx

∂ µ

∂ µ

∂ µ

∂ µ

∂b
.
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In both equations, µ = wφ(x)+b which is the input to f .

Both of these derivatives share ∂Cx
∂ µ

∂ µ

∂ µ
, where

∂Cx

∂ µ

∂ µ

∂ µ︸︷︷︸
=µ ′

=− y
µ

µ
′+

1− y
1−µ

µ
′ =
−y+ yµ +µ− yµ

µ(1−µ)
µ
′ =

µ− y
µ(1−µ)

µ
′ = µ− y,

(3.15)

because the derivative of the sigmoid function ∂ µ

∂ µ
is

µ
′ = µ(1−µ).

Note that this corresponds to computing the difference between the correct label y and
the predicted label (probability) µ .

Given this output derivative ∂Cx
∂ µ

, all we need to compute are

∂ µ

∂w
= φ(x)

∂ µ

∂b
= 1.

From these computations, we see that

∂Cx

∂w
= (µ− y)φ(x), (3.16)

∂Cx

∂b
= (µ− y). (3.17)

Let us continue on to u and c. We can again rewrite the derivatives w.r.t. these into

∂Cx

∂u
=

∂Cx

∂ µ

∂ µ

∂φ

∂φ

∂φ

∂φ

∂u

∂Cx

∂c
=

∂Cx

∂ µ

∂ µ

∂φ

∂φ

∂φ

∂φ

∂c
,

where φ is the input to φ similarly to µ was to the input to µ .
There are two things to notice here. First, we already have ∂Cx

∂ µ
from computing the

derivatives w.r.t. w and b, meaning there is no need to re-compute it. Second,
∂ µ

∂φ
is

shared between the derivatives w.r.t. u and c.
Therefore, we first compute

∂ µ

∂φ
:

∂ µ

∂φ

∂φ

∂φ︸︷︷︸
=φ ′

= wφ
′ = wφ(x)(1−φ(x))
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Next, we compute

∂φ

∂u
= x

∂φ

∂c
= 1.

Now all the ingredients are there:

∂Cx

∂u
=(µ− y)wφ(x)(1−φ(x))x

∂Cx

∂c
=(µ− y)wφ(x)(1−φ(x)).

The most important lession to learn from here is that most of the computations
needed to get the derivatives in this seemingly complicated multilayered computational
graph (multilayer perceptron) are shared. At the end of the day, the amount of compu-
tation needed to compute the gradient of the cost function w.r.t. all the parameters in
the network is only as expensive as computing the cost function itself.

3.3.2 Example: Binary classification with more than one hidden
units

Let us try to generalize this simple, or rather simplest model, into a slightly more
general setting. We will still look at the binary classification but with multiple hidden
units and a multidimensional input such that:

φ(x) = σ(Ux+ c),

where U ∈ Rl×d and c ∈ Rl . Consequently, w will be a l-dimensional vector.
The output derivative ∂Cx

∂ µ

∂ µ

∂ µ
stays same as before. See Eq. (3.15). However, we

note that the derivative of µ with respect to w should now differ, because it’s a vector.6

Let’s look at what this means.
The µ can be expressed as

µ = w>φ(x)+b =
l

∑
i=1

wiφi(x)+b. (3.18)

In this case, we can start computing the derivative with respect to each element of wi
separately:

∂ µ

∂wi
= φi(x),

6 The Matrix Cookbook [85] is a good reference for this section.
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and will put them into a vector:

∂ µ

∂w
=

[
∂ µ

∂w1
,

∂ µ

∂w2
, . . . ,

∂ µ

∂wl

]>
= [φ1(x),φ2(x), . . . ,φl(x)]

> = φ(x)

Then, the derivative of the cost function Cy with respect to w can be written as

∂Cy

∂w
= (µ− y)φ(x),

in which case nothing really changed from the case of a single hidden unit in Eq. (3.16).
Now, let’s look at ∂Cy

∂φ
. Again, because φ(x) is now a vector, there has to be some

changes. Because ∂Cy
∂ µ

is already computed, we only need to look at
∂ µ

∂φ
. In fact, the

procedure for computing this is identical to that for computing
∂ µ

∂w due to the symmetry
in Eq. (3.18). That is,

∂ µ

∂φ
= w

Next, what about ∂φ

∂φ
? Because the nonlinear activation function σ is applied

element-wise, we can simply compute this derivative for each element in φ(x) such
that

∂φ

∂φ
= diag

([
φ
′
1(x),φ

′
2(x), . . . ,φ

′
l (x)

]>)
,

where diag returns a diagonal matrix of the input vector. In short, we will denote this
as φ ′

Overall so far, we have got

∂Cy

∂φ
= (µ− y)w>φ

′(x) = (µ− y)(w�diag(φ ′(x))),

where � is an element-wise multiplication.
Now it is time to compute

∂φ

∂U :

∂φ

∂U
=

∂U>x
∂U

= x,

according to the Matrix Cookbook [85]. Then, let’s look at the whole derivative w.r.t.
U :

∂Cy

∂U
= (µ− y)(w�diag(φ ′(x)))x>.

Note that all the vectors in this lecture note are column vectors.
For c, it’s straightforward, since

∂φ

∂c
= 1.
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3.4 Automating Backpropagation
This procedure, presented as two examples, is called a backpropagation algorithm. If
you read textbooks on neural networks, you see a fancier way to explain this back-
propagation algorithm by introducing a lot of fancy terms such as local error δ and
so on. But, personally I find it much easier to understand backpropagation as a clever
application of the chain rule of derivatives to a directed acyclic graph (DAG) in which
each node computes a certain function φ using the output of the previous nodes. I will
refer to this DAG as a computational graph from here on.

1

112

22

(a) (b)

Figure 3.2: (a) A graphical representation of the computational graph of the example
network from Sec. 3.3.2. (b) A graphical illustration of a function node (→: forward
pass,←: backward pass.)

A typical computational graph looks like the one in Fig. 3.2 (a). This computational
graph has two types of nodes; (1) function node (©) and (2) variable node (2). There
are four different types of function nodes; (1) MatMul(A,B)=AB, (2) MatSum(A,B)=
A+B, (3) σ : element-wise sigmoid function and (4) Cy: cost node. The variables nodes
correspond to either parameters or data (x and y.) Each function node has a number
associated with it to distinguish between the nodes of the same function.

Now, in this computational graph, let us start computing the gradient using the
backpropagation algorithm. We start from the last code, Cy, by computing ∂Cy

∂y and ∂Cy
∂σ1 .

Then, the function node σ1 will compute its own derivative ∂σ1

∂MatSum1 and multiply it

with ∂Cy
∂σ1 passed back from the function node Cy. So far we’ve computed

∂Cy

∂MatSum1 =
∂Cy

∂σ1
∂σ1

∂MatSum1 (3.19)

The function node MatSum1 has two inputs b and the output of MatMul1. Thus,
this node computes two derivatives ∂MatSum1

∂b and ∂MatSum1

∂MatMul1
. Each of these is multiplied

with the backpropagated derivative ∂Cy

∂MatSum1 from Eq. (3.19). At this point, we already
have the derivative of the cost function Cy w.r.t. one of the parameters b:

∂Cy

∂b
=

∂Cy

∂MatSum1
∂MatSum1

∂b
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This process continues mechanically until the very beginning of the graph (a set
of root variable nodes) is reached. All we need in this process of backpropagating the
derivatives is that each function node implements both forward computation as well
as backward computation. In the backward computation, the function node received
the derivative from the next function node, evaluates its own derivative with respect to
the inputs (at the point of the forward activation) and passes theses derivatives to the
corresponding previous nodes. See Fig. 3.2 (b) for the graphical illustration.

Importantly, the inner mechanism of a function node does not change depending on
its context (or equivalently where the node is placed in a computational graph.) In other
words, if each type of function nodes is implemented in advance, it becomes trivial to
build a complicated neural network (including multilayer perceptrons) and compute
the gradient of the cost function (which is one such function node in the graph) with
respect to all the parameters as well as all the inputs.

This is a special case, called the reverse mode, of automatic differentiation.7 It
is probably the most valuable tool in deep learning, and fortunately many widely used
toolkits such as Theano [10, 4] have implemented this reverse mode of automatic differ-
entiation with an extensive number of function nodes used in deep learning everyday.

Before finishing this discussion on automating backpropagation, I’d like you to
think of pushing this even further. For instance, you can think of each function node
returning not its numerical derivative on its backward pass, but a computational sub-
graph computing its derivative. This means that it will return a computational graph
of gradient, where the output is the derivatives of all the variable nodes (or a subset
of them.) Then, we can use the same facility to compute the second-order derivatives,
right?

3.4.1 What if a Function is not Differentiable?
From the description so far, one thing we notice is that backpropagation works only
when each and every function node (in a computational graph) is differentiable. In
other words, the nonlinear activation function must be chosen such that almost every-
where it is differentiable. All three activation functions I have presented so far have
this property.

Logistic Functions A sigmoid function is defined as

σ(x) =
1

1+ exp(−x)
,

and its derivative is

σ
′(x) = σ(x)(1−σ(x)).

A hyperbolic tangent function is

tanh(x) =
exp(2x)−1
exp(2x)+1

,

7 If anyone’s interested in digging more into the whole field of automatic differentiation, try to Google it
and you’ll find tons of materials. One such reference is [5].
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and its derivative is

tanh′(x) =
(

2
exp(x)+ exp(−x)

)2

.

Piece-wise Linear Functions I described a rectified linear unit (rectifier or ReLU,
[81, 46]) earlier:

rect(x) = max(0,x).

It is clear that this function is not strictly differentiable, because of the discontinuity
at x = 0. However, the chance of the input to this rectifier lands exactly at 0 has
zero probability, meaning that we can forget about this extremely unlikely event. The
derivative of the rectifier in this case is

rect′(x) =
{

1, if x > 0
0, if x≤ 0

Although the rectifier has become the most widely used nonlinearity, especially,
in deep learning’s applications to computer vision,8 there is a small issue with the
rectifier. That is, for a half of the input space, the derivative is zero, meaning that the
error (the output derivative from Eq. (3.15)) will be not well propagated through the
rectifier function node.

In [48], the rectifier was extended to a maxout unit so as to avoid this issue of the
existence of zero-derivative region in the input to the rectifier. The maxout unit of rank
k is defined as

maxout(x1, . . . ,xk) = max(x1, . . . ,xk),

and its derivative as

∂maxout
∂xi

(x1, . . . ,xk) =

{
1, if max(x1, . . . ,xk) = xi
0, otherwise

This means that the derivative is backpropagated only through one of the k inputs.

Stochastic Variables These activation functions work well with the backpropagation
algorithm, because they are differentiable almost everywhere in the input space. How-
ever, what happens if a function is non-differentiable at all. One such example is a
binary stochastic node, which is computed by

1. Compute p = σ(x), where x is the input to the function node.

2. Consider p as a mean of a Bernoulli distribution, i.e., B(p).

3. Generate one sample s ∈ {0,1} from the Bernoulli distribution.

4. Output s.

8 Almost all the winning entries in ImageNet Large Scale Visual Recognition Challenges (ILSVRC) use a
convolutional neural network with rectifiers. See http://image-net.org/challenges/LSVRC/.
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Clearly there is no derivative of this function node.
Does it mean that we’re doomed in this case? Fortunately, no. Although I will not

discuss about this any further in this course, Bengio et al. [7] provide an extensive list
of approaches we can take in order to compute the derivative of the stochastic function
nodes.
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Chapter 4

Recurrent Neural Networks and
Gated Recurrent Units

After the last lecture I hope that it has become clear how to build a multilayer percep-
tron. Of course, there are so many details that I did not mention, but are extremely im-
portant in practice. For instance, how many layers of simple transformations Eq. (3.8)
should a multilayer perceptron have for a certain task? How wide (equiv. dim(φ0(x)))
should each transformation be? What other transformation layers are there? What kind
of learning rate η (see Eq. (2.5)) should we use? How should we schedule this learning
rate over training? Answers to many of these questions are unfortunately heavily task-,
data- and model-dependent, and I cannot provide any general answer to them.

4.1 Recurrent Neural Networks
Instead, I will move on to describing how we can build a neural network1 to handle
a variable length input. Until now the input x was assumed to be either a scalar or
a vector of the fixed number of dimensions. From here on however, we remove this
assumption of a fixed size input and consider the case of having a variable length input
x.

What do I mean by a variable length input? A variable length input x is a sequence
where each input x has a different number of elements. For instance, the first training
example’s input x1 may consist of l1 elements such that

x1 = (x1
1,x

1
2, . . . ,x

1
l1).

Meanwhile, another example’s input xn may be a sequence of ln 6= l1 elements:

xn = (xn
1,x

n
2, . . . ,x

n
ln).

Let’s go back to very basic about dealing with these kinds of sequences. Further-
more, let us assume that each element xi is binary, meaning that it is either 0 or 1. What

1 Now, let me begin using a term neural network instead of a general function.
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would be the most natural way to write a function that returns the number of 1’s in
an input sequence x = (x1,x2, . . . ,xl)? My answer is to first build a recursive function
called ADD1, shown in Alg. 1. This function ADD1 will be called for each element of
the input x, as in Alg. 2.

Algorithm 1 A function ADD1
s← 0
function ADD1(v,s)

if v = 0 then return s
else return s+1
end if

end function

Algorithm 2 A function ADD1
s← 0
for i← 1,2, . . . , l do s← ADD1(xi,s)
end for

There are two important components in this implementation. First, there is a mem-
ory s which counts the number of 1’s in the input sequence x. Second, a single function
ADD1 is applied to each symbol in the sequence one at a time together with the mem-
ory s. Thanks to these two properties, our implementation of the function ADD1 can be
used with the input sequence of any length.

Now let us generalize this idea of having a memory and a recursive function that
works over a variable length sequence. One likely most general case of this idea is
a digital computer we use everyday. A computer program is a sequence x of instruc-
tions xi. A central processing unit (CPU) reads each instruction of this program and
manipulates its registers according to what the instruction says. Manipulating registers
is often equivalent to manipulating any input–output (I/O) device attached to the CPU.
Once one instruction is executed, the CPU moves on to the next instruction which will
be executed with the content of the registers from the previous step. In other words,
these registers work as a memory in this case (s from Alg. 2,) and the execution of an
instruction by the CPU corresponds to a recursive function (ADD1 from Alg. 1.)

Both ADD1 and CPU are hard coded in the sense that they do what they have been
designed and manufactured to do. Clearly, this is not what we want, because nobody
knows how to design a CPU or a recursive function for natural language understanding,
which is our ultimate goal. Instead what we want is to have a parametric recursive
function that is able to read a sequence of (linguistic) symbols and use a memory in
order to understand natural languages.

To build this parametric recursive function2 that works on a variable-length input
sequence x = (x1,x2, . . . ,xl), we now know that there needs to be a memory. We will
use one vector h ∈ Rdh as this memory vector. As is clear from Alg. 1, this recursive
function takes as input both one input symbol xt and the memory vector h, and it

2 In neural network research, we call this function a recurrent neural network.
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returns the updated memory vector. It often helps to time index the memory vector
as well, such that the input to this function is ht−1 (the memory after processing the
previous symbol xt−1,) and we use ht to denote the memory vector returned by the
function. This function is then

ht = f (xt ,ht−1)

Now the big question is what kind of parametric form this recursive function f
takes? We will follow the simple transformation layer from Eq. (3.8), in which case we
get

f (xt ,ht−1) = g(Wφ(xt)+Uht−1), (4.1)

where φ(xt) is a function that transforms the input symbol (often discrete) into a d-
dimensional real-valued vector. W∈Rdh×d and Udh×dh are parameters of this function.
A nonlinear activation function g can be any function, but for now, we will assume that
it is an element-wise nonlinear function such as tanh.

4.1.1 Fixed-Size Output y

Because our goal is to approximate an underlying, true function, we now need to think
of how we use this recursive function to return an output y. As with the case of variable-
length sequence input x, y can only be either a fixed-size output, such as a category to
which the input x belongs, or a variable-length sequence output. Here let us discuss the
case of having a fixed-size output y.

The most natural approach is to use the last memory vector hl to produce the output
(or more often output distribution.) Consider a task of binary classification where y is
either positive (1) or negative (0), in which case a Bernoulli distribution fits perfectly.
A Bernoulli distribution is fully characterized by a single parameter µ . Hence,

µ = σ(v>hl),

where v ∈ Rdh is a weight vector, and σ is a sigmoid function.
This now looks very much like the multilayer perceptron from Sec. 3.3. The whole

function given an input sequence x computes

µ = σ(v> g(Wφ(xl)+Ug(Wφ(xl−1)+Ug(Wφ(xl−2)+ · · ·g(Wφ(x1)+Uh0) · · ·)))︸ ︷︷ ︸
(a) recurrence

),

(4.2)

where h0 is an initial memory state which can be simply set to an all-zero vector.
The main difference is that the input is not given only to the first simple trans-

formation layer, but is given to all those transformation layers (one at a time.) Also,
each transformation layer shares the parameters W and U.3 The first two steps of the

3 Note that for brevity, I have omitted bias vectors. This should not matter much, as having a bias vector
is equivalent to augmenting the input with a constant element whose value is fixed at 1. Why? Because,

[W;b]
[

x
1

]
= Wx+b

Note that as I have declared before all vectors are column vectors.
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recurrence part (a) of Eq. (4.2) are shown as a computational graph in Fig. 4.1.

Figure 4.1: Sample computational graph of the recurrence in Eq. (4.2).

As this is not any special computational graph, the whole discussion on how to au-
tomate backpropagation (computing the gradient of the cost function w.r.t. the parame-
ters) in Sec. 3.4 applies to recurrent neural networks directly, except for one potentially
confusing point.

4.1.2 Multiple Child Nodes and Derivatives
It may be confusing how to handle those parameters that are shared across multiple
time steps; W and U in Fig. 4.1. In fact, in the earlier section (Sec. 3.4), we did not
discuss about what to do when the output of one node is fed into multiple function
nodes. Mathematically saying, what do we do in the case of

c = g( f1(x), f2(x), . . . , fn(x))?

g can be any function, but let us look at two widely used cases:

• Addition: g( f1(x), . . . , fn(x)) = ∑
n
i=1 fi(x)

∂c
∂x

=
∂c
∂g ∑

i∈{1,2,...,n}

∂ fi

∂x
.

• Multiplication: g( f1(x), . . . , fn(x)) = ∏
n
i=1 fi(x)

∂c
∂x

=
∂c
∂g ∑

i∈{1,2,...,n}

(
∏
j 6=i

f j(x)

)
∂ fi

∂x
.

From these two cases, we can see that in general

∂c
∂x

=
∂c
∂g ∑

i∈{1,2,...,n}

∂g
∂ fi

∂ fi

∂x
.
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This means that when multiple derivatives are backpropagated into a single node, the
node should first sum them and multiply its summed derivative with its own derivative.

What does this mean for the shared parameters of the recurrent neural network? In
an equation,

∂C
∂W

=
∂C

∂MatSuml︸ ︷︷ ︸
(a)

∂MatSuml

∂MatMull
∂MatMull

∂W
(4.3)

+
∂C

∂MatSuml︸ ︷︷ ︸
(a)

∂MatSuml

∂MatSuml−1︸ ︷︷ ︸
(b)

∂MatSuml−1

∂MatMull−1
∂MatMull−1

∂W

+
∂C

∂MatSuml︸ ︷︷ ︸
(a)

∂MatSuml

∂MatSuml−1︸ ︷︷ ︸
(b)

∂MatSuml−1

∂MatSuml−2︸ ︷︷ ︸
(c)

∂MatSuml−2

∂MatMull−2
∂MatMull−2

∂W

+ · · · ,

where the superscript l of each function node denotes the layer at which the function
node resides.

Similarly to what we’ve observed in Sec. 3.4, many derivatives are shared across
the terms inside the summation in Eq. (4.3). This allows us to compute the derivative
of the cost function w.r.t. the parameter W efficiently by simply running the recurrent
neural network backward.

4.1.3 Example: Sentiment Analysis
There is a task in natural language processing called sentiment analysis. As the name
suggests, the goal of this task is to predict the sentiment of a given text. This is defi-
nitely one function that a human can do fairly well: when you read a critique’s review
of a movie, you can easily tell whether the critique likes, hates or is neutral to the
movie. Also, even without a star rating of a product on Amazon, you can quite easily
tell whether a user like it by reading her/his review of the product.

In this task, an input sequence x is a given text, and the fixed-size output is its label
which is almost always one of positive, negative or neutral. Let us assume for now
that the input is a sequence of words, where each word xi is represented as a so-called
one-hot vector.4 In this case, we can use

φ(xt) = xt

in Eq. (4.1).

4 A one-hot vector is a way to represent a discrete symbol as a binary vector. The one-hot vector vi of a
symbol i ∈V = {1,2, . . . , |V |} is

vi = [0, . . . ,0︸ ︷︷ ︸
1,...,i−1

, 1︸︷︷︸
i

, 0, . . . ,0︸ ︷︷ ︸
i+1,...,|V |

]>.
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Once the input sequence, or paragraph in this specific example, is read, we get
the last memory state hl of the recurrent neural network. We will affine-transform hl
followed by the softmax function to obtain the conditional distribution of the output
y ∈ {1,2,3} (1: positive, 2: neutral and 3: negative):

µ = [µ1,µ2,µ3]
> = softmax(Vhl), (4.4)

where µ1, µ2 and µ3 are the probabilities of “positive”, “neural” and “negative”. See
Eq. (3.5) for more details on the softmax function.

Because this network returns a categorial distribution, it is natural to use the (cate-
gorical) cross entropy as the cost function. See Eq. (3.6). A working example of this
sentiment analyzer based on recurrent neural networks will be introduced and discussed
during the lab session.5

4.1.4 Variable-Length Output y: |x|= |y|
Let’s generalize what we have discussed so far to recurrent neural networks here. In-
stead of a fixed-size output y, we will assume that the goal is to label each input symbol,
resulting in the output sequence y = (y1,y2, . . . ,yl) of the same length as the input se-
quence x.

What kind of applications can you think of that returns the output sequence as long
as the input sequence? One of the most widely studied problems in natural language
processing is a problem of classifying each word in a sentence into one of part-of-
speech tags, often called POS tagging (see Sec. 3.1 of [77].) Unfortunately, in my
personal opinion, this is perhaps the least interesting problem of all time in natural
language understanding, but perhaps the most well suited problem for this section.

