
J O R D A N B OY D - G R A B E R

Q U E S T I O N I N G A R T I F I C I A L
I N T E L L I G E N C E

U N I V E R S I T Y O F M A R Y L A N D

Copyright © 2023 Jordan Boyd-Graber

tufte-latex.github.io/tufte-latex/

2022

1
Introduction: The Unanswered Question

Since this is a book about question answering, I should try to answer
some questions to start things out. I’m going to try to answer: “what’s
this book about”, “who am I”, and “who can use this book”.

ai has been defined by asking questions even before it was “a thing”:
Alan Turing designed a question answering proceduring to determine
if machine is intelligent. In the years since, ai has continued to be
defined by questions: answering questions on Jeopardy! and on our
phones.

This book looks at not just the how of computers answers questions
but also why answering questions is so important for ai. Answering that
“why” questions requires us to go back to mythological, civil service
exams, and game shows and connect them to ai question answering.

We call someone smart if they can answer questions: the pass a test,
win on Jeopardy!, or offer a witty retort in a debate. This is not just a
recent phenomenon. Question answering is deeply embedded in our
culture: in myth Œdipus answered the riddle of the sphynx; getting
into a school depends on passing a standardized test; good governance
depends on civil service exams; a trivia subculture has grown around
answering all manner of questions.

ai has been defined by asking questions even before it was “a thing”:
Alan Turing designed a question answering proceduring to determine
if machine is intelligent. In the years since, ai has continued to be
defined by questions: answering questions on Jeopardy! and on our
phones. From ibm Watson on Jeopardy! to Siri and Alexa in every home,
the ability of computers to answer is a common yardstick of how smart
computers are.

As we’ll see this is important in both contemporary civilization
and is fundamental to artificial intelligence. The goal of this book is
to help explain how computers answer questions on your phone, on
game shows, and to fight fake news. Importantly, from my perspective,
this won’t just be about computers answering questions: humans and
computers have a lot to learn from each other, and I hope we’ll be able

4 questioning artificial intelligence

to discover new things about those interactions.
This book looks at not just the how of computers answers questions

but also why answering questions is so important for ai. Answering that
“why” questions requires us to go back to mythological, civil service
exams, and game shows and connect them to ai question answering.

To be transparent, this book has an agenda: we can better under-
stand artificial intelligence by looking at its ability to answer questions
through this historical lens. If we want to call a computer smart—
indeed, smarter than a human—we should make sure the competition
is fair. Moreover, writing and asking questions is an art that has been
refined over decades.

Part of the story I want to tell is how we got here. And why little
things like the decisions made at a tiny British library in Bedfordshire
fifty years ago have locked the artificial intelligence community into
a particular way of evaluating whether a computer is smart. These
historical decisions have shaped the systems that we have today; as a
consequence, we are stuck with the crappy answers from our smart-
phone.

But it didn’t have to be this way! The very definition of comput-
ing and artificial intelligence was based a thought experiment that is
closer to how computers and humans should interact with each other.
However, that definition—from a boffin in Manchester called Alan
Turing—was too fanciful to really be implemented in the lab in the
twentieth century. I’ll argue that we could do something closer to Alan
Turing’s vision, and you, the reader, can judge whether it’s (still) too
fanciful.

This is not just a narrow question for those building question an-
swering systems. I think that the way we interact with our smartphones
and computers will define the future of human–computer interaction
and thus the shape of the modern, ai-infused economy.

Who am I?

I’m excited to be writing this because it’s something that I’m super
passionate about: as you’ll see very soon as we talk about the history
of question answering in artificial intelligence, answering questions
is central not just to my research program but also to my day job:
teaching and guiding students. And it’s also important to as a hobby:
even before this became part of my research program, I was spending
my weekends writing and answering silly trivia questions. I’m hoping
that this course will help you appreciate the joy and beauty of posing
and answering questions.

