Neural Network Language Modeling

Yogarshi Vyas 02/24/16 LING773

Topics for Today

- Language Modeling recap
- Basics of Neural Networks
- Feed forward Neural Network Language Model
- Recurrent Neural Network Language Model
- Word Embeddings
- Word2Vec Context Bag-of-Words and Skipgram

Language Modeling Recap

- Assign a probability to a sentence
 - P (I went to the bank) >> P (I goes to the bank)
- Can be calculated using Chain Rule

```
P( I went to the bank ) = P(bank | I went to the) *
    P(the | I went to) *
    P(to | I went) *
    P(went | I ) *
    P(I)
```

LM – Estimating Probabilities

- Count and divide
- P (bank | I went to the)Count (I went to the bank) / Count (I went to the)
- But these estimates will be poor!
 - So we make Markov assumptions
- P (bank | I went to the) \approx P (bank | to the) or
- P (bank | I went to the) \approx P (bank | to)

Language Modeling Recap

- Assign a probability to a sentence
 - P (I went to the bank) >> P (Eye vent to the bank)
- Can be calculated using Chain Rule

```
P( I went to the bank ) = P(bank | I went to the) *
    P(the | I went to) *
    P(to | I went) *
    P(went | I ) *
    P(I)
```

Language Modeling Recap

- Assign a probability to a sentence
 - P (I went to the bank) >> P (Eye vent to the bank)
- Can be calculated using Chain Rule

```
P( I went to the bank ) = P(bank | I went to the) *
    P(the | I went to) *
    P(to | I went) *
    P(went | I ) *
    P(I)
```

Smoothing

- Zeros are bad!
- Give artificial counts to unseen words, by taking away counts from seen words
 - Laplace
 - Good Turing
 - Kneser Ney

Issues with n-gram LMs

- State of the art applications of LMs (say in MT), use 4/5-grams.
 - Parameters grow exponentially with n.
- Similarity between words is not taken into account.
 - P("The cat is walking in the bedroom") should give some indication about P("A dog was running in a room")

Neural Net Recap

- Linear Classifier/Perceptron
- Sigmoid/Softmax
- Multilayer Perceptron / Feed forward NN
- Recurrent NN

Linear classifiers

inputs weights

$$f(x) = \begin{cases} 1 & \text{if } w \cdot x + b > 0 \\ 0 & \text{otherwise} \end{cases}$$

Linear Classifiers

$$f(x) = \begin{cases} 1 & \text{if } w \cdot x + b > 0 \\ 0 & \text{otherwise} \end{cases}$$

Non linearity – Heavyside Step Function

$$f(x) = 0 \text{ if } x < 0$$

= 1 if x > 0

Output is either 0 or 1

Non linearity – Logistic Function

$$f(x) = 1/(1 + e^{-x})$$

Output is a real value between 0 and 1

Softmax

- Multivariate version of Logistic Function
- Takes an arbitrary vector and squashes all values between 0 and 1 such that they sum to 1
- From a K-dimensional vector, you can get a K-class classifier

A neuron

Other non-linearities

• Tanh

ReLU(Rectified Linear Unit)

Stacking up neurons...

Stacking up neurons...

Stacking up neurons...

21

Input

2/24/16

2/24/16

Training a Neural Net

- What are the parameters of a neural net?
 - Architecture (Number of layers, size, etc.)
 - Activation function
 - Input features
 - Weight
- Train weights using Backpropagation
 - Gradient descent + Chain Rule
 - Loss functions Cross entropy, Log likelihood

Adding layers – making it deep

Matrix multiplication view

- Input3d vector x
- Hidden layer $\mathbf{y} = f_I(\mathbf{W_1}\mathbf{x})$ $\mathbf{W_1}$ is 3x4
- Output layer $z = W_2y$ W_2 is 4x3

Recurrent NN

A simple NN bigram LM

Input layer - 1-of-V Vector

Hidden layer - Real valued vector in R^m , $m \ll V$

Output layer - Probability distribution over V words

A hint of Word Embeddings...

- Matrix between input and hidden layer
 - Vxm matrix
 - Vector representations for each word

Feedforward NN Language Model

- Approach summary
 - Represent each word in the vocabulary as a feature vector (a real-valued vector in R^m)
 - Express the joint probability function of a sequence of words in terms of these vectors
 - Learn probability function and vectors simultaneously

(Bengio, Yoshua, et al. "A Neural Probabilistic Language Model." *Journal Of Machine Learning Research*. 2003.)

Bengio et al - Details

Recurrent NN Language Model

- Recurrent NN
- Bengio et al still use fixed length context.
 By plugging in a recurrent NN, you can theoretically have infinite context!

Mikolov, Tomas, et al. "Recurrent neural network based language model." INTERSPEECH. Vol. 2. 2010.

Extend RNNLM

Add more features

• What are some features you can add?

Word Embeddings

- Learn real valued vector space representations of words from large corpora
- Word vectors capture many linguistic properties
 - Syntactic gender, tense, plurality
 - Sematic "capital city of"

• We can do nearest neighbor search around result of vector operation "King - man + woman" and obtain "Queen"

(Linguistic regularities in continuous space word representations (Mikolov et al, 2013))

Expression	Nearest token
Paris - France + Italy	Rome
bigger - big + cold	colder
sushi - Japan + Germany	bratwurst
Cu - copper + gold	Au
Windows - Microsoft + Google	Android
Montreal Canadiens - Montreal + Toronto	Toronto Maple Leafs

CBoW

- Language modelling use previous *n* words to predict the next word
- CBoW Use previous and next words to predict current word
- Same as Feedforward NN, but no hidden layer, thus less expensive to compute

Mikolov, Tomas, et al. "Efficient estimation of word representations in vector space." *arXiv preprint arXiv:* 1301.3781 (2013).

SkipGram

- CBoW Use context to predict the word
- SkipGram Use word to predict the context

Tricks of the Trade

- Hierarchical softmax
 - The output softmax layer is huge (size of vocabulary)
 - Do it hierarchically, by predicting only word classes, then predicting subclasses, then subsubclasses... And so on until you get to leaves.
- Negative Sampling
 - Pick random word context pairs as negative examples

Whistles and Bells - Compositionality

- How do you get representations for phrases/ sentences?
 - Average!

- Skip-thought
 - Basically skip-gram over sentences

Kiros, Ryan, et al. "Skip-thought vectors." Advances in Neural Information Processing Systems. 2015.

Whistles and Bells – Multilingual Representations

• Independently learn vectors for English and French, learn a mapping (usually linear) between the two spaces

Train an objective jointly over two languages

• In both cases, parallel data is used as crosslingual signal

Shortcomings

- Very little to no theoretical grounding
 - People have offered explanations for SGNS that draw parallels to LSA (1)
- Polysemy
 - One vector for the word 'bank'
 - Does it capture properties of the financial institution? Or the river bank? Or both? How do you disentangle? (2)
- Interpretability
 - 100 dimensional vector representations for each word but what does each dimension capture?
 - By adding sparsity and non-negativity, you can get interpretability + some cognitive plausibility ⁽³⁾

^{(1) -} Levy, Omer, and Yoav Goldberg. "Neural word embedding as implicit matrix factorization." NIPS 2014.

^{(2) -} Huang, Eric H., et al. "Improving word representations via global context and multiple word prototypes." ACL 2012.

^{(3) -} Murphy, Brian, Partha Pratim Talukdar, and Tom M. Mitchell. "Learning Effective and Interpretable Semantic Models using Non-Negative Sparse Embedding." *COLING*. 2012.