In its simplest form, we can view this problem of POS tagging as classifying each
word in a sentence as one of noun, verb, adjective and others. As an example, given
the following input sentence x

x = (Children,eat,sweet,candy),

the goal is to output

y = (noun,verb,adjective,noun).

This task can be solved by a recurrent neural network from the preceding section
(Sec. 4.1.1) after a quite trivial modification. Instead of waiting until the end of the
sentence to get the last memory state of the recurrent neural network, we will use the
immediate memory state to predict the label at each time step t.

At each time t, we get the immediate memory state ht by

ht = f (xt ,ht−1), (4.5)

where f is from Eq. (4.1). Instead of continuing on to processing the next word, we
will first predict the label of the t-th input word xt .

5 For those eager to learn more, see http://deeplearning.net/tutorial/lstm.html in
advance of the lab session.
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This can be done by

µt = [µt,1,µt,2,µt,3,µt,4]
> = softmax(Vht). (4.6)

Four µt,i’s correspond to the probabilities of the four categories; (1) noun, (2) verb, (3)
adjective and (4) others.

From this output distribution at time step t, we can define a per-step, per-sample
cost function:

Cx,t(θ) =− log
K

∑
k=1

Ik=yµt,k, (4.7)

where K is the number of categories, four in this case. We discussed earlier in Eq. (3.6).
Naturally a per-sample cost function is defined as the sum of these per-step, per-sample
cost functions:

Cx(θ) =−
l

∑
t=1

log
K

∑
k=1

Ik=yµt,k. (4.8)

Incorporating the Output Structures This formulation of the cost function is equiv-
alent to maximizing the log-probability of the correct output sequence given an input
sequence, where the conditional log-probability is defined as

log p(y|x) =
l

∑
t=1

log p(yt |x1, . . . ,xt)︸ ︷︷ ︸
Eq. (4.7)︸ ︷︷ ︸

Eq. (4.8)

. (4.9)

This means that the network is predicting the label of the t-th input symbol using only
the input symbols read up to that point (i.e., x1,x2, . . . ,xt .)

In other words, this means that the recurrent neural network is not taking into ac-
count the structure of the output sequence. For instance, even without looking at the
input sequence, in English it is well known that the probability of the next word being a
noun increases if the current word is an adjective.6 This kind of structures in the output
are effectively ignored in this formulation.

Why is this so in this formulation? Because, we have made an assumption that
the output symbols y1,y2, . . . ,yl are mutually independent conditioned on the input se-
quence. This is clear from Eq. (4.9) and the definition of the conditional independence:

Y1 and Y2 are conditionally independent dependent on X

⇐⇒ p(Y1,Y2|X) = p(Y1|X)p(Y2|X).

If the underlying, true conditional distribution obeyed this assumption of condi-
tional independence, there is no worry. However, this is a very strong assumption for

6 Okay, this requires a more thorough analysis, but for the sake of the argument, which does not have to
do anything with actual POS tags, let’s believe that this is indeed the case.
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many of the tasks we run into, apparently from the example of POS tagging. Then,
how can we exploit the structure in the output sequence?

One simple way is to make a less strong assumption about the conditional proba-
bility of the output sequence y given x. For instance, we can assume that

log p(y|x) =
l

∑
i=1

log p(yi|y<i,x≤i),

where y<i and x≤i denote all the output symbols before the i-th one and all the input
symbols up to the i-th one, respectively.

Now the question is how we can incorporate this into the existing formulation of
a recurrent neural network from Eq. (4.5). It turned out that the answer is extremely
simple. All we need to do is to compute the memory state of the recurrent neural
network based not only on the current input symbol xt and the previous memory state
ht−1, but also on the previous output symbol yt−1 such that

ht = f (xt ,yt−1,ht−1).

Similarly to Eq. (4.1), we can think of implementing f as

f (xt ,yt−1,ht−1) = g(Wxφx(xt)+Wyφy(yt−1)+Whht−1).

There are two questions naturally arising from this formulation. First, what do we
do when computing h1? This is equivalent to asking what φy(y0) is. There are two
potential answers to this question:

1. Fix φy(y0) to an all-zero vector

2. Consider φy(y0) as an additional parameter

In the latter case, φy(y0) will be estimated together with all the other parameters such
as those weight matrices Wx, Wy, Wh and V.

Inference The second question involves how to handle yt−1. During training, it is
quite straightforward, as our cost function (KL-divergence between the underlying,
true distribution and the parametric conditional distribution p(y|x), approximated by
Monte Carlo method) says that we use the groundtruth value for yt−1’s.

It is however not clear what we should do when we test the trained network, because
then we are not given the groundtruth output sequence. This process of finding an
output that maximizes the conditional (log-)probability is called inference7:

ŷ = argmax
y

log p(y|x)

7 Okay, I confess. The term inference refers to a much larger class of problems, even if we consider only
machine learning. However, let me simply use this term to refer to a task of finding the most likely output of
a function.
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The exact inference is quite straightforward. One can simply evaluate log p(y|x) for
every possible output sequence and choose the one with the highest conditional proba-
bility. Unfortunately, this is almost always intractable, as the number of every possible
output sequence grows exponentially with respect to the length of the sequence:

|Y |= Kl ,

where Y , K and l are the set of all possible output sequences, the number of labels and
the length of the sequence, respectively. Thus, this is necessary to resort to approximate
search over the set Y .

The most naive approach to approximate inference is a greedy one. With the trained
model, you predict the first output symbol ŷ1 based on the first input symbol x1 by
selecting the category of the highest probability p(y1|x1). Now, given ŷ1, x1 and x2,
we compute p(y2|x1,x2,y1) from which we select the next output symbol ŷ2 with the
highest probability. We continue this process iteratively until the last output symbol ŷl
is selected.

This is greedy in the sense that any early choice with a high conditional probability
may turn out to be unlikely one due to extremely low conditional probabilities later on.
It is highly related to the so-called garden path sentence problem. To know more about
this, read, for instance, Sec. 3.2.4 of [77].

It is possible to alleviate this issue by considering N < K best hypotheses of the
output sequence at each time step. This procedure is called beam search, and we will
discuss more about this in a later lecture on neural machine translation.

4.2 Gated Recurrent Units

4.2.1 Making Simple Recurrent Neural Networks Realistic
Let us get back to the analogy we made in Sec. 4.1. We compared a recurrent neural
network to how CPU works. Executing a recurrent function f is equivalent to executing
one of the instructions on CPU, and the memory state of the recurrent neural network is
equivalent to the registers of the CPU. This analogy does sound plausible, except that
it is not.

In fact, how a simple recurrent neural network works is far from being similar to
how CPU works. I am now talking about how they are implemented in practice, but
rather I’m talking at the conceptual level. What is it at the conceptual level that makes
the simple recurrent neural network unrealistic?

An important observation we make about the simple recurrent neural network is
that it refreshes the whole memory state at each time step. This is almost opposite to
how the registers on a CPU are maintained. Each time an instruction is executed, the
CPU does not clear up the whole registers and repopulate them. Rather, it works only
on a small number of registers. All the other registers’ values are stored as they were
before the execution of the instruction.

Let’s try to write this procedure mathematically. Each time, based on the choice
of instruction to be executed, a subset of the registers of a CPU, or a subset of the
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elements in the memory state of a recurrent neural network, is selected. This can be
written down as a binary vector u ∈ {0,1}nh :

ui =

{
0, if the register’s value does not change
1, if the register’s value will change

With this binary vector, which I will call an update gate, a new memory state or a
new register value at time t can be computed as a convex interpolation such that

ht = (1−u)�ht−1 +u� h̃t , (4.10)

where � is as usual an element-wise multiplication. h̃t denotes a new memory state or
a new register value, after executing the instruction at time t.

Another unrealistic point about the simple recurrent neural network is that each
execution considers the whole registers. It is almost impossible to imagine designing
an instruction on a CPU that requires to read the values of all the registers. Instead,
what almost always happens is that each instruction will consider only a small subset
of the registers, which again we can use a binary vector to represent. Let me call it a
reset gate r ∈ {0,1}nh :

ri =

{
0, if the register’s value will not be used
1, if the register’s value will be used

This reset gate can be multiplied to the register values before being used by the
instruction at time t.8 If we use a recursive function f from Eq. (4.1), it means that

h̃t = f (xt ,r�ht−1) = g(Wφ(xt)+U(r�ht−1)). (4.11)

Now, let us put these two gates that are necessary to make the simple recurrent
neural network more realistic into one piece. At each time step, the candidate memory
state is computed based on a subset of the elements of the previous memory state:

h̃t = g(Wφ(xt)+U(r�ht−1))

A new memory state is computed as a linear interpolation between the previous mem-
ory state and this candidate memory state using the update gate:

ht = (1−u)�ht−1 +u� h̃t

See Fig. 4.2 for the graphical illustration.

4.2.2 Gated Recurrent Units
Now here goes a big question: How are the update u and reset r gates computed?

If we stick to our analogy to the CPU, those gates must be pre-configured per
instruction. Those binary gates are dependent on the instruction. Again however, this

8 It is important to note that this is not resetting the actual values of the registers, but only the input to the
instruction/recursive function.

44



u

rh h~ x

Figure 4.2: A graphical illustration of a
gated recurrent unit [29].

is not what we want to do in our case. There is no set of predefined instructions, but the
execution of any instruction corresponds to computing a recurrent function based on the
input symbol and the memory state from the previous time step (see, e.g., Eq. (4.1).)
Similarly to this what we want with the update and reset gates is that they are computed
by a function which depends on the input symbol and the previous memory state.

This sounds like quite straightforward, except that we defined the gates to be binary.
This means that whatever the function we use to compute those gates, the function will
be a discontinuous function with zero derivative almost everywhere, except at the point
where a sharp transition from 0 to 1 happens. We discussed the consequence of having
an activation function with zero derivative almost everywhere in Sec. 3.4.1, and the
conclusion was that it becomes very difficult to compute the gradient of the cost func-
tion efficiently and exactly with these discrete activation functions in a computational
graph.

One simple solution which turned out to be extremely efficient is to consider those
gates not as binary vectors but as real-valued coefficient vectors. In other words, we
redefine the update and reset gates to be

u ∈ [0,1]nh ,r ∈ [0,1]nh .

This approach makes these gates leaky in the sense that they always allow some leak
of information through the gate.

In the case of the reset gate, rather than making a hard decision on which subset
of the registers, or the elements of the memory state, will be used, it now decides how
much information from the previous memory state will be used. The update gate on
the other hand now controls how much content in the memory state will be replaced,
which is equivalent to saying that it controls how much information will be kept from
the previous memory state.

Under this definition we can simply use a sigmoid function from Eq. (3.11) to
compute these gates:

r =σ(Wrφ(xt)+Urht−1),

u =σ(Wuφ(xt)+Uu(r�ht−1)),

where Wr, Ur, Wu and Uu are the additional parameters.9 Since the sigmoid function
is differentiable everywhere, we can use the backpropagation algorithm (see Sec. 3.4)

9 Note that this is not the formulation available for computing the reset and update gates. For instance,
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to compute the derivatives of the cost function with respect to these parameters and
estimate them together with all the other parameters.

We call this recurrent activation function with the reset and update gates a gated
recurrent unit (GRU), and a recurrent neural network having this GRU as a gated re-
current network.

4.2.3 Long Short-Term Memory
The gated recurrent unit (GRU) is highly motivated by a much earlier work on long
short-term memory (LSTM) units [53].10 The LSTM was proposed in 1997 with
the goal of building a recurrent neural network that can learn long-term dependen-
cies across many number of timsteps, which was deemed to be difficult to do so with a
simple recurrent neural network.

Unlike the element-wise nonlinearity of the simple recurrent neural network and the
gated recurrent unit, the LSTM explicitly separates the memory state ct and the output
ht . The output is a small subset of the hidden memory state, and only this subset of the
memory state is visibly exposed to any other part of the whole network.

How does a recurrent neural network with LSTM units decide how much of the
memory state it will reveal? As perhaps obvious at this point, the LSTM uses a so-
called output gate o to achieve this goal. Similarly to the reset and update gates of the
GRU, the output gate is computed by

o = σ(Woφ(xt)+Uoht−1).

This output vector is multiplied to the memory state ct point-wise to result in the output:

ht = o� tanh(ct).

Updating the memory state ct closely resembles how it is updated in the GRU (see
Eq. (4.10).) A major difference is that instead of using a single update gate, the LSTM
uses two gates, forget and input gates, such that

ct = f� ct−1 + i� c̃t ,

where f ∈ Rnh , i ∈ Rnh and c̃t are the forget gate, input gate and the candidate memory
state, respectively.

The roles of those two gates are quite clear from their names. The forget gate
decides how much information from the memory state will be forgotten, while the
input gate controls how much information about the new input (consisting of the input

one can use the following definitions of the reset and update gates:

r =σ(Wrφ(xt)+Urht−1),

u =σ(Wuφ(xt)+Uuht−1),

which is more parallelizable than the original formulation from [29]. This is because there is no more direct
dependency between r and u, which makes it possible to compute them in parallel.

10 Okay, let me confess here. I was not well aware of long short-term memory when I was designing the
gated recurrent unit together with Yoshua Bengio and Caglar Gulcehre in 2014.

46



symbol and the previous output) will be inputted to the memory. They are computed
by

f =σ(W f φ(xt)+U f ht−1), (4.12)
i =σ(Wiφ(xt)+Uiht−1).

The candidate memory state is computed similarly to how it was done with the
GRU in Eq. (4.11):

c̃t = g(Wcφ(xt)+Ucht−1), (4.13)

where g is often an element-wise tanh.
All the additional parameters specific to the LSTM–Wo,Uo,W f ,U f ,Wi,Ui,Wc

and Uc– are estimated together with all the other parameters. Again, every function
inside the LSTM is differentiable everywhere, and we can use the backpropagation
algorithm to efficient compute the gradient of the cost function with respect to all the
parameters.

Although I have described one formulation of the long short-term memory unit
here, there are many other variants proposed over more than a decade since it was first
proposed. For instance, the forget gate in Eq. (4.12) was not present in the original
work [53] but was fixed to 1. Gers et al. [45] proposed the forget gate few years after
the LSTM was originally proposed, and it turned out to be one of the most crucial
component in the LSTM. For more variants of the LSTM, I suggest you to read [49,
58].11

4.3 Why not Rectifiers?

4.3.1 Rectifiers Explode
Let us go back to the simple recurrent neural network which uses the simple transfor-
mation layer from Eq. (4.1):

f (xt ,ht−1) = g(Wφ(xt)+Uht−1),

where g is an element-wise nonlinearity.
One of the most widely used nonlinearities is a hyperbolic tangent function tanh.

This is unlike the case in feedforward neural networks (multilayer perceptrons) where a
(unbounded) piecewise linear function, such as a rectifier and maxout, has become stan-
dard. In the case of feedforward neural networks, you can safely assume that everyone
uses some kind of piecewise linear function as an activation function in the network.
This has become pretty much standard since Krizhevsky et al. [67] shocked the (com-
puter vision) research community by outperforming all the more traditional computer
vision teams in the ImageNet Large Scale Visual Recognition Challenge 2012.12

11 Interestingly, based on the observation in [58], it seems like the plain LSTM with a forget gate and the
GRU seem to be close to the optimal gated unit we can find.

12 http://image-net.org/challenges/LSVRC/2012/results.html
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The main difference between logistic functions (tanh and sigmoid function) and
piecewise linear functions (rectifiers and maxout) is that the former is bounded from
both above and below, while the latter is bounded only from below (or in some cases,
not bounded at all [50].13)

This unbounded nature of piece-wise linear functions makes it difficult for them to
be used in recurrent neural networks. Why is this so?

Let us consider the simplest case of unbounded element-wise nonlinearity; a linear
function:

g(a) = a.

The hidden state after l symbols is

hl =U(U(U(U(· · ·)+Wφ(xl−3))+Wφ(xl−2))+Wφ(xl−1))+Wφ(xl)

=

(
l−1

∏
l′=1

U

)
Wφ(x1)+

(
l−2

∏
l′=1

U

)
Wφ(x2)+ · · ·+UWφ(xl−1)+Wφ(xl),

=
l

∑
t=1

(
l−t

∏
l′=1

U

)
Wφ(xt)︸ ︷︷ ︸

(a)

(4.14)

where l is the length of the input sequence.
Let us assume that

• U is a full rank matrix

• The input sequence is sparse: ∑
l
t=1 Iφ(xt )6=0 = c, where c = O(1)

• [Wφ(x)]i > 0 for all i

and consider Eq. (4.14) (a):

ht ′
l =

(
l−t ′

∏
l′=1

U

)
Wφ(xt ′). (4.15)

Now, let’s look at what happens to Eq. (4.15). First, the eigendecomposition of the
matrix U:

U = QSQ−1,

where S is a diagonal matrix whose non-zero entries are eigenvalues. Q is an orthogo-
nal matrix. Then

l−t ′

∏
l′=1

U = QSl−t ′Q−1,

13 A parametric rectifier, or PReLU, is defined as

g(x) =
{

x, if x≥ 0
ax, otherwise ,

where a is a parameter to be estimated together with all the other parameters of a network.
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and (
l−t ′

∏
l′=1

U

)
Wφ(xt ′) = diag(Sl−t ′)� (QQ−1︸ ︷︷ ︸

=I

Wφ(xt ′)),

where � is an element-wise product.
What happens if the largest eigenvalue emax = maxdiag(S) is larger than 1, the

norm of hl will explode, i.e., ‖hl‖ → ∞. Furthermore, due to the assumption that
Wφ(xt ′)> 0, each element of hl will explode to infinity as well. The rate of growth is
exponentially with respect to the length of the input sequence, meaning that even when
the input sequence is not too long, the norm of the memory state grows quickly if emax
is reasonably larger than 1.

This happens, because the nonlinearity g is unbounded. If g is bounded from both
above and below, such as the case with tanh, the norm of the memory state is also
bounded. In the case of tanh : R→ [−1,1],

‖hl‖ ≤ dim(hl).

This is one reason why a logistic function, such as tanh and σ , is most widely used
with recurrent neural networks, compared to piecewise linear functions.14 I will call
this recurrent neural network with tanh as an element-wise nonlinear function a simple
recurrent neural network.

4.3.2 Is tanh a Blessing?
Now, the argument in the previous section may sound like tanh and σ are the nonlinear
functions that one should use. This seems quite convincing for recurrent neural net-
works, and perhaps so for feedforward neural networks as well, if the network is deep
enough.

Here let me try to convince you otherwise by looking at how the norm of backprop-
agated derivative behaves. Again, this is much easier to see if we assume the following:

• U is a full rank matrix

• The input sequence is sparse: ∑
l
t=1 Iφ(xt )6=0 = c, where c = O(1)

Similarly to Eq. (4.14), let us consider a forward computational path until hl , how-
ever without assuming a linear activation function:

hl = g(Ug(Ug(Ug(U(· · ·)+Wφ (xl−3))+Wφ (xl−2))+Wφ (xl−1))+Wφ (xl)) .

We will consider a subsequence of this process, in which all the input symbols are 0
except for the first symbol:

hl1 = g
(
Ug
(
U
(
· · ·g

(
Uhl0 +Wφ

(
xl0+1

)))))
.

14 However, it is not to say that piecewise linear functions are never used for recurrent neural networks.
See, for instance, [69, 6].
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It should be noted that as l approaches infinity, there will be at least one such sub-
sequence whose length also approaches infinity due to the sparsity of the input we
assumed.

From this equation, let’s look at

∂hl1

∂φ
(
xl0+1

) .
This measures the effect of the (l0+1)-th input symbol xl0+1 on the l1-th memory state
of the simple recurrent neural network. This is also the crucial derivative that needs to
be computed in order to compute the gradient of the cost function using the automated
backpropagation procedure described in Sec. 3.4.

This derivative can be rewritten as

∂hl1

∂φ
(
xl0+1

) = ∂hl1
∂hl0+1︸ ︷︷ ︸

(a)

∂hl0+1

∂hl0+1

∂hl0+1

∂φ
(
xl0+1

) .
Among these three terms in the right hand side, we will focus on the first one (a) which
can be further expanded as

∂hl1
∂hl0+1

=

∂hl1
∂hl1︸︷︷︸
(b)

∂hl1
∂hl1−1︸ ︷︷ ︸

(c)


∂hl1−1

∂hl1−1︸ ︷︷ ︸
(b)

∂hl1−1

∂hl1−2︸ ︷︷ ︸
(c)

 · · ·
∂hl0+2

∂hl0+2︸ ︷︷ ︸
(b)

∂hl0+2

∂hl0+1︸ ︷︷ ︸
(c)

 . (4.16)

Because this is a recurrent neural network, we can see that the analytical forms for
the terms grouped by the parentheses in the above equation are identical except for the
subscripts indicating the time index. In other words, we can simply focus on one of
those groups, and the resulting analytical form will be generally applicable to all the
other groups.

First, we look at Eq. (4.16) (b), which is nothing but a derivative of a nonlinear
activation function used in this simple recurrent neural network. The derivatives of the
widely used logistic functions are

σ
′(x) =σ(x)(1−σ(x)),

tanh′(x) =1− tanh2(x),

as described earlier in Sec. 3.4.1. Both of these functions’ derivatives are bounded:

0 < σ
′(x)≤ 0.25, (4.17)

0 < tanh′(x)≤ 1. (4.18)

In the simplest case in which g is a linear function (i.e., x = g(x),) we do not even
need to look at

∥∥∥ ∂ht
∂ht

∥∥∥. We simply ignore all the ∂ht
∂ht

from Eq. (4.16).
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Next, consider Eq. (4.16) (c). In this case of simple recurrent neural network, we
notice that we have already learned how to compute this derivative earlier in Sec. 3.3.2:

∂ht+1

∂ht
= U

From these two, we get

∂hl1
∂hl0+1

=

(
∂hl1
∂hl1

U
)(

∂hl1−1

∂hl1−1
U
)
· · ·
(

∂hl0+2

∂hl0+2
U
)

=
l1

∏
t=l0+2

(
∂ht

∂ht
U
)
.

Do you see how similar it looks like Eq. (4.15)? If the recurrent activation function
f is linear, this whole term reduces to

∂hl1
∂hl0+1

= Ul1−l0+1,

which according to Sec. 4.3.1, will explode as l→ ∞ if

emax > 1,

where emax is the largest eigenvalue of U. When emax < 1, it will vanish, i.e., ‖ ∂hl1
∂hl0+1

‖→
0, exponentially fast.