In my day job, I have built question answering systems that used the
structure of Wikipedia to better answer questions, was one of the first

introduction: the unanswered question 5

to apply deep learning to the qa task, and played a lot of exhibition
games against trivia whizzes like Yogesh Raut, Ken Jennings, and Roger
Craig. I’m also a professor of computer science, and one of the courses
that I teach is a course on question answering (and this book is the
textbook for it).

As a hobby, I’m also a trivia enthusiast. I played qb for Caltech
(where I got bs degrees in computer science and history), started
Princeton’s pub quiz (where I went to grad school), and appeared on
Jeopardy!. To be clear, I’m not very good at trivia: our qb teams at best
cracked top ten nationally, and I came in second place in the one game
of Jeopardy! I taped (my students are particularly fond of mocking my
poor performance on the video game category). But this has brought
me a familiarity with the trivia community and how it works, one that
I think gives me a unique (or deranged) look at how computers answer
questions.

In contrast, I’ve won more awards as a researcher. Probably the one
I’m most proud of is the Karen Spärk Jones award (we’ll learn more

about her in Chapter ?reference? ??) from the British
Computing Society, but I’ve also gotten an nsf career award and
“best of” awards from Intelligent User Interfaces, Neural Information
Processing Systems, the North American Association for Computational
Linguistics, and the Conference on Natural Language Learning. I’ve
published over a hundred peer-reviewed publications on interactive
machine learning, question answering, and exploring document collec-
tions; and this isn’t my first book, with David Mimno and Yuening Hu,
I wrote Applications of Topic Models. Although I should say that because
I’m a professor, this is mostly the work of the students that I’ve worked
with over the years (I thank them by name at the end of the book).

But the biggest prize that I’ve gotten is to have a career (and permis-
sive bosses) that allow me to combine my hobby with these intellectual
pursuits. And I’m even more lucky that that career allows me to now
share it with you.

How the Book is Structured

We set the stage in two British Universities in the mid-twentieth century
and show how two researchers set the stage for rival paradigms of
artificial intelligence in the twentith century. Having set the stage of
this rivalry, we then trace the roots of these two paradigms: civil service
exams vs. library information desks, game shows vs. standards bodies
vs. standardized tests.

Having covered the history, the book turns to the present and the
hotly debated question of whether today’s ai is closer to Clever Hans or

6 questioning artificial intelligence

to hal. We approach this central question through the influence of the
Cranfield and Manchester paradigms in three vignettes. These stories
detail three modern ai triumphs where companies have used question
answering to turbocharge their ai research: ibm’s Watson, Google’s
Natural Questions (and the connection to Muppets), and Facebook’s
Dynabench leaderboard. But rather than simply recount what these
companies did, the perspective of the first section allows us to critically
examine the important questions of whether the comparison between
human and machines is fair and how much the technical advantages
reshaped the field.

Finally, we turn our eyes to the future of ai and qa. How can we
take lessons from trivia games and standardized tests to know when
we’ve made progress in comparing human and machine intelligence
and to prod research in the right direction.