What if the recurrent activation function f is not linear at all? Let’s look at ∂ht
∂ht

U as

∂ht

∂ht
U =


f ′1 0 · · · 0
0 f ′2 · · · 0
...

... · · ·
...

0 0 · · · f ′nh


︸ ︷︷ ︸

=diag
(

∂ht
∂ht

)

(
QSQ−1) ,

where we used the eigendecomposition of U = QSQ−1. This can be re-written into

∂ht

∂ht
U = Q

(
diag

(
∂ht

∂ht

)
�S
)

Q−1.

This means that the eigenvalue of U will be scaled by the derivative of the recurrent ac-
tivation function at each timestep. In this case, we can bound the maximum eigenvalue
of ∂ht

∂ht
U by

et
max ≤ λemax,

where λ is the upperbound on g′ = ∂ht
∂ht

. See Eqs. (4.17)–(4.18) for the upperbounds of
the sigmoid and hyperbolic tangent functions.
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In other words, if the largest eigenvalue of U is larger than 1
λ

, it is likely that this
temporal derivative of hl1 with respect to hl0+1 will explode, meaning that its norm will
grow exponentially large. In the opposite case of emax <

1
λ

, the norm of the temporal
derivative likely shrinks toward 0. The former case is referred to as exploding gradient,
and the latter vanishing gradient. These cases were studied already at the very early
years of research in recurrent neural networks [9, 52].

Using tanh is a blessing in recurrent neural networks when running the network
forward, as I described in the previous section. This is however not necessarily true in
the case of backpropagating derivaties. Especially because, there is a higher chance of
vanishing gradient with tanh, or even worse with σ . Why? Because 1

λ
> 1 for almost

everywhere.

4.3.3 Are We Doomed?
Exploding Gradient Fortunately it turned out that the phenomenon of exploding
gradient is quite easy to address. First, it is straightforward to detect whether the ex-
ploding gradient happened by inspecting the norm of the gradient fo the cost with
respect to the parameters

∥∥∇θC̃
∥∥. If the gradient’s norm is larger than some predefined

threhold τ > 0, we can simply renormalize the norm of the gradient to be τ . Otherwise,
we leave it as it is.

In mathematics,

∇̃ =

{
τ

∇

‖∇‖ , if ‖∇‖> τ

∇, otherwise
,

where we used the shorthand notiation ∇ for ∇θC̃. ∇̃ is a rescaled gradient update
direction which will be used by the stochastic gradient descent (SGD) algorithm from
Sec. 2.2.2. This algorithm is referred to as gradient clipping [83].

Vanishing Gradient What about vanishing gradient? But, first, what does vanishing
gradient mean? We need to understand the meaning of this phenomenon in order to tell
whether this is a problem at all from the beginning.

Let us consider a case the variable-length output where |x| = |y| from Sec. 4.1.4.
Let’s assume that there exists a clear dependency between the output label yt and the
input symbol xt ′ , where t ′� t. This means that the empirical cost will decrease when
the weights are adjusted such that

log p(yt = y∗t | . . . ,φ(xt ′), . . .)

is maximized, where y∗t is the ground truth output label at time t. The value of φ(xt ′)
has great influence on the t-th output yt , and the influence can be measured by

∂ log p(yt = y∗t | . . .)
∂φ(xt ′)

.

Instead of exactly computing ∂ log p(yt=y∗t |...)
∂φ(xt′ )

, we can approximate it by the finite

difference method. Let ε ∈ Rdim(φ(xt′ )) be a vector of which each element is a very
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small real value (ε ≈ 0.) Then,

∂ log p(yt = y∗t | . . .)
∂φ(xt ′)

= lim
ε→0

(log p(yt = y∗t | . . . ,φ(xt ′)+ ε, . . .)

− log p(yt = y∗t | . . . ,φ(xt ′), . . . ,))� ε,

where � is an element-wise division. This shows that ∂ log p(yt=y∗t |...)
∂φ(xt′ )

computes the
difference in the t-th output probability with respect to the change in the value of the
t ′-th input.

In other words ∂ log p(yt=y∗t |...)
∂φ(xt′ )

directly reflects the degree to which the t-th output
yt depends on the t ′-th input xt ′ , according to the network. To put it in another way,
∂ log p(yt=y∗t |...)

∂φ(xt′ )
reflects how much dependency the recurrent neural network has cap-

tured the dependency between yt and xt ′ .
Let’s rewrite

∂ log p(yt = y∗t | . . .)
∂φ(xt ′)

=
∂ log p(yt = y∗t | . . .)

∂ht

∂ht

∂ht−1
· · · ∂ht ′+1

∂ht ′︸ ︷︷ ︸
(a)

∂ht ′

∂φ(xt)
.

The terms marked with (a) looks exactly identical to Eq. (4.16). We have already seen
that this term can easily vanish toward zero with a high probability (see Sec. 4.3.2.)

This means that the recurrent neural network is unlikely to capture this dependency.
This is especially true when the (temporal) distance between the output and input, i.e.,
|t− t ′| � 0.

The biggest issue with this vanishing behaviour is that there is no straightforward
way to avoid it. We cannot tell whether ∂ log p(yt=y∗t |...)

∂φ(xt′ )
≈ 0 is due to the lack of this

dependency in the true, underlying function or due to the wrong configuration (param-
eter setting) of the recurrent neural network. If we are certain that there are indeed
these long-term dependencies, we may simultaneously minimize the following auxil-
iary term together with the cost function:

T

∑
t=1

1−

∥∥∥ ∂C̃
∂ht+1

∂ht+1
∂ht

∥∥∥∥∥∥ ∂C̃
∂ht+1

∥∥∥
2

.

This term, which was introduced in [83], is minimized when the norm of the derivative
does not change as it is being backpropagated, effectively forcing the gradient not to
vanish.

This term however was found to help significantly only when the target task, or the
underlying function, does indeed exhibit long-term dependencies. How can we know
in advance? Pascanu et al. [83] showed this with the well-known toy tasks which were
specifically designed to exhibit long-term dependencies [52].

4.3.4 Gated Recurrent Units Address Vanishing Gradient
Will the same problems of vanishing gradient happen with the gated recurrent units
(GRU) or the long short-term memory units (LSTM)? Let us write the memory state at
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time t:

ht =ut � h̃t +(1−ut)�
(
ut−1� h̃t−1 +(1−ut−1)�

(
ut−2� h̃t−2 +(1−ut−2)� (· · ·)

))
=ut � h̃t +(1−ut)�ut−1� h̃t−1 +(1−ut)� (1−ut−1)�ut−2� h̃t−2 + · · ·

Let’s be more specific and see what happens to this with respect to xt ′ :

ht =ut � h̃t +(1−ut)�ut−1� h̃t−1 +(1−ut)� (1−ut−1)�ut−2� h̃t−2 + · · ·

+

(
∏

k=t,...,t ′+1
(1−uk)

)
�ut ′︸ ︷︷ ︸

(a)

� tanh(Wφ(xt ′)+U(rt ′ �ht ′−1)) , (4.19)

where ∏ is for element-wise multiplication.
What this implies is that the GRU effectively introduces a shortcut from time t ′ to

t. The change in xt ′ will directly influence the value of ht , and subsequently the t-th
output symbol yt . In other words, all the issue with the simple recurrent neural network
we discussed earlier in Sec. 4.3.3.

The update gate controls the strength of these shortcuts. Let’s assume for now that
the update gate is fixed to some predefined value between 0 and 1. This effectively
makes the GRU a leaky integration unit [6]. However, as it is perhaps clear from
Eq. (4.19) that we will inevitably run into an issue. Why is this so?

Let’s say we are sure that there are many long-term dependencies in the data. It is
natural to choose a large coefficient for the leaky integration unit, meaning the update
gate is close to 1. This will definitely help carrying the dependency across many time
steps, but this inevitably carries unnecessary information as well. This means that
much of the representational power of the output function gout(ht) is wasted in ignoring
those unnecessary information.

If the update gate is fixed to something substantially smaller than 1, all the shortcuts
(see Eq. (4.19) (a)) will exponentially vanish. Why? Because it is a repeated multipli-
cation of a scalar small than 1. In other words, it does not really help to have a leaky
integration unit in the place of a simple tanh unit.

This is however not the case with the actual GRU or LSTM, because those update
gates are not fixed but are adaptive with respect to the input. If the network detects
that there is an important dependency being captured, the update gate will be closed
(u j ≈ 0.) This will effectively strengthen the shortcut connection (see Eq. (4.19) (a).)
When the network detects that there is no dependency anymore, it will open the update
gate (u j ≈ 1), which effectively cuts off the shortcut. How does the network know, or
detect, the existence or lack of these dependencies? Do we need to manually code this
up? I will leave these questions for you to figure out.
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Chapter 5

Neural Language Models

5.1 Language Modeling: First Step
What does it mean for a machine to understand natural language? In other words, how
can we tell that the machine understood natural language? These are the two equivalent
questions that are at the core of this course.

One of the most basic capability of a machine that can signal us that it indeed
understands natural language is for the machine to tell how likely a given sentence
is. Of course, this is extremely ill-defined, as we probably cannot define the likeliness
of a sentence, because there are many different types of unlikeliness. For instance,
a sentence “Colorless green ideas sleep furiously” from Chomsky’s [32] is unlikely
according to our common sense, because

1. An object (“idea”) cannot be both “colorless” and “green.”

2. An object cannot “sleep” “furiously.”

3. An “idea” does not “sleep.”

On the other hand, this sentence is a grammatically correct sentence.
Let’s take a look at another sentence “Jane and me went to see a movie yesterday.”

Grammatically, this is not the most correct sentence one can make. It should be “Jane
and I went to see a movie yesterday.” Even with a grammatical error in the original
sentence however, the meaning of the sentence is clear to me, and perhaps is much more
understandable than the sentence “colorless green ideas sleep furiously.” Furthermore,
many people likely say this (saying “me” instead of “I”) quite often. This sentence is
thus likely according to our common sense, but is not likely according to the grammar.

This observation makes us wonder what is the criterion to use. Is it correct for a
machine to tell whether the sentence is likely by analyzing its grammatical correctness?
Or, is it possible that the machine should deem a sentence likely only when its meaning
agrees well with common sense regardless of its grammatical correctness in the most
strict sense?

As we discussed in the first lecture of the course, we are more interested in ap-
proaching natural language as a means for one to communicate ideas to a listener. In
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this sense, language use is a function which takes as input the surrounding environ-
ment, including the others’ speech, and returns linguistic response, and this function
is not given but learned via observing others’ use of language and the reinforcement
by the surrounding environment [97]. Also, throughout this course, we are not con-
cerned too much about the existing syntactic, or grammatical, structures underlying
natural language, which makes it difficult for us to say anything about the grammatical
correctness of a given sentence.

In short, we take the route here that the likeliness of a sentence be determined
based on its agreement with common sense. The common sense here is captured by
everyday use of natural language, which consequently implies that the statistics of
natural language use can be a strong indicator for determining the likely of a natural
language sentence.

5.1.1 What if those linguistic structures do exist
Of course, as we discussed earlier in Sec. 1.1 and in this section, not everyone agrees.
This is due to the fact that a perfect grammatical sentence may be considered unlikely,
just because it does not happen often. In other words, statistical approaches to language
modeling may conclude that a sentence with perfectly valid grammatical construction
is unlikely. Is this a problem?

This problem of telling how likely a given sentence is can be viewed very naturally
as building a probabilistic model of sentences. In other words, given a sentence S, what
is the probability p(S) of S? Let us briefly talk about what this means for the case of
viewing the likeliness of a sentence as equivalent to its grammatical correctness.1

We first assume that there is an underlying linguistic structure G which has gener-
ated the observed sentence S. Of course, we do not know the correct G in advance, and
unfortunately no one will tell us what the correct G is.2 Thus, G is a hidden variable
in this case. This hidden structure G generates the observed sentence S according to an
unknown conditional distribution p(S|G). Each and every grammatical structure G is
assigned a prior probability which is also unknown in advance.3

With the conditional distribution S|G and the prior distribution G, we easily get the
joint distribution S,G by

p(S,G) = p(S|G)p(G),

from the definition of conditional probability.4 From this joint distribution we get the
1 Why briefly and why here? Because, we will not pursue this line at all after this section.
2 Here, the correct G means the G that generated S, not the whole structure of G which is assumed to

exist according to a certain set of rules.
3 This is not necessarily true. If we believe that each and every grammatical correct sentence is equally

likely and that each correct grammatical structure generates a single corresponding sentence, the prior dis-
tribution over the hidden linguistic structure is such that any correct structure is given an equal probability
while any incorrect structure is given a zero probability. But, of course, if we think about it, there are clearly
certain structures that are more prevalent and others that are not.

4 A conditional probability of A given B is defined as

p(A|B) = p(A,B)
p(B)
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distribution over a given sentence S by marginalizing out G:

p(S) = ∑
G

p(S,G).

This means that we should compute how likely a given sentence S is with respect to all
possible underlying linguistic structure. This is very likely intractable, because there
must be infinite possible such structures.

Instead of computing p(S) exactly we can simply look at its lowerbound. For in-
stance, one simplest, and probably not the best, way to do so is

p(S) = ∑
G

p(S,G)≥ p(S, Ĝ),

where Ĝ = argmaxG p(S,G) = argmaxG p(G|S).5
This lowerbound is tight, i.e., p(S) = p(S, Ĝ), when there is only a single true un-

derlying linguistic structure Ĝ given S. What this says is that there is no other possible
linguistic structure possible for a single observed sentence, i.e., no ambiguity in infer-
ring the correct linguistic structure. In other words, we can compute the probability or
likeliness of a given sentence by inferring its correct underlying linguistic structure.

However, there are a few issues here. First, it is not clear which formalism G
follows, and we have briefly discussed about this at the very beginning of this course.
Second, it is quite well known that most of the formalisms do indeed have uncertainty
in inference. Again, we looked at one particular example in Sec. 1.1.2. These two
issues make many people, including myself, quite uneasy about this type of model-
based approaches.

In the remaining of this chapter, I will thus talk about model-free approaches (as
opposed to these model-based approaches.)

5.1.2 Quick Note on Linguistic Units
Before continuing, there is one question that must be bugging you, or at least has
bugged me a lot: what is the minimal linguistic unit?

If we think about written text, the minimal unit does seem like a character. With
spoken language, the minimal unit seems to be a phoneme. But, is this the level at
which we want to model the process of understanding natural language? In fact, to
most of the existing natural language processing researchers as well as some (or most)
linguists, the answer to this question is a hard “no.”

The main reason is that these low-level units, both characters and phonemes, do not
convey any meaning themselves. Does a Latin alphabet “q” have its own meaning? The
answer by most of the people will be “no.” Then, starting from this alphabet “q”, how
far should we climb up in the hierarchy of linguistic units to reach a level at which the
unit begins to convey its own meaning? “qu” does not seem to have its own meaning
still. “qui” in French means “who”, but in English it does not really say much. “quit”
in English is a valid word that has its own meaning, and similarly “quiet” is a valid
word that has its own meaning, quite apart from that of “quit.”

5 This inequality holds due to the definition of probability, which states that p(X)≥ 0 and ∑X p(X) = 1.
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It looks like a word is the level at which meaning begins to form itself. However,
this raises a follow-up question on the definition of a word: What is a word?

It is tempting to say that a sequence of non-blank characters is a word. This makes
everyone’s life so much easier, because we can simply split each sentence by a blank
space to get a sequence of words. Unfortunately this is a very bad strategy. The sim-
plest counter example to this definition of words is a token (which I will use to refer to
a sequence of non-blank characters) consisting of a word followed by a punctuation.
If we simply split a sentence into words by blank spaces, we will get a bunch of re-
dundant words. For instance, “llama”, “llama,”, “llama.”, “llama?”, “”llama”, “llama””
and “llama!” will all be distinct words. We will run into an issue of exploding vocab-
ulary with any morphologically rich language. Furthermore, in some languages such
as Chinese, there is no blank space at all inside a sentence, in which case this simple
strategy will completely fail to give us any meaningful, small linguistic unit other than
sentences.

Now at this point it almost seems like the best strategy is to use each character
as a linguistic unit. This is not necessarily true due to the highly nonlinear nature of
orthography.6 There are many examples in which this nonlinear nature shows its dif-
ficulty. One such example is to consider the following three words: “quite”, “quiet”
and “quit”.7 All three character sequences have near identical forms, but their corre-
sponding meanings differ from each other substantially. In other words, any function
that maps from these character sequences to the corresponding meanings will have to
be extremely nonlinear and thus difficult to be learned from data. Of course, this is an
area with active research, and I hope I am not giving you an impression that characters
are not the units to use (see, e.g., [61].)

Now then the question is whether there is some middle ground between characters
and words (or blank-space-separated tokens) that are more suitable to be used as ele-
mentary linguistic units (see, e.g., [93].) Unfortunately this is again an area with active
research. Hopefully, we will have time later in the course to discuss this issue further.
For now, we will simply use blank-space-separated tokens as our linguistic units.

5.2 Statistical Language Modeling
Regardless of which linguistic unit we use, any natural language sentence S can be
represented as a sequence of T discrete symbols such that

S = (w1,w2, . . . ,wT ).

Each symbol is one element from a vocabulary V which contains all possible symbols:

V =
{

v1,v2, . . . ,v|V |
}
,

where |V | is used to mean the size of the vocabulary, or the number of all symbols.

6 Orthography is defined as “the study of spelling and how letters combine to represent sounds and form
words.”

7 I would like to thank Bart van Merrienboer for this example.
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The problem of language modeling is equivalent to finding a model that assigns a
probability p(S) to a sentence:

p(S) = p(w1,w2, . . . ,wT ). (5.1)

Of course, we are not given this distribution and need to learn this from data.
Let’s say we are given data D which contains N sentences such that

D =
{

S1,S2, . . . ,SN} ,
where each sentence Sn is

Sn = (wn
1,w

n
2, . . . ,w

n
T n),

meaning that each sentence has a different length.
Given this data D, let us estimate the probability of a certain sentence S. This is

quite straightforward:

p(S) =
∑

N
n=1 IS=Sn

N
, (5.2)

where I is the indicator function defined earlier in Eq. (3.7) which is defined as

IS=Sn =

{
1, if S = Sn

0, otherwise

This is equivalent to counting how many times S occurs in the data.8

5.2.1 Data Sparsity/Scarcity
Has this solved the whole problem of language model? No, unfortunately not. The
very major issue here is that however large your corpus is, it is unlikely to contain all
reasonable sentences in the world. Let’s do simple counting here.

There are |V | symbols in a vocabulary. Each sentence can be as long as T symbols.
Then, there are |V |T possible sentences. A reasonable range for the sentence length T
is roughly between 1 to 50, meaning that there are

50

∑
T=1
|V |T

possible sentences. As it’s quite clear, this is a huge space of sentences.
Of course, not all those sentences are plausible. This is however conceivable that

even the fraction of that space will be gigantic, especially considering that the size of
vocabulary often goes up to 100k to 1M words. Many of the plausible sentences will
not appear in the corpus. Is this true? In fact, yes, it is.

It is quite easy to find such an example. For instance, Google Books Ngram
Viewer9 lets you search for a sentence or a sequence of up to five English words from

8 A data set consisting of (written) text is often referred to as a corpus.
9 https://books.google.com/ngrams
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Figure 5.1: A picture of a llama lying down. From https://en.wikipedia.
org/wiki/Llama

the gigantic corpus of Google Books. Let me try to search for a very plausible sen-
tence “I like llama,” and the Google Books Ngram10 Viewer returns an error saying
that “Ngrams not found: I like llama.” (see Fig. 5.1 in the case you are not familiar
with a llama.) See Fig. 5.2 as an evidence.

Figure 5.2: A resulting page of Google Books Ngram Viewer for the query “I like
llama”.

What does this mean for the estimate in Eq. (5.2)? It means that this estimator will
be too harsh for many of the plausible sentences that do not occur in the data. As soon
as a given sentence does not appear exactly as it is in the corpus, this estimator will
say that there is a zero probability of the given sentence. Although the sentence “I like
llama” is a likely sentence, according to this estimator in Eq. (5.2), it will be deemed
extremely unlikely.

This problem is due to the issue of data sparsity. Data sparsity here refers to the
10 We will discuss what Ngrams are in the later sections.

60

https://en.wikipedia.org/wiki/Llama
https://en.wikipedia.org/wiki/Llama


phenomenon where a training set does not cover the whole space of input sufficiently.
In more concrete terms, most of the points in the input space, which have non-zero
probabilities according to the true, underlying distribution, do not appear in the training
set. If the size of a training set is assumed to be fixed, the severity of data sparsity
increases as the average, or maximum length of the sentences. This follows from the
fact that the size of the input space, the set of all possible sentences, grows with respect
to the maximum possible length of a sentence.

In the next section, we will discuss the most straightforward approach to addressing
this issue of data sparsity.

5.3 n-Gram Language Model
The fact that the issue of data sparsity worsens as the maximum length of sentences
grows hints us a straightforward approach to addressing this: limit the maximum length
of phrases/sentences we estimate a probability on. This idea is a foundation on which
a so-called n-gram language model is based.

In the n-gram language model, we first rewrite the probability of a given sentence
S from Eq. (5.1) into

p(S) = p(w1,w2, . . . ,wT ) = p(w1)p(w2|w1) · · · p(wk|w<k)︸ ︷︷ ︸
(a)

· · · p(wT |w<T ), (5.3)

where w<k denotes all the symbols before the k-th symbol wk. From this, the n-
gram language model makes an important assumption that each conditional probability
(Eq. (5.3) (a)) is only conditioned on the n−1 preceding symbols only, meaning

p(wk|w<k)≈ p(wk|wk−n,wk−n+1, . . . ,wk−1).

This results in

p(S)≈
T

∏
t=1

p(wt |wt−n, . . . ,wt−1).

What does this mean? Under this assumption we are saying that any symbol in a
sentence is predictable based on the n− 1 preceding symbols. This is in fact a quite
reasonable assumption in many languages. For instance, let us consider a phrase “I am
from”. Even without any more context information surrounding this phrase, such as
surrounding words and the identity of a speaker, we know that the word following this
phrase will be likely a name of place or country. In other words, the probability of a
name of place or country given the three preceding words “I am from” is higher than
that of any other words.

But, of course, this assumption does not always work. For instance, consider a
phrase “In Korea, more than half of all the residents speak Korean︸ ︷︷ ︸

(a)

.” Let us focus on

the last word “Korean” (marked with (a).) We immediately see that it will be useful
to condition its conditional probability on the second word “Korea”. Why is this so?
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Because the conditional probability of “Korean” following “speak” should significantly
increase over all the other words (that correspond to other languages) knowing the fact
that the sentence is talking about the residents of “Korea”. This requires the conditional
distribution to be conditioned on at least 10 words (“,” is considered a separate word,)
and this certainly will not be captured by n-gram language model with n < 9.

From these examples it is clear that there’s a natural trade-off between the quality
of probability estimate and statistical efficiency based on the choice of n in n-gram
language modeling. The higher n the longer context the conditional distribution has,
leading to a better model/estimate (second example,) however resulting in a situation
of more sever data sparsity (see Sec. 5.2.1.) On the other hand, the lower n leads to
the worse language modeling (second example), but this will avoid the issue of data
sparsity.

n-gram Probability Estimation We can estimate the n-gram conditional probability
p(wk|wk−n, . . . ,wk−1) from the training corpus. Since it is a conditional probability, we
need to rewrite it according to the definition of the conditional probability:

p(wk|wk−n, . . . ,wk−1) =
p(wk−n, . . . ,wk−1,wk)

p(wk−n, . . . ,wk−1)
(5.4)

This rewrite implies that the n-gram probability is equivalent to counting the occur-
rences of the n-gram (wk−n, . . . ,wk) among all n-grams starting with (wk−n, . . . ,wk−1).

Let us consider the denominator first. The denominator can be computed by the
marginalizing the k-th word (w′ below):

p(wk−n, . . . ,wk−1) = ∑
w′∈V

p(wk−n, . . . ,wk−1,w′). (5.5)

From Eq. (5.2), we know how to estimate p(wk−n, . . . ,wk−1,w′):

p(wk−n, . . . ,wk−1,w′)≈
c(wk−n, . . . ,wk−1,w′)

Nn
, (5.6)

where c(·) is the number of occurrences of the given n-gram in the training corpus, and
Nn is the number of all n-grams in the training corpus.

Now let’s plug Eq. (5.6) into Eqs. (5.4)–(5.5):

p(wk|wk−n, . . . ,wk−1) = �
�1Nn

c(wk−n, . . . ,wk−1,wk)

�
�1Nn

∑w′∈V c(wk−n, . . . ,wk−1,w′)
(5.7)

5.3.1 Smoothing and Back-Off
Note that I am missing many references this section, as I am writing this on my travel.
I will fill in missing references once I’m back from my travel.

The biggest issue of having an n-gram that never occurs in the training corpus is
that any sentence containing the n-gram will be given a zero probability regardless
of how likely all the other n-grams are. Let us continue with the example of “I like
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llama”. With an n-gram language model built using all the books in Google Books, the
following, totally valid sentence11 will be given a zero probability:

• “I like llama which is a domesticated South American camelid.12

Why is this so? Because the probability of this sentence is given as a product of all
possible trigrams:

p(“I”, “like”, “llama”, “which”, “is”, “a”, “domesticated”, “South”, “American”, “camelid”)
=p(“I”)p(“like”|“I”) p(“llama”|“I”,“like”)︸ ︷︷ ︸

=0

· · · p(“camelid”|“South”,“American”)

=0

One may mistakenly believe that we can simply increase the size of corpus (col-
lecting even more data) to avoid this issue. However, remember that “data sparsity is
almost always an issue in statistical modeling” [24], which means that more data call
for better statistical models with often more parameters leading to the issue of data
sparsity.

One way to alleviate this problem is to assign a small probability to all unseen
n-grams. At least, in this case, we will assign some small, non-zero probability to
any sentence, thereby avoiding a valid, but zero-probability sentence under the n-gram
language model. One simplest implementation of this approach is to assume that each
and every n-gram occurs at least α times and any occurrence in the training corpus is
in addition to this background occurrence.

In this case, the estimate of an n-gram becomes

p(wk|wk−n, . . . ,wk−1) =
α + c(wk−n,wk−n+1, . . . ,wk)

∑w′∈V (α + c(wk−n,wk−n+1, . . . ,w′))

=
α + c(wk−n,wk−n+1, . . . ,wk)

α|V |+∑w′∈V c(wk−n,wk−n+1, . . . ,w′)
,

where c(wk−n,wk−n+1, . . . ,wk) is the number of occurrences of the given n-gram in the
training corpus. c(wk−n,wk−n+1, . . . ,w′) is the number of occurrences of the given n-
gram if the last word wk is substituted with a word w′ from the vocabulary V . α is often
set to be a scalar such that 0 < α ≤ 1. See the difference from the original estimate in
Eq. (5.7).

It is quite easy to see that this is a quite horrible estimator: how does it make sense
to say that every unseen n-gram occurs with the same frequency? Also, knowing that
this is a horrible approach, what can we do about this?

One possibility is to smooth the n-gram probability by interpolating between the
estimate of the n-gram probability in Eq. (5.7) and the estimate of the (n− 1)-gram
probability. This can written down as

pS(wk|wk−n, . . . ,wk−1) =λ (wk−n, . . . ,wk−1)p(wk|wk−n, . . . ,wk−1)

+(1−λ (wk−n, . . . ,wk−1))pS(wk|wk−n+1, . . . ,wk−1). (5.8)

11 This is not strictly true, as I should put “a” in front of the llama.
12 The description of a llama taken from Wikipedia: https://en.wikipedia.org/wiki/Llama
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This implies that the n-gram (smoothed) probability is computed recursively by the
lower-order n-gram probabilities. This is clearly an effective strategy, considering that
falling off to the lower-order n-grams contains at least some information of the original
n-gram, unlike the previous approach of adding a scalar α to every possible n-gram.

Now a big question here is how the interpolation coefficient λ is computed. The
simplest approach we can think of is to fit it to the data as well. However, the situ-
ation is not that easy, as using the same training corpus, which was used to estimate
p(wk|wk−n, . . . ,wk−1) according to Eq. (5.7), will lead to a degenerate case. What is
this degenerate case? If the same corpus is used to fit both the non-smoothed n-gram
probability and λ ’s, the optimal solution is to simply set all λ ’s to 1, as that will assign
the high probabilities to all the n-grams. Therefore, one needs to use a separate corpus
to fit λ ’s.

More generally, we may rewrite Eq. (5.8) as

pS(wk|wk−n, . . . ,wk−1) =

{
α(wk|wk−n, . . . ,wk−1), if c(wk−n, . . . ,wk−1,wk)> 0
γ(wk−n+1, . . . ,wk)pS(wk|wk−n+1, . . . ,wk−1), otherwise

(5.9)

following the notation introduced in [63]. Specific choices of α and γ lead to a number
of different smoothing techniques. For an extensive list of these smoothing techniques,
see [24].

Before ending this section on smoothing techniques for n-gram language modeling,
let me briefly describe one of the most widely used smoothing technique, called the
modified Kneser-Ney smoothing (KN smoothing), described in [24]. This modified
KN smoothing is efficiently implemented in the open-source software package called
KenLM [51].

First, let us define some quantities. We will use nk to denote the total number of
n-grams that occur exactly k times in the training corpus. With this, we define the
following so-called discounting factors:

Y =
n1

n1 +2n2

D1 =1−2Y
n2

n1

D2 =2−3Y
n3

n2

D3+ =3−4Y
n4

n3
.

Also, let us define the following quantities describing the number of all possible words
following a given n-gram with a specified frequency l:

Nl(wk−n, . . . ,wk−1) = |{c(wk−n, . . . ,wk−1,wk) = l}|

The modified KN smoothing then defines α in Eq. (5.9) to be

α(wk|wk−n, . . . ,wk−1) =
c(wk−n, . . . ,wk−1,wk)−D(c(wk−n, . . . ,wk−1,wk))

∑w′∈V c(wk−n, . . . ,wk−1,w′)
,
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where D is

D(c) =


0, if c = 0
D1, if c = 1
D2, if c = 2
D3+, if c≥ 3

And, γ is defined as

γ(wk−n, . . . ,wk−1) =
D1N1(wk−n, . . . ,wk−1)+D2N2(wk−n, . . . ,wk−1)+D3+N3+(wk−n, . . . ,wk−1)

∑w′∈V c(wk−n, . . . ,wk−1,w′)
.

For details on how this modified KN smoothing has been designed, see [24].

5.3.2 Lack of Generalization
Although n-gram language modelling works like a charm in many cases. This is still
not totally satisfactory, because of the lack of generalization. What do I mean by
generalization here?

Consider an example where three trigrams13 were observed from a training corpus:
“chases a cat”, “chases a dog” and “chases a rabbit”. There is a clear pattern here. The
pattern is that it is highly likely that “chases a” will be followed by an animal.

How do we know this? This is a trivial example of humans’ generalization abil-
ity. We have noticed a higher-level concept, in this case an animal, from observing
words such as “cat”, “dog” and “rabbit”, and based on this concept, we generalize this
knowledge (that “chases a” is followed by an animal) to unseen trigrams in the form of
“chases a [animal]”.

This however does not happen with n-gram language model. As an example, let’s
consider a trigram “chases a llama”. Unless this specific trigram occurred more than
once in the training corpus, the conditional probability given by n-gram language mod-
eling will be zero.14 This issue is closely related to data sparsity, but the main differ-
ence is that it is not the lack of data, or n-grams, but the lack of world knowledge. In
other words, there exist relevant n-grams in the training corpus, but n-gram language
modelling is not able to exploit these.

At this point, it almost seems trivial to address this issue by incorporating existing
knowledge into language modelling. For instance, one can think of using a dictionary
to find the definition of a word in interest (continuing on from the previous example,
the definition of “llama”) and letting the language model notice that “llama” is a “a

13 Is “trigram” a proper term? Certainly not, but it is widely accepted by the whole community of natural
language processing researchers. Here’s an interesting discussion on how n-grams should be referred to
as, from [77]: “these alternatives are usually referred to as a bigram, a trigram, and a four-gram model,
respectively. Revealing this will surely be enough to cause any Classicists who are reading this book to stop,
and to leave the field to uneducated engineering sorts ... with the declining levels of education in recent
decades ... some people do make an attempt at appearing educated by saying quadgram ”

14 Here we assume that no smoothing or backoff is used. However, even when these techniques are used,
we cannot be satisfied, since the probability assigned to this trigram will be at best reasonable up to the point
that the n-gram language model is giving as high probability as the bigram “chases a”. In other words, we do
not get any generalization based on the fact that a “llama” is an animal similar to a “cat”, “dog” or “rabbit”.
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domesticated pack animal of the camel family found in the Andes, valued for its soft
woolly fleece.” Based on this, the language model should figure out that the probability
of “chases a llama” should be similar to “chases a cat”, “chases a dog” or “chases a
rabbit” because all “cat”, “dog” and “rabbit” are animals according to the dictionary.

This is however not satisfactory for us. First, those definitions are yet another
natural language text, and letting the model understand it becomes equivalent to nat-
ural language understanding (which is the end-goal of this whole course!) Second,
a dictionary or any human-curated knowledge base is an inherently limited resource.
These are limited in the sense that they are often static (not changing rapidly to reflect
the changes in language use) and are often too generic, potentially not capturing any
domain-specific knowledge.

In the next section, I will describe an approach purely based on statistics of natural
language that is able to alleviate this lack of generalization.

5.4 Neural Language Model
One thing we notice from n-gram language modelling is that this boils down to com-
puting the conditional distribution of a next word wk given n− 1 preceding words
wk−n, . . . ,wk−1. In other words, the goal of n-gram language modeling is to find a
function that takes as input n−1 words and returns a conditional probability of a next
word:

p(wk|wk−n, . . . ,wk−1) = f wk
θ
(wk−n, . . . ,wk−1).

This is almost exactly what we have learned in Chapter 2.
First, we should define the input to this language modelling function. Clearly the

input will be a sequence of n− 1 words, but the question is how each of these words
will be represented. Since our goal is to put the least amount of prior knowledge, we
want to represent each word such that each and every word in the vocabulary is equi-
distant away from the others. One encoding scheme that achieves this goal is 1-of-K
coding.

In this 1-of-K coding scheme, each word i in the vocabulary V is represented as a
binary vector wi whose sum equals 1. To denote the i-th word with the vector wi, we
set the i-th element of the vector wi to be 1 (and consequently all the other elements
are set to zero.) Mathematically,

wi = [0,0, . . . , 1︸︷︷︸
i-th element

, . . . ,0]> ∈ {0,1}|V | (5.10)

This kind of vector is often called a one-hot vector.
It is easy to see that this encoding scheme perfectly fits our goal of having minimal

prior, because

|wi−w j|=
{

1, if i 6= j
0, otherwise
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Now the input to our function is a sequence of n− 1 such vectors, which I will
denote by (w1,w2, . . . ,wn−1). As we will use a neural network as a function approx-
imator here,15 these vectors will be multiplied with a weight matrix E. After this, we
get a sequence of continuous vectors (p1,p2, . . . ,pn−1), where

p j = E>w j (5.11)

and E ∈ R|V |×d .
Before continuing to build this function, let us see what it means to multiply the

transpose of a matrix with an one-hot vector from left. Since only one of the elements
of the one-hot vector is non-zero, all the rows of the matrix will be ignored except for
the row corresponding to the index of the non-zero element of the one-hot vector. This
row is multiplied by 1, which simply gives us the same row as the result of this whole
matrix–vector multiplication. In short, the multiplication of the transpose of a matrix
with an one-hot vector is equivalent to slicing out a single row from the matrix.

In other words, let

E =


e1
e2
...
e|V |

 , (5.12)

where ei ∈ Rd . Then,

E>wi = ei.

This view has two consequences. First, in practice, it will be much more efficient
computationally to implement this multiplication as a simple table look-up. For in-
stance, in Python with NumPy, do

p = E[i,:]

instead of

p = numpy.dot(E.T, w_i)

Second, from this perspective, we can see each row of the matrix E as a continuous-
space representation of a corresponding word. ei will be a vector representation of the
i-th word in the vocabulary V . This representation is often called a word embedding
and should reflect the underlying meaning of the word. We will discuss this further
shortly.

Closely following [8], we will simply concatenate the continuous-space represen-
tations of the input words such that

p =
[
p1;p2; . . . ;pn−1]>

15 Obviously, this does not have to be true, but at the end of the day, it is unclear if there is any parametric
function approximation other than neural networks.
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This vector p is a representation of n−1 input words in a continuous vector space and
often referred to as a context vector.

This context vector is fed through a composition of nonlinear feature extraction
layers. We can for instance apply the simple transformation layer from Eq. (3.8) such
that

h = tanh(Wp+b), (5.13)

where W and b are the parameters.
Once a set of nonlinear layers has been applied to the context vector, it’s time to

compute the output probability distribution. In this case of language modelling, the
distribution outputted by the function is a categorical distribution. We discussed how
we can build a function to return a categorical distribution already in Sec. 3.1.2.

As a recap, a categorical distribution defines a probability of one event happening
among K discrete events. The probability of the k-th event happening is often denoted
as µk, and

K

∑
k=1

µk = 1.

Therefore, the function needs to return a K-dimensional vector [µ1,µ2, . . . ,µK ]. In this
case of language modelling, K = |V | and µi corresponds to the probability of the i-th
word in the vocabulary for the next word.

As discussed earlier in Sec. 3.1.2, we can use softmax to compute each of those
output probabilities:

p(wn = k|w1,w2, . . . ,wn−1) = µk =
exp(u>k h+ ck)

∑
|V |
k′=1 exp(u>k′h+ ck′)

, (5.14)

where uk ∈ Rdim(h).
This whole function is called a neural language model. See Fig. 5.3 (a) for the

graphical illustration of neural language model.

5.4.1 How does Neural Language Model Generalize to Unseen n-
Grams? – Distributional Hypothesis

Now that we have described neural language model, let us take a look into what hap-
pens inside. Especially, we will focus on how the model generalizes to unseen n-grams.

The previously described neural language model can be thought of as a composite
of two function (g ◦ f ). The first stage f projects a sequence of context words, or
preceding n−1 words to a continuous vector space:

f : {0,1}|V |×n−1→ Rd

We will call the resulting vector h a context vector. The second stage g maps this
continuous vector h to the target word probability, by applying affine transformation to
the vector h followed by softmax normalization.
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Figure 5.3: (a) Schematics of neural language model. (b) Example of how neural
language model generalizes to an unseen n-gram.

Let us look more closely at what g does in Eq. (5.14). If we ignore the effect of
the bias ck for now, we can clearly see that the probability of the k-th word in the
vocabulary is large when the output vector uk (or the k-th row of the output matrix U)
is well aligned with the context vector h. In other words, the probability of the next
word being the k-th word in the vocabulary is roughly proportional to the inner product
between the context vector h and the corresponding target word vector uk.

Now let us consider two context vectors h j and hk. These contexts are followed by
a similar set of words, meaning that the conditional distributions of the next word are
similar to each other. Although these distributions are defined over all possibility target
words, let us look at the probabilities of only one of the target words wl :

pl
j =p(wl |h j) =

1
Z j

exp
(

w>l h j

)
,

pl
k =p(wl |hk) =

1
Zk

exp
(

w>l hk

)
.

The ratio between pl
j and pl

k is then16

pl
j

pl
k
=

Zk

Z j
exp
(

w>l (h j−hk)
)
.

From this, we can clearly see that in order for the ratio
pl

j

pl
k

to be 1, i.e., pl
j = pl

k,

w>l (h j−hk) = 0. (5.15)

16 Note that both pl
j and pl

k are positive due to our use of softmax.
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Now let us assume that wl is not an all-zero vector, as otherwise it will be too dull
a case. In this case, the way to achieve the equality in Eq. (5.15) is to drive the context
vectors h j and hk to each other. In other words, the context vectors must be similar
to each other (in terms of Euclidean distance) in order to result in similar conditional
distributions of the next word.

What does this mean? This means that the neural language model must project
(n−1)-grams that are followed by the same word to nearby points in the context vec-
tor space, while keeping the other n-grams away from that neighbourhood. This is
necessary in order to give a similar probability to the same word. If two (n−1)-grams,
which are followed by the same word in the training corpus, are projected to far away
points in the context vector space, it naturally follows from this argument that the prob-
ability over the next word will differ substantially, resulting in a bad language model.

Let us consider an extreme example, where we do bigram modeling with the train-
ing corpus comprising only three sentences:

• There are three teams left for the qualification.

• four teams have passed the first round.

• four groups are playing in the field.

We will focus on the bold-faced phrases; “three teams”, “four teams” and “four group”.
The first word of each of these bigrams is a context word, and neural language model
is asked to compute the probability of the word following the context word.

It is important to notice that neural language model must project “three” and “four”
to nearby points in the context space (see Eq. (5.13).) This is because the context
vectors from these two words need to give a similar probability to the word “teams”.
This naturally follows from our discussion earlier on how dot product preserves the
ordering in the space. And, from these two context vectors (which are close to each
other), the model assigns similar probabilities to “teams” and “groups”, because they
occur in the training corpus. In other words, the target word vector uteams and ugroups
will also be similar to each other, because otherwise the probability of “teams” given
“four” (p(teams|four)) and “groups” given “four” (p(groups|four)) will be very differ-
ent despite the fact that they occurred equally likely in the training corpus.

Now, let’s assume the case where we use the neural language model trained on
this tiny training corpus to assign a probability to an unseen bigram “three groups”.
The neural language model will project the context word “three” to a point in the con-
text space close to the point of “four”. From this context vector, the neural language
model will have to assign a high probability to the word “groups”, because the context
vector hthree and the target word vector ugroups well align. Thereby, even without ever
seeing the bigram “three groups”, the neural language model can assign a reasonable
probability. See Fig. 5.3 (b) for graphical illustration.

What this example shows is that neural language model automatically learns the
similarity among different context words (via context vectors h), and also among dif-
ferent target words (via target word vectors uk), by exploiting co-occurrences of words.
In this example, the neural language model learned that “four” and “three” are similar
from the fact that both of them occur together with “teams”. Similarly, in the target
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side, the neural language model was able to capture the similarity between “teams”
and “groups” by noticing that they both follow a common word “four”.

This is a clear, real-world demonstration of the so-called distributional hypothe-
sis. Distributional hypothesis states that “words which are similar in meaning appear
in similar distributional contexts” [41]. By observing which words a given word co-
occurs together, it is possible to peek into the word’s underlying meaning. Of course,
this is only a partial picture17 into the underlying meaning of each word, or as a mat-
ter of fact a phrase, but surely still a very interesting property that is being naturally
exploited by neural language model.

In neural language model, the most direct way to observe the effect of this dis-
tributional hypothesis/structure is to investigate the first layer’s weight matrix E in
Eq. (5.12). This weight matrix can be considered as a set of dense vectors of the
words in the input vocabulary

{
e1,e2, . . . ,e|V |

}
, and any visualization technique, such

as principal component analysis (PCA) or t-SNE [104], can be used to project each
high-dimensional word vector into a lower-dimensional space (often 2-D or 3-D).

5.4.2 Continuous Bag-of-Words Language Model:
Maximum Pseudo–Likelihood Approach

This is about time someone asks a question why we are only considering the preceding
words when doing language modelling. Is it a good assumption that the conditional
distribution over a word is only dependent on preceding words?

In fact, we do not have to do so. We can certainly model a natural language sentence
such that each word in a sentence is conditioned on 2n surrounding words (n words to
the left and n words to the right.) In this case, we get a Markov random field (MRF)
language model [56].

Figure 5.4: An example Markov random field language model (MRF-LM) with the
order n = 1.

In a Markov random field (MRF) language model (MRF-LM), we say each word in
a given sentence is a random variable wi. We connect each word with its 2n surrounding
words with undirected edges, and these edges represent the conditional dependency
structure of the whole MRF-LM. An example of an MRF-LM with n = 1 is shown in
Fig. 5.4.

A probability over a Markov random field is defined as a product of clique po-
tentials. A potential is defined for each clique as a positive function whose input is
the values of the random variables in the clique. In the case of MRF-LM, we will
assign 1 as a potential to every clique except for cliques of two random variables (in

17 We will discuss why this is only a partial picture later on.
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other words, we only use pairwise potentials only.) The pairwise potential between the
words i and j is defined as

φ(wi,w j) = exp
(
(E>wi)>E>w j

)
= exp

(
e>wiew j

)
,

where E is from Eq. (5.12), and wi is the one-hot vector of the i-th word. One must
note that this is one possible implementation of the pairwise potential, and there may be
other possibilities, such as to replace the dot product between the word vectors (e>wi

ew j )
with a deeper network.

With this pairwise potential, the probability over the whole sentence is defined as

p(w1,w2, . . . ,wT ) =
1
Z

T−n

∏
t=1

t+n

∏
j=t

φ(wt ,w j) =
1
Z

exp

(
T−n

∑
t=1

e>wt ew j

)
,

where Z is the normalization constant. This normalization constant makes the product
of the potentials to be a probability and often is at the core of computational intractabil-
ity in Markov random fields.

Figure 5.5: Gray nodes indicate the Markov blank of the fourth word.

Although compute the full sentence probability is intractable in this MRF-LM, it is
quite straightforward to compute the conditional probability of each word wi given all
the other words. When computing the conditional probability, we must first notice that
the conditional probability of wi only depends on the values of other words included
in its Markov blanket. In the case of Markov random fields, the Markov blanket of
a random variable is defined as a set of all immediate neighbours, and it implies that
the conditional probability of wi is dependent only on n preceding words and the n
following words. See Fig. 5.5 for an example.

Keeping this in mind, we can easily see that

p(wi|wi−n, . . . ,wi−1,wi+1, . . . ,wi+n) =
1
Z′

exp

(
e>wi

(
n

∑
k=1

ewi−k +
n

∑
k=1

ewi+k

))
,

where Z′ is a normalization constant computed by

Z′ = ∑
v∈V

exp

(
e>v

(
n

∑
k=1

ewi−k +
n

∑
k=1

ewi+k

))
.

Do you see a stark similarity to neural language model we discussed earlier? This
conditional probability is a shallow neural network with a single linear hidden layer
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Figure 5.6: Continuous Bag-of-Words model approximates the conditional distribution
over the j-th word w j under the MRF-LM.

whose input are the context words (n preceding and n following words) and the output
is the conditional distribution of the center word wi. We will talk about this shortly in
more depth. See Fig. 5.6 for graphical illustration.

Now we know that it is often difficult to compute the full sentence probability
p(w1, . . . ,wT ) due to the intractable normalization constant Z. We however know how
to compute the conditional probabilities (for all words) quite tractably. The former
fact implies that it is perhaps not the best idea to maximize log-likelihood to train this
model.18 The latter however sheds a bit of light, because we can train a model to
maximize pseudo–likelihood [11] instead.19

Pseudo–likelihood of the MRF-LM is defined as

logPL =
T

∑
i=1

log p(wi|wi−n, . . . ,wi−1,wi+1, . . . ,wi+n). (5.16)

Maximizing this pseudo–likelihood is equivalent to training a neural network in Fig. 5.6
which approximates each conditional distribution p(wi|wi−n, . . . ,wi−1,wi+1, . . . ,wi+n)
to give a higher probability to the ground-truth center word in the training corpus.

Unfortunately, even after training the model by maximizing the pseudo–likelihood
in Eq. (5.16), we do not have a good way to compute the full sentence probability under
this model. Under certain conditions maximizing pseudo–likelihood indeed converges
to the maximum likelihood solution, but this does not mean that we can use the product
of all the conditionals as a replacement of the full sentence probability. However, this
does not mean that we cannot use this MRF-LM as a language model, since given
a fixed model, the pseudo–probability (the product of all the conditionals) can score
different sentences.

18 However this is not to say maximum likelihood in this case is impossible. There are different ways to
approximate the full sentence probability under this model. See [56] for one such approach.

19 See the note by Amir Globerson (later modified by David Sontag) available at http://cs.nyu.
edu/˜dsontag/courses/inference14/slides/pseudolikelihood_notes.pdf.
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This is in contrast to the neural language model we discussed earlier in Sec. 5.4. In
the case of neural language model, we were able to compute the probability of a given
sentence by computing the conditional probability of each word, reading from left until
the end of the sentence. This is perhaps one of the reasons why the MRF-LM is not
often used in practice as a language model. Then, you must ask why I even bothered
to explain this MRF-LM in the first place.

This approach, which was proposed in [79] as a continuous bag-of-words (CBoW)
model,20 was found to exhibit an interesting property. That is, the word embedding
matrix E learned as a part of this CBoW model very well reflects underlying structures
of words, and this has become one of the darling models by natural language processing
researchers in recent years. We will discuss further in the next section.

Skip-Gram and Implicit Matrix Factorization In [79], another model, called skip-
gram, is proposed. The skip-gram model is built by flipping the continuous bag-of-
words model. Instead of trying to predict the middle word given 2n surrounding words,
the skip-gram model tries to predict randomly chosen one of the 2n surrounding words
given the middle word. From this description alone, it is quite clear that this skip-gram
model is not going to be great as a language model. However, it turned out that the
word vectors obtained by training a skip-gram model were as good as those obtained by
either a continuous bag-of-words model or any other neural language model. Of course,
it is debatable which criterion be used to determine the goodness of word vectors, but in
many of the existing so-called “intrinsic” evaluations, those obtained from a skip-gram
model have been shown to excel.

The authors of [72] recently showed that training a skip-gram model with negative
sampling (see [79]) is equivalent to factorizing a positive point-wise mutual informa-
tion matrix (PPMI) into two lower-dimensional matrices. The left lower-dimensional
matrix corresponds to the input word embedding matrix E in a skip-gram model. In
other words, training a skip-gram model implicitly factorizes a PPMI matrix.

Their work drew a nice connection between the existing works on distributional
word representations from natural language processing, or even computational linguis-
tics and these more recent neural approaches. I will not go into any further detail in
this course, but I encourage readers to read [72].

5.4.3 Semi-Supervised Learning with Pretrained Word Embeddings
One thing I want to emphasize in these language models, including n-gram language
model, neural language model and continuous bag-of-words model, is that they are
purely unsupervised, meaning that all we need is a large corpus of unannotated text.
This is one thing that makes this statistical approach to language modelling much more
appealing than any other approach based on linguistic structures (see Sec. 5.1.1 for a
brief discussion.)

20 One difference between the model we derived in this section starting from the MRF-LM and the one
proposed in [79] is that in our derivation, the neural network shares a single weight matrix E for both the
input and output layers.
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When it comes to neural language model and continuous bag-of-words model, we
now know that these networks learn continuous vector representations of input words,
target words and the context phrase (h from Eq. (5.13).) We also discussed how these
vector representations encode similarities among different linguistic units, be it a word
or a phrase.

What this implies is that once we train this type of language model on a large, or
effectively infinite,21 corpus of unlabelled text, we get good vectors for those linguistic
units for free. Among these, word vectors, the rows of the input weight matrix E in
Eq. (5.12), have been extensively used in many natural language processing applica-
tions in recent years since [103, 33, 79].

Let us consider an extreme example of classifying each English word as either
“positive” or “negative”. For instance, “happy” is positive, while “sad” is negative. A
training set of 2 examples–1 positive and 1 negative words– is given. How would one
build a classifier?22

There are two issues here. First, it is unclear how we should represent the input, in
this case a word. A good reader who has read this note so far will be clearly ready to
use an one-hot vector and use a softmax layer in the output, and I commend you for
that. However, this still does not solve a more serious issue which is that we have only
two training examples! All the word vectors, save for two vectors corresponding to the
words in the training set, will not be updated at all.

One way to overcome these two issues is to make somewhat strong, but reasonable
assumption that similar input will have similar sentiments. This assumption is at the
heart of semi-supervised learning [23]. It says that high-dimensional data points in
effect lies on a lower-dimensional manifold, and the target values of the points on this
manifold change smoothly. Under this assumption, if we can well model this lower-
dimensional data manifold using unlabelled training examples, we can train a good
classifier23

And, guess what? We have access to this lower-dimensional manifold, which is
represented by the set of pretrained word vectors E. Believing that similar words have
similar sentiment and that these pretrained word vectors indeed well reflect similarities
among words, let me build a simple nearest neighbour (NN) classifier which uses the
pretrained word vectors:

NN(w) =
{

positive, if cos(ew,ehappy)> cos(ew,ebad)
negative, otherwise ,

where cos(·, ·) is a cosine similarity defined as

cos(ei,e j) =
e>i e j

‖ei‖‖e j‖
.

21 Why? Because of almost universal broadband access to the Internet!
22 Although the setting of 2 training examples is extreme, but the task itself turned out to be not-so-

extreme. In fact, there is multiple dictionaries of words’ sentiment maintained. For instance, check http:
//sentiwordnet.isti.cnr.it/search.php?q=llama.

23 What do I mean by a good classifier? A good classifier is a classifier that classifies unseen test examples
well. See Sec. 2.3.

75

http://sentiwordnet.isti.cnr.it/search.php?q=llama
http://sentiwordnet.isti.cnr.it/search.php?q=llama


This use of a term “similarity” almost makes this set of pretrained word vectors
look like some kind of magical wand that can solve everything.24 This is however not
true, and using pretrained word vectors must be done with caution.

Why should we be careful in using these pretrained word vectors? We must remem-
ber that these word vectors were obtained by training a neural network to maximize a
certain objective, or to minimize a certain cost function. This means that these word
vectors capture certain aspects of words’ underlying structures that are necessary to
achieve the training objective, and that there is no reason for these word vectors to
capture any other properties of the words that are not necessary for maximizing the
training objective. In other words, “similarity” among multiple words has many dif-
ferent aspects, and these word vectors will capture only a few of these many aspects.
Which few aspects will be determined by the choice of training objective.

The hope is that language modelling is a good training objective that will encourage
the word vectors to capture as many aspects of similarity as possible.25 But, is this true
in general?

Let’s consider an example of words describing emotions, such as “happy”, “sad”
and “angry”, in the context of a continuous bag-of-words model. These emotion-
describing words often follow some forms of a verb “feel”, such as “feel”, “feels”,
“felt” and “feeling”. This means that those emotion-describing words will have to be
projected nearby in the context space in order to give a high probability to those forms
of “feel” as a middle word. This is understandable and agrees quite well with our in-
tuition. All those emotion-describing words are similar to each other in the sense that
they all describe emotion. But, wait, this aspect of similarity is not going to help sen-
timent classification of words. In fact, this aspect of similarity will hurt the sentiment
classifier, because a positive word “happy” will be close to negative words “sad” and
“angry” in this word vector space!

The lesson here is that when you are solving a language-related task with very little
data, it is a good idea to consider using a set of pretrained word vectors from neural
language models. However, you must do so in caution, and perhaps try to pretrain your
own word vectors by training a neural network to maximize a certain objective that
better suits your final task.

But, then, what other training objectives are there? We will get to that later.

5.5 Recurrent Language Model
Neural language model indeed avoids the lack of generalization in the conventional n-
gram language modeling. It still assumes the n-th order Markov property, meaning that
it looks only as far back into the past as n−1 words. In Sec. 5.3, I gave an example of
“In Korea, more than half of all the residents speak Korean”. In this example, the con-
ditional distribution over the last word in the sentence clearly will be better estimated

24 For future reference, I must say there were many papers claiming that the pretrained word vectors are
indeed magic wands at three top-tier natural language processing conferences (ACL, EMNLP, NAACL) in
2014 and 2015.

25 Some may ask how a single vector, which is a point in a space, can capture multiple aspects of similarity.
This is possible because these word vectors are high-dimensional.
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(a) (b)

Figure 5.7: (a) A recurrent neural network from Sec. 4.1.4. (b) A recurrent neural
network language model.

if it is conditioned on the second word of the sentence which is more than 10 words
back in the past.

Let us recall what we learned in Sec. 4.1.4. There, we learn how to build a recurrent
neural network to read a variable-length sequence and return a variable-length output
sequence. An example we considered back then was a task of part-of-speech tagging,
where the input is a sentence such as

x = (Children,eat,sweet,candy),

and the target output is a sequence of part-of-speech tags such as

y = (noun,verb,adjective,noun).

In order to make less of an assumption on the conditional independence of the
predicted tags, we made a small adjustment such that the prediction Yt at each timestep
was fed back into the recurrent neural network in the next timestep together with the
input Xt+1. See Fig. 5.7 (a) for graphical illustration.

Why am I talking about this again, after saying that the task of part-of-speech tag-
ging is not even going to be considered as a valid topic for the final project? Because
the very same model for part-of-speech tagging will be turned into the very recurrent
neural network language model in this section.

Let us start by considering a single conditional distribution, marked (a) below, from
the full sentence probability:

p(w1,w2, . . . ,wT ) =
T

∏
t=1

p(wt |w1, . . . ,wt−1)︸ ︷︷ ︸
(a)

.

This conditional probability can be approximated by a neural network, as we’ve been
doing over and over again throughout this course, that takes as input (w1, . . . ,wt−1) and
returns the probability over all possible words in the vocabulary V . This is not unlike
neural language model we discussed earlier in Sec. 5.4, except that the input is now a
variable-length sequence.
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Figure 5.8: A recurrent neural network language model

In this case, we can use a recurrent neural network which is capable of summariz-
ing/memorizing a variable-length input sequence. A recurrent neural network summa-
rizes a given input sequence (w1, . . . ,wt−1) into a memory state ht−1:

ht ′ =

{
0, if t ′ = 0
f (ewt′ ,ht ′−1), otherwise

, (5.17)

where t ′ runs from 0 to t − 1. f is a recurrent function which can be any of a naive
transition function from Eq. (4.1), a gated recurrent unit or a long short-term memory
unit from Sec. 4.2.2. ewt′ is a word vector corresponding to the word wt ′ .

This summary ht−1 is affine-transformed followed by a softmax nonlinear function
to compute the conditional probability of wt . Hopefully, everyone remembers how it is
done. As in Eq. (4.6),

µ = softmax(Vht−1),

where µ is a vector of probabilities of all the words in the vocabulary.
One thing to notice here is that the iteration procedure in Eq. (5.17) computes a

sequence of every memory state vector ht by simply reading the input sentence once.
In other words, we can let the recurrent neural network read one word wt at a time,
update the memory state ht and compute the conditional probability of the next word
p(wt+1|w≤t).

This procedure is illustrated in Fig. 5.7 (b).26 This language model is called a
recurrent neural network language model (RNN-LM, [80]).

But, wait, from looking at Figs. 5.7 (a)–(b), there is a clear difference between
the recurrent neural networks for part-of-speech tagging and language model. That is,
there is no feedback connection from the output of the previous time step back into the
recurrent neural network in the RNN-LM. This is simply an illusion from the limitation
in the graphical illustration, because the input wt+1 in the next time step is in fact the
output wt+1 at the current time step. This becomes clearer by drawing the same figure
in a slightly different way, as in Fig. 5.8.

26 In the figure, you should notice the beginning-of-the-sentence symbol 〈s〉. This is necessary in order to
use the very same recurrent function f to compute the conditional probability of the first word in the input
sentence.
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5.6 How do n-gram language model, neural language
model and RNN-LM compare?

Now the question is which one of these language models we should use in practice. In
order to answer this, we must first discuss the metric most commonly used for evaluat-
ing language models.

The most commonly used metric is a perplexity. In the context of language mod-
elling, the perplexity PPL of a model M is computed by

PPL = b−
1
N ∑

N
n=1 logb pM (wn|w<n), (5.18)

where N is the number of all the words in the validation/test corpus, and b is some
constant that is often 2 or 10 in practice.

What is this perplexed metric? I totally agree with you on this one. Of course, there
is a quite well principled way to explain what this perplexity is based on information
theory. This is however not necessary for us to understand this metric called perplexity.

As the exponential function (with base b in the case of perplexity in Eq. (5.18))
is a monotonically increasing function, we see that the ordering of different language
models based on the perplexity will not change even if we only consider the exponent:

− 1
N

N

∑
n=1

logb pM (wn|w<n).

Furthermore, assuming that b > 1, we can simply replace logb with log (natural loga-
rithm) without changing the order of different language models:

− 1
N

N

∑
n=1

log pM (wn|w<n).

Now, this looks awfully similar to the cost function, or negative log-likelihood, we
minimize in order to train a neural network (see Chapter 2.)

Let’s take a look at a single term inside the summation above:

log pM (wn|w<n).

This is simply measuring how high a probability the language model M is assigning to
a correct next word given all the previous words. Again, because log is a monotonically
increasing function.

In summary, the (inverse) perplexity measures how high a probability the language
model M assigns to correct next words in the test/validation corpus on average. There-
fore, a better language model is the one with a lower perplexity. There is nothing so
perplexing about the perplexity, once we start viewing it from this perspective.

We are now ready to compare different language models, or to be more precise,
three different classes of language models–count-based n-gram language model, neural
n-gram language model and recurrent neural network language model. The biggest
challenge in doing so is that this comparison will depend on many factors that are not
easy to control. To list a few of them,

• Language
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• Genre/Topic of training, validation and test corpora

• Size of a training corpus

• Size of a language model

Figure 5.9: The perplexity, word error rate (WER) and character error rate (CER) of
an automatic speech recognition system using different language models. Note that all
the results by neural or recurrent language models are by interpolating these models
with the count-based n-gram language model. Reprinted from [100].

Because of this difficulty, this kind of comparison has often been done in the con-
text of a specific downstream application. This choice of a downstream application
often puts rough constraints on the size of available, or commonly used, corpus, target
language and reasonably accepted size of language models. For instance, the authors
of [3] compared the conventional n-gram language model and neural language model,
with various approximation techniques, with machine translation as a final task. In
[100], the authors compared all the three classes of language model in the context of
automatic speech recognition.

First, let us look at one observation made in [100]. From Fig. 5.9, we can see that
it is beneficial to use a recurrent neural network language model (RNN-LM) compared
to a usual neural language model. Especially when long short-term memory units were
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Figure 5.10: The trend of perplexity as the size of language model changes. Reprinted
from [100].

used, the improvement over the neural language model was significant. Furthermore,
we see that it is possible to improve these language models by simply increasing their
size.

Similarly, in Fig. 5.10 from the same paper [100], it is observed that larger language
models tend to get better/lower perplexity and that RNN-LM in general outperforms
neural language models.

These two observations do seem to suggest that neural and recurrent language mod-
els are better candidates as language model. However, this is not to be taken as an
evidence for choosing neural or recurrent language models. It has been numerously
observed over years that the best performance, both in terms of perplexity and in terms
of performance in the downstream applications such as machine translation and auto-
matic speech recognition, is achieved by combining a count-based n-gram language
model and a neural, or recurrent, language model. See, for instance, [92].

This superiority of combined, or hybrid, language model suggests that the count-
based, or conventional, n-gram language model, neural language model and recurrent
neural network language model are capturing underlying structures of natural language
sentences that are complement to each other. However, it is not crystal clear how these
captured structures differ from each other.
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Chapter 6

Neural Machine Translation

Finally, we have come to the point in this course where we discuss an actual natural
language task. In this chapter, we will discuss how translation from one language to
another can be done with statistical methods, more specifically neural networks.

6.1 Statistical Approach to Machine Translation
Let’s first think of what it means to translate one sentence X in a source language to an
equivalent sentence Y in a target language which is different from the source language.
A process of translation is a function that takes as input the source sentence X and
returns a correct translation Y , and it is clear that there may be more than one correct
translations. The latter fact implies that this function of translation should return not a
single correct translation, but a probability distribution that assigns high probabilities
to more than one likely translations.

Now, let us write it in a more formal way. First, the input is a sequence of words

X = (x1,x2, . . . ,xTx),

where Tx is the length of the source sentence. A target sentence is

Y = (y1,y2, . . . ,yTy).

Similarly, Ty is the length of the target sentence.
The translation function f then reads the input sequence X and computes the prob-

ability over target sentences. In other words,

f : V+
x →C+

|Vy|−1 (6.1)

where Vx is a source vocabulary, and V+
x is a set of all possible source sentences of any

length Tx > 0. Vy is a target vocabulary, and Ck is a standard k-simplex.
What is a standard k-simplex? It is a set defined by

Ck =

{
(t0, . . . , tk) ∈ Rk+1

∣∣∣∣∣ k

∑
i=1

tk = 1 and ti ≥ 0 for all i

}
.
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Corpora

f = (La, croissance, économique, s'est, ralentie, ces, dernières, années, .)

e = (Economic, growth, has, slowed, down, in, recent, years, .)

Figure 6.1: Graphical illustration of statistical machine translation

In short, this set contains all possible settings for categorical distributions of k + 1
possible outcomes. This means that the translation function f returns a probability
distribution P(Y |X) over all possible translations of length Ty > 1.

Given a source sentence X , this translation function f returns the conditional prob-
ability of a translation Y : P(Y |X). Let us rewrite this conditional probability according
to what we have discussed in Chapter 5:

P(Y |X) =
Ty

∏
t=1

P(yt |y1, . . . ,yt−1, X︸︷︷︸
conditional

)

︸ ︷︷ ︸
language modelling

(6.2)

Looking at it in this way, it is clear that this is nothing but conditional language mod-
elling. This means that we can use any of the techniques we have used earlier in
Chapter 5 for statistical machine translation.

Training can be trivially done by maximizing the log-likelihood or equivalently
minimizing the negative log-likelihood (see Sec. 3.1):

C̃(θ) =− 1
N

N

∑
n=1

Ty

∑
t=1

log p(yn
t |yn

<t ,X
n), (6.3)

given a training set

D =
{
(X1,Y 1),(X2,Y 2), . . . ,(XN ,Y N)

}
(6.4)

consisting of N training pairs.
All these look extremely straightforward and do not deviate too much from what we

have learned so far in this course. A big picture on this process translation is shown in
Fig. 6.1. More specifically, building a statistical machine translation model is simple,
because we have learned how to

1. Assign a probability to a sentence in Sec. 5.2.

2. Handle variable-length sequences with recurrent neural networks in Sec. 4.1.

3. Compute the gradient of an empirical cost function C̃ with respect to the param-
eters θ of a recurrent neural network in Sec. 4.1.2 and Sec. 3.4.
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4. Use stochastic gradient descent to minimize the cost function in Sec. 2.2.2.

Of course, simply knowing all these does not get you a working neural network that
translates from one language to another. We will discuss in detail how we can build
such a neural network in the next section. Before going to the next section, we must
first discuss two issues; (1) where do we get training data? (2) how do we evaluate
machine translation systems?

6.1.1 Parallel Corpora: Training Data for Machine Translation
First, let us consider again what the problem we’re trying to solve here. It is machine
translation, and from the description in the previous section and from Eqs. (6.1)–(6.2),
it is a sentence-to-sentence translation task. We approach this problem by building a
model that takes as input a source sentence S and computes the probability P(Y |X) of
a target sentence Y , equivalently a translation. In order for this model to translate, we
must train it with a training set of pairs of a source sentence and its correct translation.

The very first problem we run into is where we can find this training set which is
often called a parallel corpus. It is not easy to think of documents which have been
translated into multiple languages. Let’s take for instance all the books that are being
translated each year. According to [86], approximately 3% of titles published each year
in English are translations from another language.1 A few international news agencies
publish some of their news articles in multiple languages. For instance, AFP publishes
1,500 stories in French, 700 stories in English, 400 stories in Spanish, 250 stories in
Arabic, 200 stories in German and 150 stories in Portuguese each day, and there are
some overlapping stories across these six languages.2 Online commerce sites, such as
eBay, often list their products in international sites with their descriptions in multiple
languages.3

Unfortunately these sources of multiple languages of the same content are not suit-
able for our purpose. Why is this so? Most importantly, they are often copy-righted
and sold for personal use only. We cannot buy more than 14,400 books in order to
train a translation model. We will likely go broke before completing the purchase,
and even if so, it is unclear whether it is acceptable under copyright to use these text
to build a translation model. Because we are mixing multiple sources of which each
is protected under copyright, is the translation model trained from a mix of all these
materials considered a derivative work?4

This issue is nothing new, and has been there since the very first statistical machine
translation system was proposed in [19]. Fortunately, it turned out that there are a
number of legitimate sources where we can get documents translated in more than
one languages, often very faithfully to their content. These sources are parliamentary
proceedings of bilingual, or multilingual countries.

1 “According to the information Bowker released in October of 2005, in 2004 there were 375,000 new
books published in English.” .. “Of that total, approx. 14,440 were new translations, which is slightly more
than 3% of all books published.” [86].

2 http://www.afp.com/en/products/services/text
3 http://sellercentre.ebay.co.uk/international-selling-tools
4 http://copyright.gov/circs/circ14.pdf
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Brown et al. [19] used the proceedings from the Canadian parliament, which are by
law kept in both French and English. All of these proceedings are digitally available
and called Hansards. You can check it yourself online at http://www.parl.gc.
ca/, and here’s an excerpt from the Prayers of the 2nd Session, 41st Parliament, Issue
152:5

• French: “ELIZABETH DEUX, par la Grâce de Dieu, REINE du Royaume-
Uni, du Canada et de ses autres royaumes et territoires, Chef du Commonwealth,
Défenseur de la Foi.”

• English: “ELIZABETH THE SECOND, by the Grace of God of the United
Kingdom, Canada and Her other Realms and Territories QUEEN, Head of the
Commonwealth, Defender of the Faith.”

Every single word spoken in the Canadian parliament is translated either into French
or into English. A more recent version of Hansards preprocessed for research can be
found at http://www.isi.edu/natural-language/download/hansard/.

Similarly, the European parliament used to provided the parliamentary proceedings
in all 23 official languages.6 This is a unique data in the sense that each and every
sentence is translated into either 11 or 26 official languages. For instance, here is one
example [65]:

• Danish: det er næsten en personlig rekord for mig dette efterår.

• German: das ist für mich fast persönlicher rekord in diesem herbst .

• Greek: (omitted)

• English: that is almost a personal record for me this autumn !

• Spanish: es la mejor marca que he alcanzado este otoño .

• Finnish: se on melkein minun ennätykseni tänä syksynä !

• French: c ’ est pratiquement un record personnel pour moi , cet automne !

• Italian: e ’ quasi il mio record personale dell ’ autunno .

• Dutch: dit is haast een persoonlijk record deze herfst .

• Portuguese: é quase o meu recorde pessoal deste semestre !

• Swedish: det är nästan personligt rekord för mig denna höst !

The European proceedings has been an invaluable resource for machine translation
research. At least, the existing multilingual proceedings (up to 2011) can be still used,
and it is known in the field as the “Europarl” corpus [65] and can be downloaded from
http://www.statmt.org/europarl/.

These proceedings-based parallel corpora have two distinct advantages. First, in
many cases, the sentences in those corpora are well-formed, and their translations are

5 This is one political lesson here: Canada is still headed by the Queen of the United Kingdom.
6 Unfortunately, the European parliament decided to stop translating its proceedings into all 23 offi-

cial languages on 21 Nov 2011 as an effort toward budget cut. See http://www.euractiv.com/
culture/parliament-cuts-translation-budg-news-516201.
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done by professionals, meaning the quality of the corpora is guaranteed. Second, sur-
prisingly, the topics discussed in those proceedings are quite diverse. Clearly the mem-
bers of the parliament do not often chitchat too often, but they do discuss a diverse set
of topics. Here’s one such example from the Europarl corpus:

• English: Although there are now two Finnish channels and one Portuguese one,
there is still no Dutch channel, which is what I had requested because Dutch
people here like to be able to follow the news too when we are sent to this place
of exile every month.

• French: Il y a bien deux chaı̂nes finnoises et une chaı̂ne portugaise, mais il
n’y a toujours aucune chaı̂ne néerlandaise. Pourtant je vous avais demandé une
chaı̂ne néerlandaise, car les Néerlandais aussi désirent pouvoir suivre les actu-
alités chaque mois lorsqu’ils sont envoyés en cette terre d’exil.

One apparent limitation is that these proceedings cover only a handful of languages
in the world, mostly west European languages. This is not desirable. Why? According
to Ethnologue (2014)7, the top-five most spoken languages in the world are

1. Chinese: approx. 1.2 billion

2. Spanish: approx. 414 million

3. English: approx. 335 million

4. Hindi: approx. 260 million

5. Arabic: approx. 237 million

There are only two European languages in this list.
So, then, where can we get all data for all these non-European languages? There

are a number of resources you can use, and let me list a few of them here:
You can find the translated subtitle of the TED talks at the Web Inventory of

Transcribed and Translated Talks (WIT3, https://wit3.fbk.eu/) [22]. It is
a quite small corpus, but includes 104 languages. For Russian–English data, Yandex
released a parallel corpus of one million sentence pairs. You can get it at https:
//translate.yandex.ru/corpus?lang=en. You can continue with other
languages by googling very hard, but eventually you run into a hard wall.

This hard wall is not only the lack of any resource, but also lack of enough resource.
For instance, I quickly googled for Korean–English parallel corpora and found the
following resources:

• SWRC English-Korean multilingual corpus: 60,000 sentence pairs http://
semanticweb.kaist.ac.kr/home/index.php/Corpus10

• Jungyeul’s English-Korean parallel corpus: 94,123 sentence pairs https://
github.com/jungyeul/korean-parallel-corpora

This is just not large enough.
One way to avoid this or mitigate this problem is to automatically mine parallel

corpora from the Internet. There have been quite some work in this direction as a way
7 http://www.ethnologue.com/world
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to increase the size of parallel corpora [87, 112]. The idea is to build an algorithm that
crawls the Internet and find a pair of corresponding pages in two different languages.
One of the largest preprocessed corpus of multiple languages from the Internet is the
Common Crawl Parallel Corpus created by Smith et al. [98] available at http://
www.statmt.org/wmt13/training-parallel-commoncrawl.tgz.

6.1.2 Automatic Evaluation Metric
Let’s say we have trained a machine translation model on a training corpus. A big
question follows: how do we evaluate this model?

In the case of classification, evaluation is quite straightforward. All we need to do is
to classify held-out test examples with a trained classifier and see how many examples
were correctly classified. This is however not true in the case of translation.

There are a number of issues, but let us discuss two most important problems here.
First, there may be many correct translations given a single source sentence. For in-
stance, the following three sentences are the translations made by a human translator
given a single Chinese sentence [82]:

• It is a guide to action that ensures that the military will forever heed Party com-
mands.

• It is the guiding principle which guarantees the military forces always being
under the command of the Party.

• It is the practical guide for the army always to heed the directions of the party.

They all clearly differ from each other, although they are the translations of a single
source sentence.

Second, the quality of translation cannot be measured as either success or failure.
It is rather a smooth measure between success and failure. Let us consider an English
translation of a French sentence “J’aime un llama, qui est un animal mignon qui vit en
Amérique du Sud”.8

One possible English translation of this French sentence is “I like a llama which is a
cute animal living in South America”. Let’s give this translation a score 100 (success).
According to Google translate, the French sentence above is “I like a llama, a cute
animal that lives in South America”. I see that Google translate has omitted “qui est”
from the original sentence, but the whole meaning has well been captured. Let us give
this translation a slightly lower score of 90.

Then, how about “I like a llama from South America”? This is certainly not a
correct translation, but except for the part about a llama being cute, this sentence does
communicate most of what the original French sentence tried to communicate. Maybe,
we can give this translation a score of 50.

How about “I do not like a llama which is an animal from South America”? This
translation correctly describes the characteristics of llama exactly as described in the
source sentence. However this translation incorrectly states that I do not like a llama,
when I like a llama according to the original French sentence. What kind of score
would you give this translation?

8 I would like to thank Laurent Dinh for the French translation.
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Even worse, we want an automated evaluation algorithm. We cannot look at thou-
sands of validation or test sentence pairs to tell how well a machine translation model
does. Even if we somehow did it for a single model, in order to compare this translation
model against others, we must do it for every single machine translation model under
comparison. We must have an automatic evaluation metric in order to efficiently test
and compare different machine translation models.

BLEU One of the most widely used automatic evaluation metric for assessing the
quality of translations is BLEU proposed in [82]. BLEU computes the geometric mean
of the modified n-gram precision scores multiplied by brevity penalty. Let me describe
this in detail here.

First, we define the modified n-gram precision pn of a translation Y as

pn =
∑S∈C ∑ngram∈S ĉ(ngram)

∑S∈C ∑ngram∈S c(ngram)
,

where C is a corpus of all the sentences/translations, and S is a set of all unique n-grams
in one sentence in C. c(ngram) is the count of the n-gram, and ĉ(ngram) is

ĉ(ngram) = min(c(ngram),cref(ngram)).

cref(ngram) is the count of the n-gram in reference sentences.
What does this modified n-gram precision measure? It measures the ratio between

the number of n-grams in the translation and the number of those n-grams actually
occurred in a reference (ground-truth) translation. If there is no n-gram from the trans-
lation in the reference, this modified precision will be zero because cref(·) will be zero
all the time.

It is common to use the geometric average of modified 1-, 2-, 3- and 4-gram preci-
sions, which is computed by

P4
1 = exp

(
1
4

4

∑
n=1

log pn

)
.

If we use this geometric average P as it is, there is a big loophole. One can get
a high average modified precision by making as short a translation as possible. For
instance, a reference translation is

• I like a llama, a cute animal that lives in South America .

and a translation we are trying to evaluate is

• cute animal that lives

This is clearly a very bad translation, but the modified 1-, 2-, 3- and 4-gram precisions
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will be high. The modified precisions are

p1 =
1+1+1+1
1+1+1+1

=
4
4
= 1

p2 =
1+1+1
1+1+1

=
3
3
= 1

p3 =
1+1
1+1

=
2
2
= 1

p4 =
1
1
=

1
1
= 1.

Their geometric average is then

P4
1 = exp

(
1
4
(0+0+0+0)

)
= 1

which is the maximum modified precision you can get!
In order to avoid this behaviour, BLEU penalizes the geometric average of the

modified n-gram precisions by the ratio of the lengths between the reference r and
translation l. This is done by first computing a brevity penalty:

BP =

{
1 , if l ≥ r
exp
(
1− r

l

)
, if l < r

If the translation is longer than the reference, it uses the geometric average of the
modified n-gram precisions as it is. Otherwise, it will penalize it by multiplying the
average precision with a scalar less than 1. In the case of the example above, the brevity
penalty is 0.064, and the final BLEU score is 0.064.

(a) (b)

Figure 6.2: (a) BLEU vs. bilingual and monolingual judgements of three machine
translation systems (S1, S2 and S3) and two humans (H1 and H2). Reprinted from
[82]. (b) BLEU vs. human judgement (adequacy and fluency separately) of three
machine translation systems (two statistical and one rule-based systems). Reprinted
from [20].

The BLEU was shown to correlate well with human judgements in the original
article [82]. Fig. 6.2 (a) shows how BLEU correlates with the human judgements in
comparing different translation systems.
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This is however not to be taken as a message saying that the BLEU is the perfect
automatic evaluation metric. It has been shown that the BLEU is only adequate in
comparing two similar machine translation systems, but not too much so in comparing
two very different systems. For instance, Callison-Burch et al. [20] observed that the
BLEU underestimates the quality of the machine translation system that is not a phrase-
based statistical system. See Fig. 6.2 (b) for an example.

BLEU is definitely not a perfect metric, and many researchers strive to build a better
evaluation metric for machine translation systems. Some of the alternatives available
at the moment are METEOR [36] and TER [99].

6.2 Neural Machine Translation:
Simple Encoder-Decoder Model

From the previous section and from Eq. 6.2, it is clear that we need to model each
conditional distribution inside the product as a function. This function will take as
input all the previous words in the target sentence Y = (y1, . . . ,yt−1) and the whole
source sentence X = (x1, . . . ,xTx). Given these inputs the function will compute the
probabilities of all the words in the target vocabulary Vy. In this section, I will describe
an approach that was proposed multiple times independently over 17 years in [43, 28,
101].

Let us start by tackling how to handle the source sentence X = (x1, . . . ,xTx). Since
this is a variable-length sequence, we can readily use a recurrent neural network from
Chapter 4. However, unlike the previous examples, there is no explicit target/output in
this case. All we need is a (vector) summary of the source sentence.

We call this recurrent neural network an encoder, as it encodes the source sentence
into a (continuous vector) code. It is implemented as

ht = φenc

(
ht−1,E>x xt

)
. (6.5)

As usual, φenc can be any recurrent activation function, but it is highly recommended to
use either gated recurrent units (see Sec. 4.2.2) or long short-term memory units (see
Sec. 4.2.3.) Ex ∈ R|Vx|×d is an input weight matrix containing word vectors as its rows
(see Eq. (5.12) in Sec. 5.4,) and xt is an one-hot vector representation of the word xt
(see Eq. (5.10) in Sec. 5.4.) h0 is initialized as an all-zero vector.

After reading the whole sentence up to xTx , the last memory state hTx of the encoder
summarizes the whole source sentence into a single vector, as shown in Fig. 6.3 (a).
Thanks to this encoder, we can now work with a single vector instead of a whole
sequence of source words. Let us denote this vector as c and call it a context vector.

We now need to design a decoder, again, using a recurrent neural network. As I
mentioned earlier, the decoder is really nothing but a language model, except that it is
conditioned on the source sentence X . What this means is that we can build a recurrent
neural network language model from Sec. 5.5 but feeding also the context vector at
each time step. In other words,

zt = φdec

(
zt−1,

[
E>y yt−1;c

])
(6.6)
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(a) (b)

Figure 6.3: (a) The encoder and (b) the decoder of a simple neural machine translation
model

Do you see the similarity and dissimilarity to Eq. (5.17) from Sec. 5.5? It’s essentially
same, except that the input at time t is a concatenated vector of the word vector of the
previous word yt−1 and the context vector c.

Once the decoder’s memory state is updated, we can compute the probabilities of
all possible target words by

p(yt = w′|y<t ,X) ∝ exp
(

e>w′zt

)
, (6.7)

where ew′ is the target word vector associated the word w′. This is equivalent to affine-
transforming zt followed by a softmax function from Eq. (3.5) from Sec. 3.1.

Now, should we again initialize z0 to be an all-zero vector? Maybe, or maybe not.
One way to view what this decoder does is that the decoder models a trajectory in
a continuous vector space, and each point in the trajectory is zt . Then, z0 acts as a
starting point of this trajectory, and it is natural to initialize this starting point to be a
point relevant to the source sentence. Because we have access to the source sentence’s
content via c, we can again use it to initialize z0 as

z0 = φinit (c) . (6.8)

See Fig. 6.3 (b) for the graphical illustration of the decoder.
Although I have used c as if it is a separate variable, this is not true. c is simply

a shorthand notation of the last memory state of the encoder which is a function of
the whole source sentence. What does this mean? It means that we can compute the
gradient of the empirical cost function in Eq. (6.3) with respect to all the parameters of
both the encoder and decoder and maximize the cost function using stochastic gradient
descent, just like any other neural network we have learned so far in this course.

6.2.1 Sampling vs. Decoding
Sampling We are ready to compute the conditional distribution P(Y |X) over all pos-
sible translations given a source sentence. When we have a distribution, the first thing
we can try is to sample from this distribution. Often, it is not straightforward to gen-
erate samples from a distribution, but fortunately, in this case, we can readily generate
exact samples from the distribution P(Y |X).
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We simply iterate over the following steps until a token indicating the end of a
sentence (〈eos〉):

1. Compute c (Eq. (6.5))

2. Initialize z0 with c (Eq. (6.8))

3. Compute zt given zt−1, yt−1 and c (Eq. (6.6))

4. Compute p(yt |y<t ,X) (Eq. (6.7))

5. Sample ỹt from the compute distribution

6. Repeat (3)–(5) until ỹt = 〈eos〉

After taking these steps, we get a sample Ỹ =
(

ỹ1, . . . , ỹ|Ỹ |
)

given a source sentence
X . Of course, there is no guarantee that this will be a good translation of X . In order to
find a good translation, meaning a translation with a high probability P(Ỹ |X), we need
to repeatedly sample multiple translations from P(Y |X) and choose one with the high
probability.

This is not too desirable, as it is not clear how many translations we need to sample
from P(Y |X) and also it will likely be computationally expensive. We must wonder
whether we can solve the following optimization problem directly:

Ỹ = argmax
Y

logP(Y |X).

Unfortunately, the exact solution to this requires evaluating P(Y |X) for every possible
Y . Even if we limit our search space of Y to consist of only sentences of length up
to a finite number, it will likely become too large (the cardinality of the set grows
exponentially with respect to the number of words in a translation.) Thus, it only
makes sense to solving the optimization problem above approximately.

Approximate Decoding: Beamsearch Although it is quite clear that finding a trans-
lation Ỹ that maximizes the log-probability logP(Ỹ |X) is extremely expensive, we will
regardlessly try it here.

One very natural way to enumerate all possible target sentences and simultaneously
computing the log-probability of each and every one of them is to start from all possible
first word, compute the probabilities of them, and from each potential first word branch
into all possible second words, and so on. This procedure forms a tree, and any path
from the root of this tree to any intermediate node is a valid, but perhaps very unlikely,
sentence. See Fig. 6.4 for the illustration. The conditional probabilities of all these
paths, or sentences, can be computed as we expand this tree down by simply following
Eq. (6.2).

Of course, we cannot compute the conditional probabilities of all possible sen-
tences. Hence, we must resort to some kind of approximate search. Wait, search? Yes,
this whole procedure of finding the most likely translation is equivalent to searching
through a space, in this case a tree, of all possible sentences for one sentence that has
the highest conditional probability.
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(a) (b)

Figure 6.4: (a) Search space depicted as a tree. (b) Greedy search.

The most basic approach to approximately searching for the most likely translation
is to choose only a single branch at each time step t. In other words,

ŷt = argmax
w′∈V

log p(yt = w′|ŷ<t ,X),

where the conditional probability is defined in Eq. (6.7), and ŷ<t = (ŷ1, ŷ2, . . . , ŷt−1) is
a sequence of greedily-selected target words up to the (t− 1)-th step. This procedure
is repeated until the selected ŷt is a symbol corresponding to the end of the translation
(often denoted as 〈eos〉.) See Fig. 6.4 (b) for illustration.

There is a big problem of this greedy search. That is, as soon as it makes one
mistake at one time step, there is no way for this search procedure to recover from this
mistake. This happens because the conditional distributions at later steps depend on
the choices made earlier.

Consider the following two sequences: (w1,w2) and (w′1,w2). These sequences’
probabilities are

p(w1,w2) = p(w1)p(w2|w1),

p(w′1,w2) = p(w′1)p(w2|w′1)
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Let’s assume that
λ p(w1) = p(w′1),

where 0 < λ < 1, meaning that p(w1) > p(w′1). In this case, the greedy search will
choose w1 over w′1 and ignore w′1.

Now we can see that there’s a problem with this. Let’s assume that

λ p(w2|w1)< p(w2|w′1) ⇐⇒ p(w2|w1)<
1
λ

p(w2|w′1)

where λ was defined earlier. In this case,

p(w1,w2) =p(w1)p(w2|w1) = λ p(w′1)p(w2|w1)

<�λ p(w′1)
1

�λ
p(w2|w′1) = p(w′1)p(w2|w′1) = p(w′1,w2).

In short,

p(w1,w2)< p(w′1,w2).

It means that the sequence (w′1,w2) is more likely than (w1,w2), but the greedy search
algorithm is unable to notice this, because simply p(w1)> p(w′1).

Unfortunately, the only way to completely avoid this undesirable situation is to
consider all the possible paths starting from the very first time step. This is exactly the
reason why we introduced the greedy search in the first place, but the greedy search
is too greedy. The question is then whether there is something in between the exact
search and the greedy search.

Beam Search Let us start from the very first position t = 1. First, we compute the
conditional probabilities of all the words in the vocabulary:

p(y1 = w|X) for all w ∈V.

Among these, we choose the K most likely words and initialize the K hypotheses:

(w1
1),(w

1
2), . . . ,(w

1
K)

We use the subscript to denote the hypothesis and the subscript the time step. As an
example, w1

1 is the first hypothesis at time step 1.
For each hypothesis, we compute the next conditional probabilities of all the words

in the vocabulary:

p(y2 = w|y<1 = (w1
i ),X) for all w ∈V,

where i = 1, . . . ,K. We then have K×|V | candidates with the corresponding probabil-
ities:

K


p(w1

1,w
2
c,1), . . . , p(w1

1,w
2
c,|V |)

p(w1
2,w

2
c,1), . . . , p(w1

2,w
2
c,|V |)

...
p(w1

K ,w
2
c,1), . . . , p(w1

K ,w
2
c,|V |)︸ ︷︷ ︸

|V |

94



Figure 6.5: Beam search with the beam width set to 3.

Among these K×|V | candidates, we choose the K most likely candidates:

(w1
1,w

2
1),(w

1
2,w

2
2), . . . ,(w

1
K ,w

2
K).

Starting from these K new hypotheses, we repeat the process of computing the proba-
bilities of all K×|V | possible candidates and choosing among them the K most likely
new hypotheses.

It should be clear that this procedure, called beam search and shown in Fig. 6.5,
becomes equivalent to the exact search, as K→∞. Also, when K = 1, this procedure is
equivalent to the greedy search. In other words, this beam search interpolates between
the exact search, which is computationally intractable but exact, and the greedy search,
which is computationally very cheap but probably quite inexact, by changing the size
K of hypotheses maintained throughout the search procedure.

How do we choose K? One might mistakenly think that we can simply use as large
K as possible given the constraints on computation and memory. Unfortunately, this is
not necessarily true, as this interpolation by K is not monotonic. That is, the quality of
the translation found by the beam search with a larger K is not necessarily better than
the translation found with a smaller K.

Let us consider the case of vocabulary having three symbols {a,b,c} and any valid
translation being of a length 3. In the first step, we have

p(a) = 0.5, p(b) = 0.15, p(c) = 0.45.

In the case of K = 1, i.e., greedy search, we choose a. If K = 2, we will keep (a) and
(c).

Given a as the first symbol, we have

p(a|a) = 0.4, p(b|a) = 0.3, p(c|a) = 0.3,
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in which case, we keep (a,a) with K = 1. With K = 2, we should check also

p(a|c) = 0.45, p(b|c) = 0.45, p(c|c) = 0.1,

from which we maintain the hypotheses (c,a) and (c,b) (0.45×0.45 and 0.45×0.45,
respectively.) Note that with K = 2, we have discarded (a,a).

Now, the greedy search ends by computing the last conditional probabilities:

p(a|a,a) = 0.9, p(b|a,a) = 0.05, p(c|a,a) = 0.05.

The final verdict from the greedy search is therefore (a,a,a) with its probability being
0.5×0.4×0.9 = 0.18.

What happens with the beam search having K = 2? We need to check the following
conditional probabilities:

p(a|c,a) = 0.7, p(b|c,a) = 0.2, p(c|c,a) = 0.1
p(a|c,b) = 0.4, p(b|c,b) = 0.0, p(c|c,b) = 0.6

From here we consider (c,a,a) and (c,b,c) with the corresponding probabilities 0.45×
0.45× 0.7 = 0.14175 and 0.45× 0.45× 0.6 = 0.1215. Among these two, (c,a,a) is
finally chosen, due to its higher probability than that of (c,b,c).

In summary, the greedy search found (a,a,a) whose probability is

p(a,a,a) = 0.18,

and the beam search with K = 2 found (c,a,a) whose probability is

p(c,a,a) = 0.14175.

Even with a larger K, the beam search found a worse translation!
Now, clearly, what one can do is to set the maximum beam width K̄ and try with

all possible 1 ≤ K ≤ K̄. Among the translations given by K̄ beam search procedures,
the best translation can be selected based on their corresponding probabilities. From
the point of view of computational complexity, this is perhaps the best approach to
upper-bound the worst-case memory consumption. Doing the beam search once with
K̄ or multiple beam searches with K = 1, . . . , K̄ are equivalent in terms of memory con-
sumption, i.e., both are O(K|V |). Furthermore, the worst-case computation is O(K|V |)
(assuming a constant time computation for computing each conditional probability.) In
practice however, the constant in front of K|V | does matter, and we often choose K
based on the translation quality of the validation set, after trying a number of values–
{1,2,4,8,16}.

If you’re interested in how to improve beam search by backtracking so that the
beam search becomes complete, refer to, e.g., [44, 113]. If you’re interested in general
search strategies, refer to [90]. Also, in the context of statistical machine translation, it
is useful to read [64].
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6.3 Attention-based Neural Machine Translation
One important property of the simple encoder-decoder model for neural machine trans-
lation (from Sec. 6.2) is that a whole source sentence is compressed into a single real-
valued vector c. This sounds okay, since the space of all possible source sentences is
countable, while the context vector space [−1,1]d is uncountable. There exists a map-
ping from this sentence space to the context vector space, and all we need to ensure is
that training the simple encoder-decoder model finds this mapping. This is conditioned
on the assumption that the hypothesis space9 defined by the model architecture–the
number of hidden units and parameters– includes this mapping from any source sen-
tence to a context vector.

Unfortunately, considering the complexity of any natural language sentence, it is
quite easy to guess that this mapping must be highly nonlinear and will require a huge
encoder, and consequently, a huge decoder to map back from a context vector to a target
sentence. In fact, this fact was empirically validated last year (2014), when the almost
identical models from two groups [101, 27] showed vastly different performances on
the same English–French translation task. The only difference there was that the au-
thors of [101] used a much larger model than the authors of [27] did.

At a more fundamental level there’s a question of whether a natural language sen-
tence should be fully represented as a single vector. For instance, there is now a famous
quote by Prof. Raymond Mooney10 of the University of Texas at Austin: “You can’t
cram the meaning of a whole %&!$# sentence into a single $&!#* vector!”11 Though,
our goal is not in answering this fundamental question from linguistics.

Our goal is rather to investigate the possibility of avoiding this situation of having
to learn a highly nonlinear, complex mapping from a source sentence to a single vector.
The question we are more interested in is whether there exists a neural network that
can handle a variable-length sentence by building a variable-length representation of
it. Especially, we are interested in whether we can build a neural machine translation
system that can exploit a variable-length context representation.

Variable-length Context Representation In the simple encoder-decoder model, a
source sentence, regardless of its length, was mapped to a single context vector by a
recurrent neural network:

ht = φenc

(
ht−1,E>x xt

)
.

See Eq. (6.5) and the surrounding text for more details.
Instead, here we will encode a source sentence X = (x1,x2, . . . ,xTx) with a set C of

context vectors ht ’s. This is achieved by having two recurrent neural networks rather
than a single recurrent neural networks, as in the simple encoder-decoder model. The
first recurrent neural network, to which we will refer as a forward recurrent neural
network, reads the source sentence as usual and results in a set of forward memory

9 See Sec. 2.3.2.
10 https://www.cs.utexas.edu/˜mooney/
11 http://nlpers.blogspot.com/2014/09/amr-not-semantics-but-close-maybe.

html
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Figure 6.6: An encoder with a bidirectional recurrent neural network

states
−→
h t , for t = 1, . . . ,Tx. The second recurrent neural network, a reverse recurrent

neural network, reads the source sentence in a reverse order, starting from xTx to x1.
This reverse network will output a sequence of reverse memory states

←−
h t , for t =

1, . . . ,Tx.
For each xt , we will concatenate

−→
h t and

←−
h t to form a context-dependent vector ht :

ht =

[ −→
h t←−
h t

]
(6.9)

We will form a context set with these context-dependent vectors c = {h1,h2, . . . ,hTx}.
See Fig. 6.6 for the graphical illustration of this process.

Now, why is ht a context-dependent vector? We should look at what the input was
to a function that computed ht . The first half of ht ,

−→
h t , was computed by

−→
h t = φfenc

(
φfenc

(
· · · ,E>x xt−1

)
,E>x xt

)
,

where φfenc is a forward recurrent activation function. From this we see that
−→
h t was

computed by all the source words up to t, i.e., x≤t . Similarly,

←−
h t = φrenc

(
φrenc

(
· · · ,E>x xt+1

)
,E>x xt

)
,

where φrenc is a reverse recurrent activation function, and
←−
h t depends on all the source

words from t to the end, i.e., x≥t .

In summary, ht =
[−→

h >t ;
←−
h >t
]>

is a vector representation of the t-th word, xt , with
respect to all the other words in the source sentence. This is why ht is a context-
dependent representation. But, then, what is the difference among all those context-
dependent representations {h1, . . . ,hTx}? We will discuss this shortly.

Decoder with Attention Mechanism Before anything let us think of what the mem-
ory state zt of the decoder (from Eq. (6.6)) does:

zt = φdec

(
φdec

(
φdec

(
· · · ,

[
E>y yt−3;c

])
,
[
E>y yt−2;c

])[
E>y yt−1;c

])
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Figure 6.7: Illustration of how the relevance score e2,3 of the second context vector h2
at time step 3 (dashed curves and box.)

It is computed based on all the generated target words so far (ỹ1, ỹ2, . . . , ỹt−1) and
the context vector12 c which is the summary of the source sentence. The very reason
why I designed the decoder in this way is so that the memory state zt is informative of
which target word should be generated at time t after generating the first t− 1 target
words given the source sentence. In order to do so, zt must encode what have been
translated so far among the words that are supposed to be translated (which is encoded
in the context vector c.) Let’s keep this in mind.

In order to compute the new memory state zt with a context set C = {h1,h2, . . . ,hTx},
we must first get one vector out of Tx context vectors. Why is this necessary? Because
we cannot have an infinitely large number of parameters to cope with any number of
context vectors. Then, how can we get a single vector from an unspecified number of
context vectors ht ’s?

First, let us score each context vector h j ( j = 1, . . . ,Tx) based on how relevant it is
for translating a next target word. This scoring needs to be based on (1) the previous
memory state zt−1 which summarizes what has been translated up to the (t − 2)-th
word13, (2) the previously generated target word ỹt−1, and (3) the j-th context vector
h j:

e j,t = fscore(zt−1,E>y ỹt−1,h j). (6.10)

Conceptually, the score e j,t will be computed by comparing (zt−1, ỹt−1) with the con-
text vector c j. See Fig. 6.7 for graphical illustration.

12 We will shortly switch to using a context set instead.
13 Think of why this is only up to the (t−2)-th word not up to the (t−1)-th one.
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Figure 6.8: Computing the new memory state zt of the decoder based on the previous
memory state zt−1, the previous target word ỹt−1 and the weighted average of context
vectors according to the attention weights.

Once the scores for all the context vectors h j’s ( j = 1, . . . ,Tx) are computed by
fscore, we normalize them with a softmax function:

α j,t =
exp(e j,t)

∑
Tx
j′=1 exp(e j′,t)

. (6.11)

We call these normalized scores the attention weights, as they correspond to how much
the decoder attends to each of the context vectors. This whole process of computing
the attention weights is often referred to as an attention mechanism (see, e.g., [26].)

We take the weighted average of the context vectors with these attention weights:

ct =
Tx

∑
j=1

α j,th j (6.12)

This weighted average is used to compute the new memory state zt of the decoder,
which is identical to the decoder’s update equation from the simple encoder-decoder
model (see Eq. (6.6)) except that ct is used instead of c ((a) in the equation below):

zt = φdec

zt−1,

E>y yt−1; ct︸︷︷︸
(a)
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See Fig. 6.8 for the graphical illustration of how it works.
Given the new memory state zt of the decoder, the output probabilities of all the

target words in a vocabulary happen without any change from the simple encoder-
decoder model in Sec. 6.2.

We will call this model, which has a bidirectional recurrent neural network as an en-
coder and a decoder with the attention mechanism, an attention-based encoder-decoder
model. This approach was proposed last year (2014) in the context of machine transla-
tion in [2] and has been studied extensively in [76].

6.3.1 What does the Attention Mechanism do?
One important thing to notice is that this attention-based encoder-decoder model can be
reduced to the simple encoder-decoder model easily. This happens when the attention
mechanism fscore in Eq. (6.10) returns a constant regardless of its input. When this
happens, the context vector ct at each time step t (see Eq. (6.12)) is same for all the
time steps t = 1, . . . ,Ty:

ct =
1
Tx

Tx

∑
j=1

h j.

The encoder effectively maps the whole input sentence into a single vector, which was
at the core of the simple encoder-decoder model from Sec. 6.2.

This is not the only situation in which this type of behaviour happens. Another
possible scenario is for the encoder to make the last memory states,

−→
h Tx and

←−
h 1, of

the forward and reverse recurrent neural networks to have a special mark telling that
these are the last states. The attention mechanism then can exploit this to assign a large
score to these two memory states (but still constant across time t.) This will become
even closer to the simple encoder-decoder model.

The question is how we can avoid these degenerate cases. Or, is it necessary for us
to explicitly make these degenerate cases unlikely? Of course, there is no single answer
to this question. Let me give you my answer, which may differ from others’ answer:
no.

The goal of introducing a novel network architecture is to guide a model according
to our intuition or scientific observation so that it will do a better job at a target task. In
our case, the attention mechanism was introduced based on our observation, and some
intuition, that it is not desirable to ask the encoder to compress a whole source sentence
into a single vector.

This incorporation of prior knowledge however should not put a hard constraint.
We give a model a possibility of exploiting this prior knowledge, but should not force
the model to use this prior knowledge exclusively. As this prior knowledge, based
on our observation of a small portion of data, is not likely to be true in general, the
model must be able to ignore this, if the data does not exhibit the underlying structure
corresponding to this prior knowledge. In this case of attention-based encoder-decoder
model, the existence of those degenerate cases above is a direct evidence of what this
attention-based model can do, if there is no such underlying structure present in the
data.
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Then, a natural next question is whether there are such structures that can be well
exploited by this attention mechanism in real data. If we train this attention-based
encoder-decoder model on the parallel corpora we discussed earlier in Sec. 6.1.1, what
kind of structure does this attention-based model learn?

In order to answer this question, we must first realize that we can easily visualize
what is happening inside this attention-based model. First, note that given a pair of
source X and target Y sentences,14 the attention-based model computes an alignment
matrix A ∈ [0,1]|X |×|Y |:

A =


α1,1 α1,2 · · · α1,|Y |
α2,1 α2,2 · · · α2,|Y |

...
...

. . .
...

α|X |,1 α|X |,2 · · · α|X |,|Y |

 ,
where α j,t is defined in Eq. (6.11).

Each column at of this alignment matrix A is how well each source word (based
on its context-dependent vector representation from Eq. (6.9)) is aligned to the t-th
target word. Each row b j similarly shows how well each target word is aligned to the
content-dependent vector of the j-th source word. In other words, we can simply draw
the alignment matrix A as if it were a gray scale 2-D image.

In Fig. 6.9, the visualization of four alignment matrices is presented. It is quite
clear, especially to a French-English bilingual speaker, that the model indeed captured
the underlying structure of word/phrase mapping between two languages. For instance,
focus on “European Economic Area” in Fig. 6.9 (a). The model correctly noticed
that “Area” corresponds to “zone”, “Economic” to “économique”, and “European” to
“européenne”, without any supervision about this type of alignment.

This is nice to see that the model was able to notice these regularities from data
without any explicit supervision. However, the goal of introducing the attention mech-
anism was not to get these pretty figures. After all, our goal is not to build an inter-
pretable model, but a model that is predictive of the correct output given an input (see
Chapter 1 and [16].) In this regard, how much does the introduction of the attention
mechanism help?

In [2], the attention-based encoder-decoder model was compared against the sim-
ple encoder-decoder model in the task of English-French translation. They observed
the relative improvement of up to 60% (in terms of BLEU, see Sec. 6.1.2,) as shown in
Table 6.1. Furthermore, by using some of the latest techniques, such as handling large
vocabularies [55], building a vocabulary of subword units [93] and variants of the atten-
tion mechanism [76], it has been found possible to achieve a better translation quality
with neural machine translation than the existing state-of-the-art translation systems.

14 Note that if you’re given only a source sentence, you can let the model translate and align simultane-
ously.
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Model BLEU Rel. Improvement
Simple Enc–Dec 17.82 –

Attention-based Enc–Dec 28.45 +59.7%
Attention-based Enc–Dec (LV) 34.11 +90.7%
Attention-based Enc–Dec (LV)? 37.19 +106.0%

State-of-the-art SMT◦ 37.03 –

Table 6.1: The translation performances and the relative improvements over the simple
encoder-decoder model on an English-to-French translation task (WMT’14), measured
by BLEU [2, 55]. ?: an ensemble of multiple attention-based models. ◦: the state-of-
the-art phrase-based statistical machine translation system [39].

6.4 Warren Weaver’s Memorandum
In 1949 Warren Weaver15 wrote a memorandum, titled 〈Translation〉 on machine trans-
lation [108]. Although this text was written way before computers have become ubiq-
uitous,16 there are many interesting ideas that are closely related to what we have dis-
cussed so far in this chapter. Let us go over some parts of the Weaver’s memorandum
and see how the ideas there corresponds to modern-day machine translation.

Necessity of Linguistic Knowledge Weaver talks about a distinguished mathemati-
cian P who was surprised by his colleague. His colleague “had an amateur interest in
cryptography”, and one day presented P his method to “decipher” an encrypted Turkish
text successfully. “The most important point”, according to Weaver, from this instance
is that “the decoding was done by someone who did not know Turkish.” Now, this
sounds familiar, doesn’t it?

As long as there was a parallel corpus, we are able to use neural machine transla-
tion models, described throughout this chapter, without ever caring about which lan-
guages we are training a model to translate between. Especially if we decide to consider
each sentence as a sequence of characters,17 there is almost no need for any linguistic
knowledge when building these neural machine translation systems.

This lack of necessity for linguistic knowledge is not new. In fact, the most widely
studied and used machine translation approach, which is (count-based) statistical ma-
chine translation [19, 66], does not require any prior knowledge about source and target
languages. All it needs is a large corpus.

Importance of Context Recall from Sec. 6.3 that the encoder of an attention-based
neural machine translation uses a bidirectional recurrent neural network in order to ob-
tain a context set. Each vector in the context set was considered a context-dependent

15 Yes, this is the very same Weaver after which the building of the Courant Institute of Mathematical
Sciences has been named.

16 Although Weaver talks about modern computers over and over in his memorandum, what he refers to
is not exactly what we think of computers as these days.

17 In fact, only very recently people have started investigating the possibility of building a machine trans-
lation system based on character sequences [73]. This has been made possible due to the recent success of
neural machine translation.
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vector, as it represents what the center word means with respect to all the surround-
ing words. This context dependency is a necessary component in making the whole
attention-based neural machine translation, as it helps disambiguating the meaning of
each word and also distinguishing multiple occurrences of a single word by their con-
text.

Weaver discusses this extensively in Sec. 3–4 in his memorandum. First, to Weaver,
it was “amply clear that a translation procedure that does little more than handle a one-
to-one correspondence of words can not hope to be useful .. in which the problems
of .. multiple meanings .. are frequent.” In other words, it is simply not possible to
look at each word separately from surrounding words (or context) and translate it to a
corresponding target word, because there is uncertainty in the meaning of the source
word which can only be resolved by taking into account its context.

So, what does Weaver propose in order to address this issue? He proposes in Sec. 5
that if “one can see not only the central word in question, but also say N words on
either side, then if [sic] N is large enough one can unambiguously decide the meaning
of the central word.” If we consider only a single sentence and take the infinite limit of
N→ ∞, we see that what Weaver refers to is exactly the bidirectional recurrent neural
network used by the encoder of the attention-based translation system. Furthermore,
we see that the continuous bag-of-words language model, or Markov random field
based language model, from Sec. 5.4.2 exactly does what Weaver proposed by setting
N to a finite number.

In Sec. 5.2.1, we talked about the issue of data sparsity, and how it is desirable to
have a larger N but it’s often not a good idea statistically to do so. Weaver was also
worried about this by saying that “it would hardly be practical to do this by means of
a generalized dictionary which contains all possible phases [sic] 2N + 1 words long;
for the number of such phases [sic] is horrifying.” We learned that this issue of data
sparsity can be largely avoided by adopting a fully parametric approach instead of a
table-based approach in Sec. 5.4.

Common base of human communications Weaver suggested in the last section of
his memorandum that “perhaps the way” for translation “is to descend, from each lan-
guage, down to the common base of human communication – the real but as yet undis-
covered universal language – and then re-emerge by whatever particular route is conve-
nient.” He specifically talked about a “universal language”, and this makes me wonder
if we can consider the memory state of the recurrent neural networks (both of the en-
coder and decoder) as this kind of intermediate language. This intermediate language
radically departs from our common notion of natural languages. Unlike conventional
languages, it does not use discrete symbols, but uses continuous vectors. This use of
continuous vectors allows us to use simple arithmetics to manipulate the meaning, as
well as its surface realization.18

This view may sound radical, considering that what we’ve discussed so far has been
confined to translating from one language to another. After all, this universal language

18 If you find this view too radical or fascinating, I suggest you to look at the presentation slides by
Geoff Hinton at https://drive.google.com/file/d/0B16RwCMQqrtdMWFaeThBTC1mZkk/
view?usp=sharing
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of ours is very specific to only a single source language with respect to a single target
language. This is however not a constraint on the neural machine translation by design,
but simply a consequence of our having focused on this specific case.

Indeed, in this year (2015), researchers have begun to report that it is possible to
build a neural machine translation model that considers multiple languages, and even
further multiple tasks [38, 75]. More works in this line are expected, and it will be
interesting to see if Weaver’s prediction again turns out to be true.
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Figure 6.9: Visualizations of the four sample alignment matrices. The alignment
matrices were computed from an attention-based translation model trained to translate
a sentence in English to French. Reprinted from [2].
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Chapter 7

Final Words

Let me wrap up this lecture note by describing some aspects of natural language under-
standing with distributed representations that I have not discussed in this course. These
are the topics that I would have spent time on, had the course been scheduled to last
twice the duration as it is now. Afterward, I will finalize this whole lecture note with a
short summary.

7.1 Multimedia Description Generation as Translation
Those who have followed this course closely so far must have noticed that the neural
machine translation model described in the previous chapter is quite general in the
sense that the input to the model does not have to be a sentence. In the case of the
simple encoder-decoder model from Sec. 6.2, it is clear that any type of input X can be
used instead of a sentence, as long as there is a feature extractor that returns the vector
representation c of the input.

And, fortunately, we already learned how to build a feature extractor throughout
this course. Almost every single model (that is, a neural network in our case) converts
an input into a continuous vector. Let us take a multilayer perceptron from Sec. 3.3
as an example. Any classifier built as a multilayer perceptron can be considered as a
two-stage process (see Sec. 3.3.2.) First, the feature vector of the input is extracted (see
Eq. (3.9)):

φ(x) = σ(ux+ c).

The extracted feature vector φ(x) is then affine-transformed, followed by softmax func-
tion. This results in a conditional distribution over all possible labels (see Eq. (4.4).)

This means that we can make the simple encoder-decoder model to work with non-
language input simply by replacing the recurrent neural network based encoder with
the feature extraction stage of the multilayer perceptron. Furthermore, it is possible to
pretrain this feature extractor by training the whole multilayer perceptron on a separate
classification dataset.1

1 This way of using a feature extractor pretrained from another network has become a de facto standard
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This approach of using the encoder-decoder model for describing non-language
input has become popular in recent years (especially, 2014 and 2015,) and has been
applied to many applications, including image/video description generation and speech
recognition. For an extensive list of these applications, I refer the readers to a recent
review article by Cho et al. [26].

Example: Image Caption Generation Let me take as an example the task of im-
age caption generation. The possibility of using the encoder-decoder model for image
caption generation was noticed by several research groups (almost simultaneously) last
year (2014) [62, 106, 59, 78, 37, 40, 25].2 The success of neural machine translation
in [101] and earlier success of deep convolutional network on object recognition (see,
e.g., [67, 96, 102]) inspired them the idea to use the deep convolutional network’s fea-
ture extractor together with the recurrent neural network decoder for the task of image
caption generation.
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Figure 7.1: Image caption generation with
the attention-based encoder-decoder model
[111].

Right after these, Xu et al. [111]
realized that it is possible to use the
attention-based encoder-decoder model
from Sec. 6.3 for image caption gen-
eration. Unlike the simple model, the
attention-based model requires a context
set instead of a context vector. The con-
text set should contain multiple context
vectors, and each vector should repre-
sent a spatial location with respect to
the whole image, meaning each context
vector is a spatially-localized, context-
dependent image descriptor. This was
achieved by using the last convolutional
layer’s activations of the pretrained deep
convolutional network instead of the last
fully-connected layer’s. See Fig. 7.1 for
graphical illustration of this approach.

These approaches based on neural
networks, or in other words based on dis-
tributed representations, have been suc-

cessful at image caption generation. Four out of five top rankers in the recent Microsoft
CoCo Image Captioning Challenge 20153 were using variants of the neural encoder-
decoder model, based on human evaluation of the captions.

in many of the computer vision tasks [94]. This is also closely related to semi-supervised learning with
pretrained word embeddings which we discussed in Sec. 5.4.3. In that case, it was only the first input layer
that was pretrained and used later (see Eqs. (5.11)–(5.12).)

2 I must however make a note that Kiros et al. [62] proposed a fully neural network based image caption
generation earlier than all the others cited here did.

3 http://mscoco.org/dataset/#captions-leaderboard
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7.2 Language Understanding with World Knowledge
In Sec. 1.2, we talked about how we view natural languages as a function. This function
of natural language maps from a tuple of a speaker’s speech, a listener’s mental state
and the surrounding world to the listener’s reaction, often as a form of natural language
response. Unfortunately, in order to make it manageable, we decided to build a model
that approximates only a part of this true function.

Immediate state of the surrounding world In this course of action, one thing we
have dropped out is the surrounding world. The surrounding world may mean many
different things. One of them is the current state of the surrounding world. As an
example, when I say “look at this cute llama,” it is quite likely that the surrounding
world at the current state contains either an actual llama or at least a picture of a llama.
A listener then understands easily what a llama is even without having known what a
llama is in advance. By looking at the picture of llama, the listener makes a mental note
that the llama looks similar to a camel and therefore must be a four-legged animal.

If the surrounding world is not taken into account, as we’ve been doing so far,
the listener can only generalize based on the context words. Just like how the neural
language model from Sec. 5.4 generalized to unseen, or rarely seen words, the listener
can infer that “llama” must be a type of animal by remembering that the phrase “look
at this cute” has mainly been followed by an animal such as “cat” or “dog”. However,
it is quite clear that “look at this cute” is also followed by many other nouns, including
“baby”, “book” and so on.

The question is then how to exploit this. How can we incorporate, for instance,
vision information from the surrounding world into natural language understanding?

The simplest approach is to simply concatenate a word embedding vector (see
Eq. (5.12)) and a corresponding image vector (obtained from an existing feature ex-
tractor, see above) [60]. This can be applied to any existing language models such as
neural language model (see Sec. 5.4) and neural machine translation model (see Chap-
ter 6.) This approach gives a strong signal to the model the similarities among different
words based on the corresponding objects’ appearances. This approach of concatenat-
ing vectors of two different modalities, e.g., language and vision, was earlier proposed
in [109].

A more sophisticated approach is to design and train a model to solve a task that
requires tight interaction between language and other modalities. As our original goal
is to build a natural language function, all we need to do is to build a function approxi-
mator that takes as input both language and other modalities. Recently, Antol et al. [1]
built a large-scale dataset of question-answer-image triplets, called visual question an-
swering (VQA) for this specific purpose. They have carefully built the dataset such
that many, if not most, questions can only be answered when the accompanying image
is taken into consideration. Any model that’s able to solve the questions in this dataset
well will have to consider both language and vision.

Knowledge base: Lost in a library So far, we have talked about incorporating an
immediate state of the surrounding world. However, our use of languages is more
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sophisticated. This is especially apparent in written languages. Let us take an example
of me writing this lecture note. It is not the case where I simply sit and start writing
the whole text based purely on my mental state (with memory of my past research) and
the immediate surrounding world state (which has almost nothing to do with.) Rather,
a large part of this writing process is spent on going through various research articles
and books written by others in order to find relevant details of the topic.

In this case, the surrounding world is a database in which human knowledge is
stored. You can think of a library or the Internet. As the amount of knowledge is
simply too large to be memorized in the entirety, it is necessary for a person to be able
to search through the vast knowledge base. But, wait, what does it have to do with
natural language understanding?

Consider the case where the context phrase is “Llama is a domesticated camelid
from”. Without access to the knowledge base, or in this specific instance, access to
Wikipedia, any language model can only say as much as that this context phrase is
likely followed by a name of some place. This is especially true, if we assume that the
training corpus did not mention “llama” at all. However, if the language model is able
to search Wikipedia and condition on its search result, it suddenly becomes so obvious
that this context phrase is followed by “South America” or the name of any region on
Andean mountain rages.

Although this may sound too complicated a task to incorporate into a neural net-
work, the concept of how to incorporate this is not necessarily complicated. In fact, we
can use the attention mechanism, discussed in Sec. 6.3, almost as it is. Let us describe
here a conceptual picture of how this can be done.

Let D = {d1,d2, . . . ,dM} be a set of knowledge vectors. Each knowledge vector
di is a vector representation of a piece of knowledge. For instance, di can be a vector
representation of one Wikipedia article. It is certainly unclear what is the best way to
obtain this vector representation of an entire article, but let us assume that an oracle
gave us a means to do so.

Let us focus on recurrent language modelling from Sec. 5.5.4 At each time step,
we have access to the following vectors:

1. Context vector ht−1: the summary all the preceding words

2. Current word wt : the current input word

Similarly to what we have done in Sec. 6.3, we will define a scoring function fscore
which scores each knowledge vector di with respect to the context vector and the cur-
rent word:

αi,t ∝ exp( fscore(di,ht−1,ewt )) ,

where ewt is a vector representation of the current word wt .
This score reflects the relevance of the knowledge in predicting the next word, and

once it is computed for every knowledge vector, we compute the weighted sum of all

4 This approach of using attention mechanism for external knowledge pieces has been proposed recently
in [14], in the context of question-answering. Here, we stick to language modelling, as the course has not
dealt with question-answering tasks.
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the knowledge:

d̃t =
M

∑
i=1

αi,tdi.

This vector d̃t is a vector summary of the knowledge relevant to the next word, taking
into account the context phrase. In the case of an earlier example, the scoring function
gives a high score to the Wikipedia article on “llama” based on the history of preceding
words “Llama is a domesticated camelid from”.

This knowledge vector is used when updating the memory state of the recurrent
neural network:

ht = frec
(
ht−1,ewt , d̃t

)
.

From this updated memory state, which also contains the knowledge extracted from
the selected knowledge vector, the next word’s distribution is computed according to
Eq. (4.6).

One important issue with this approach is that the size of knowledge set D is often
extremely large. For instance, English Wikipedia contains more than 5M articles as of
23 Nov 2015.5 It easily becomes impossible to score each and every knowledge vector,
not to mention to extract knowledge vectors of all the articles.6 It is an open question
how this unreasonable amount of computation needed for search can be avoided.

Why is this any significant? One may naively think that if we train a large enough
network with a large enough data which contains all those world knowledge, a trained
network will be able to contain all those world knowledge (likely in a compressed
form) in its parameters together with its network architecture. This is true up to a
certain level, but there are many issues here.

First, the world knowledge we’re talking about here contains all the knowledge
accumulated so far. Even a human brain, arguably the best working neural network
to date, cannot store all the world knowledge and must resort to searching over the
external database of knowledge. It is no wonder we have libraries where people can go
and look for relevant knowledge.

Second, the world knowledge is dynamic. Every day some parts of the world
knowledge become obsolete, and at the same time previously unknown facts are added
to the world knowledge. If anyone looked up “Facebook” before 2004, they would’ve
ended up with yearly facebooks from American universities. Nowadays, it is almost
certain that when a person looks up “Facebook”, they will find information on “Face-
book” the social network site. Having all the current world knowledge encoded in the
model’s parameters is not ideal in this sense.

5 https://en.wikipedia.org/wiki/Wikipedia:Statistics
6 This is true especially when those knowledge vectors are also updated during training.
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7.3 Larger-Context Language Understanding:
Beyond Sentences and Beyond Words

If we view natural language as a function, it becomes clear that what we’ve discussed
so far throughout the course is heavily restrictive. There are two reasons behind this
restriction.

First, what we have discussed so far has narrowly focused on handling a sentence.
In Sec. 5.2, I have described language model as a way to model a sentence probability
p(S). This is a bit weird in the sense that we’ve been using a term “language” modelling
not “sentence” modelling. Keeping it in mind, we can start looking at a probability of a
document or discourse D as a whole rather than as a product of sentence probabilities:

p(D) =
N

∏
k=1

p(Sk|S<k),

where the document D consists of N sentences. This approach is readily integrated into
the language modelling approaches we discussed earlier in Chapter 5 by

p(D) =
N

∏
k=1

Tk

∏
j=1

p(w j|w< j,S<k).

This is applicable to any language-related models we have discussed so far, includ-
ing neural language model from Sec. 5.4, recurrent language model from Sec. 5.5,
Markov random field language model from Sec. 5.4.2 and neural machine translation
from Chapter 6.

In the context of language modelling, two recent articles proposed to explore this
direction. I refer the readers to [107] and [57].

Second, we have stuck to representing a sentence as a sequence of words so far,
despite a short discussion in Sec. 5.1.2 where I strongly claim that this does not have
to be. This is indeed true, and in fact, even if we replace most occurrence of “word”
in this course with, for instance, “character”, all the arguments stand. Of course, by
using smaller units than words, we run into many practical and theoretical issues. One
most severe practical issue is that each sentence suddenly becomes much longer. One
most sever theoretical issue is that it is a highly nonlinear mapping from a sequence
of characters to its meaning, as we discussed earlier in Sec. 5.1.2. Nevertheless, the
advance in computing and deep neural networks, which are capable of learning such
a highly nonlinear mapping, have begun to let researchers directly work on this prob-
lem of using subword units (see, e.g., [61, 73].) Note that I am not trying to say that
characters are the only possible sub-word units, and recently an effective statistical ap-
proach to deriving sub-word units off-line was proposed and applied to neural machine
translation in [93].
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7.4 Warning and Summary
Before I finish this lecture note with the summary of what we have discussed through-
out this course, let me warn you by quoting Claude Shannon [95]:7

It will be all too easy for our somewhat artificial prosperity to collapse
overnight when it is realized that the use of a few exciting words like in-
formation, entropy, redundancy, do not solve all our problems.

Natural language understanding with distributed representation is a fascinating topic
that has recently gathered large interest from both machine learning and natural lan-
guage processing communities. This may give a wrong sign that this approach with
neural networks is an ultimate winner in natural language understanding/processing,
though without any ill intention. As Shannon pointed out, this prosperity of distributed
representation based natural language understanding may collapse overnight, as can
any other approaches out there.8 Therefore, I warn the readers, especially students, to
keep this quote in their mind and remember that it is not a few recent successes of this
approach to natural language understanding but the fundamental ideas underlying this
approach that matter and should be remembered after this course.

Summary Finally, here goes the summary of what we have learned throughout this
semester. We began our journey by a brief discussion on how we view human language
as, and we decided to stick to the idea that a language is a function not an entity existing
independent of the surrounding world, including speakers and listeners. Is this a correct
way to view a human language? Maybe, maybe not.. I will leave it up to you to decide.

In order to build a machine that can approximate this language function, in Chap-
ter 2, we studied basic ideas behind supervised learning in machine learning. We de-
fined what a cost function is, how we can minimize it using an iterative optimization
algorithm, specifically stochastic gradient descent, and learned the importance of hav-
ing a validation set for both early-stopping and model selection. These are all basic
topics that are dealt in almost any basic machine learning course, and the only thing
that I would like to emphasize is the importance of not looking at a held-out test set.
One must always select anything related to learning, e.g., hyperparameters, networks
architectures and so on, based solely on a validation set. As soon as one tunes any
of those based on the test set performance, any result from this tuning easily becomes
invalid, or at least highly disputable.

In Chapter 3, we finally talked about deep neural networks, or more traditionally
called multilayer perceptron.9 I tried to go over basic, but important details as slowly as
possible, including how to build a deep neural network based classifier, how to define
a cost function and how to compute the gradient w.r.t. the parameters of the network.
However, I must confess that there are better materials for this topic than this lecture
note.

7 I would like to thank Adam Lopez for pointing me to this quote.
8 Though, it is interesting to note that information theory never really collapsed overnight. Rather its

prosperity has been continuing for more than half a century since Shannon warned us about its potential
overnight collapse in 1956.

9 I personally prefer “multilayer perceptron”, but it seems like it has gone out of fashion.
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We then moved on to recurrent neural networks in Chapter 4. This was a necessary
step in order to build a neural network based model that can handle both variable-length
input and output. Again, my goal here was to take as much time as it is needed to moti-
vate the need of recurrent networks and to give you basic ideas underlying them. Also,
I spent quite some time on why it has been considered difficult to train recurrent neural
networks by stochastic gradient descent like algorithms, and as a remedy, introduced
gated recurrent units and long short-term memory units.

Only after these long four to five weeks, have I started talking about how to handle
language data in Chapter 5. I motivated neural language models by the lack of general-
ization and the curse of data sparsity. It is my regret that I have not spent much time on
discussing the existing techniques for count-based n-gram language models, but again,
there are much better materials and better lecturers for these techniques already. Af-
ter the introduction of neural language model, I spent some time on describing how
this neural language model is capable of generalizing to unseen phrases. Continuing
from this neural language model, in Sec. 5.5, language modelling using recurrent neu-
ral networks was introduced as a way to avoid Markov assumption of n-gram language
model.

This discussion on neural language model naturally continued on to neural machine
translation in Chapter 6. Rather than going directly into describing neural machine
translation models, I have spent a full week on two issues that are often overlooked;
data preparation in Sec. 6.1.1 and evaluation in Sec. 6.1.2. I wish the discussion of these
two topics has reminded students that machine learning is not only about algorithms
and models but is about a full pipeline starting from data collection to evaluation (often
with loops here and there.) This chapter finished with where we are in 2015, compared
to what Weaver predicted in 1949.

Of course, there are so many interesting topics in this area of natural language
understanding. I am not qualified nor knowledgeable to teach many, if not most, of
those topics unfortunately, and have focused on those few topics that I have worked on
myself. I hope this lecture note will serve at least as a useful starting point into more
advanced topics in natural language understanding with distributed representations.
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neural network based language model. In INTERSPEECH 2010, pages 1045–
1048, 2010.

[81] V. Nair and G. E. Hinton. Rectified linear units improve restricted boltzmann
machines. In Proceedings of the 27th International Conference on Machine
Learning (ICML-10), pages 807–814, 2010.

120



[82] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu. Bleu: a method for automatic
evaluation of machine translation. In Proceedings of the 40th annual meeting
on association for computational linguistics, pages 311–318. Association for
Computational Linguistics, 2002.

[83] R. Pascanu, T. Mikolov, and Y. Bengio. On the difficulty of training recurrent
neural networks. In Proceedings of The 30th International Conference on Ma-
chine Learning, pages 1310–1318, 2013.

[84] A. Perfors, J. Tenenbaum, and T. Regier. Poverty of the stimulus? a rational
approach. In Annual Conference, 2006.

[85] K. B. Petersen, M. S. Pedersen, et al. The matrix cookbook. Technical University
of Denmark, 7:15, 2008.

[86] C. W. Post. The Three Percent Problem: Rants and Responses on Publishing,
Translation, and the Future of Reading. Open Letter, 2011.

[87] P. Resnik and N. A. Smith. The web as a parallel corpus. Computational Lin-
guistics, 29(3):349–380, 2003.

[88] H. Robbins and S. Monro. A stochastic approximation method. The Annals of
Mathematical Statistics, 22(3):400–407, 1951.

[89] F. Rosenblatt. Principles of neurodynamics: perceptrons and the theory of brain
mechanisms. Report (Cornell Aeronautical Laboratory). Spartan Books, 1962.

[90] S. Russell and P. Norvig. Artificial intelligence: a modern approach. 1995.

[91] J. Schmidhuber. Deep learning in neural networks: An overview. Neural Net-
works, 61:85–117, 2015.

[92] H. Schwenk. Continuous space language models. Computer Speech & Lan-
guage, 21(3):492–518, 2007.

[93] R. Sennrich, B. Haddow, and A. Birch. Neural machine translation of rare words
with subword units. arXiv preprint arXiv:1508.07909, 2015.

[94] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun. Over-
feat: Integrated recognition, localization and detection using convolutional net-
works. arXiv preprint arXiv:1312.6229, 2013.

[95] C. Shannon. The bandwagon (edtl.). IRE Transactions on Information Theory,
1(2):3, 1956.

[96] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-
scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[97] B. F. Skinner. Verbal behavior. BF Skinner Foundation, 2014.

121



[98] J. R. Smith, H. Saint-Amand, M. Plamada, P. Koehn, C. Callison-Burch, and
A. Lopez. Dirt cheap web-scale parallel text from the common crawl. In ACL
(1), pages 1374–1383, 2013.

[99] M. Snover, B. Dorr, R. Schwartz, L. Micciulla, and J. Makhoul. A study of trans-
lation edit rate with targeted human annotation. In Proceedings of association
for machine translation in the Americas, pages 223–231, 2006.

[100] M. Sundermeyer, H. Ney, and R. Schluter. From feedforward to recurrent lstm
neural networks for language modeling. Audio, Speech, and Language Process-
ing, IEEE/ACM Transactions on, 23(3):517–529, 2015.

[101] I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning with
neural networks. In Advances in neural information processing systems, pages
3104–3112, 2014.

[102] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van-
houcke, and A. Rabinovich. Going deeper with convolutions. arXiv preprint
arXiv:1409.4842, 2014.

[103] J. Turian, L. Ratinov, and Y. Bengio. Word representations: a simple and general
method for semi-supervised learning. In Proceedings of the 48th annual meeting
of the association for computational linguistics, pages 384–394. Association for
Computational Linguistics, 2010.

[104] L. van der Maaten and G. E. Hinton. Visualizing data using t-SNE. Journal of
Machine Learning Research, 9:2579–2605, November 2008.

[105] V. Vapnik. The Nature of Statistical Learning Theory. Springer-Verlag New
York, Inc., New York, NY, USA, 1995.

[106] O. Vinyals, A. Toshev, S. Bengio, and D. Erhan. Show and tell: A neural image
caption generator. arXiv preprint arXiv:1411.4555, 2014.

[107] T. Wang and K. Cho. Larger-context language modelling. arXiv preprint
arXiv:1511.03729, 2015.

[108] W. Weaver. Translation. Machine translation of languages, 14:15–23, 1955.

[109] J. Weston, S. Bengio, and N. Usunier. Large scale image annotation: learning to
rank with joint word-image embeddings. Machine learning, 81(1):21–35, 2010.

[110] T. Winograd. Understanding natural language. Cognitive psychology, 3(1):1–
191, 1972.

[111] K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhutdinov, R. Zemel, and
Y. Bengio. Show, attend and tell: Neural image caption generation with visual
attention. In International Conference on Machine Learning, 2015.

122



[112] Y. Zhang, K. Wu, J. Gao, and P. Vines. Automatic acquisition of chinese–english
parallel corpus from the web. In Advances in Information Retrieval, pages 420–
431. Springer, 2006.

[113] R. Zhou and E. A. Hansen. Beam-stack search: Integrating backtracking with
beam search. In ICAPS, pages 90–98, 2005.

123


	Introduction
	Route we will not take
	What is Language?
	Language Understanding

	Road we will take
	Language as a Function
	Language Understanding as a Function Approximation


	Function Approximation as Supervised Learning
	Function Approximation: Parametric Approach
	Expected Cost Function
	Empirical Cost Function

	Learning as Optimization
	Gradient-based Local Iterative Optimization
	Stochastic Gradient Descent

	When do we stop learning?
	Early Stopping
	Model Selection

	Evaluation
	Linear Regression for Non-Linear Functions
	Feature Extraction


	Neural Networks and Backpropagation Algorithm
	Conditional Distribution Approximation
	Why do we want to do this?
	Other Distributions

	Feature Extraction is also a Function
	Multilayer Perceptron
	Example: Binary classification with a single hidden unit
	Example: Binary classification with more than one hidden units

	Automating Backpropagation
	What if a Function is not Differentiable?


	Recurrent Neural Networks and Gated Recurrent Units
	Recurrent Neural Networks
	Fixed-Size Output y
	Multiple Child Nodes and Derivatives
	Example: Sentiment Analysis
	Variable-Length Output y: |x|=|y|

	Gated Recurrent Units
	Making Simple Recurrent Neural Networks Realistic
	Gated Recurrent Units
	Long Short-Term Memory

	Why not Rectifiers?
	Rectifiers Explode
	Is tanh a Blessing?
	Are We Doomed?
	Gated Recurrent Units Address Vanishing Gradient


	Neural Language Models
	Language Modeling: First Step
	What if those linguistic structures do exist
	Quick Note on Linguistic Units

	Statistical Language Modeling
	Data Sparsity/Scarcity

	n-Gram Language Model
	Smoothing and Back-Off
	Lack of Generalization

	Neural Language Model
	How does Neural Language Model Generalize to Unseen n-Grams? – Distributional Hypothesis
	Continuous Bag-of-Words Language Model:  Maximum Pseudo–Likelihood Approach
	Semi-Supervised Learning with Pretrained Word Embeddings

	Recurrent Language Model
	How do n-gram language model, neural language model and RNN-LM compare?

	Neural Machine Translation
	Statistical Approach to Machine Translation
	Parallel Corpora: Training Data for Machine Translation
	Automatic Evaluation Metric

	Neural Machine Translation:  Simple Encoder-Decoder Model
	Sampling vs. Decoding

	Attention-based Neural Machine Translation
	What does the Attention Mechanism do?

	Warren Weaver's Memorandum

	Final Words
	Multimedia Description Generation as Translation
	Language Understanding with World Knowledge
	Larger-Context Language Understanding:  Beyond Sentences and Beyond Words
	Warning and Summary