Contents

1 Introduction: The Unanswered Question 3

I Question Answering Past 9

2 The Mythic Roots of Question Answering 11

3 How Question Answering Saved Civilization 15

4 The Turing Test: A Game Show Pitch that Defined Artificial Intelligence 17

5 The Cranfield Paradigm: How a University with an Airstrip made Google Possi-
ble 21

II Question Answering Present 25

6 The Computers’ Ways of Asking 27

7 The Manchester Paradigm: The Art of Asking the Perfect Question 43

8 Watson on Jeopardy!:
Unquestioned Answers from ibm’s tour de force 57

8 questioning artificial intelligence

9 Found qa Data: Are they rough or diamonds? 69

10 Build Your Own Dataset 71

11 Answering Questions through Knowledge Bases 73

12 Machine Reading 75

13 The Advent of Deep Learning 77

14 Machine Reading 79

15 Siri takes the SAT 81

III Question Answering Future 105

16 Human–Machine Collaboration 107

17 Question Answering in Science Fiction 109

18 What AI Dystopias You Should be Afraid of 111

19 Computer Game Shows of the Future 113

Part I

Question Answering Past

2
The Mythic Roots of Question Answering

Despite its central importance to ai, asking and answering questions is
not a recent development—it stretches back into our collective unconcious.
Riddles and trivia have been with us for millenia not just because they’re
entertaining; it’s more than that. The ability to ask and answer questions
is close to godliness. Through the lens of the Riddle of the Sphynx and
Gestumblindi, this chapter examines what makes a good question in
the eyes of the Gods. Myths from several cultures connect the process
of forming and answering critical questions to the process of forming
identity, unlocking the secrets of the universe, and gaining intelligence.

With many tasks in computer science, asking the question “where
did this task come from” has a simple answer usually in the form of
an acronym . Character recognition was sparked by the mnist dataset;
entailment was sparked by snli; sentiment classification was defined
by .

And while there are particular flavors of question answering that habe
been defined to make life easier or more discriminative for computers,
the basic task of question in, answer out is natural to any inquisitive
three year old. Of course, question answering is not the only task like
this: translation likewise is recognizable to any stranger in a strange
land trying to cope with an unfamiliar language: dozens of books have
been written on that subject, my favorite is Le Ton Beau de Marot.

Question answering’s roots likewise run deep. In this chapter, I want
to argue that question answering is not just a useful task but one that
is woven deep into our Jungian subconsious. Answering questions
can define your identity, reveal fundamental truths of the universe,
and create a shared reality. This chapter highlights these pillars of
question answering and how these questions of identity and knowledge
shape not just our modern world but a world where our reality is also
partially defined by artificial intelligence.

12 questioning artificial intelligence

The Sphynx

In Greek myth, the Sphynx asked everyone who entered the city a
riddle. Here’s PDQ Bach’s interpretation of the riddle:

What starts out on four legs then goes round on two Then finishes on
three before it’s through

And the answer is:

Well a baby then a man, that’s plain, then finally an old geezer on a cane

Now I won’t spoil the whole story, but by answering the question
correctly, Oedipus revealed that he was smarter than the average bear
and also unlocked secrets from his past. In a commencement address
to Whitman college, Dana Burgess explained the difference between
this and Google’s Natural questions and how that relates to the mission
of professors (like me):

Nobody told Oedipus who he was; he figured that out for himself. ... You
can do a Google search to find out the capital of Arkansas (Little Rock?)
but you can’t do a Google search to find out who you are, what you’re
good at, what makes you happy, what matters for your life. Information
transferal isn’t any help with that stuff.

When folks say that a college professor is like a sphinx, they don’t
usually mean that in a nice way. It suggests that we know the answers
students need, but we keep them secret for the sake of our own power.
. . . That’s part of the riddle of [The Sphynx’s] hybrid nature: the curse
of being forced to solve a riddle is also the gift of the ability to solve
riddles.

Gestumblindi

In Norse myth, Gestumblindi got into some trouble with King Heidrek
and asked the Gods for help. In response, Odin came to Gestumblindi—
looking exactly like him—and stood in his place in front of Heidrek.
What took place was an interrogation that went in two directions: King
Heidrek attempted to determine who this Gestumblindi-looking person
was in front of him and Odin attempted to see how smart King Heidrek
was.

What I like about this story is that it presages many of the themes
that we will see with ai: ordinary people thinking that ai will help
them, an interrogation contest to see who is human or not, and an
impersonation. It also presages many of our fears about ai: Odin’s
final question to Heidrek is:

what had he whispered (or will whisper) to his son, Baldur, before his
son is to be taken to his funeral pyre.

the mythic roots of question answering 13

We talk in this book frequently about bad questions, but this a particu-
larly bad question. Not only is it something that only Odin knows, it
probably has not happened yet (depending on what you believe about
the circularity of time), and when it does happen it will end the world
by bringing about Ragnarök.

Once Heidrek hears this question, he knows that the figure before
him is not Gestumblindi but rather Odin. And like a frustrated cus-
tomer who thought they were talking to a human for ten minutes only
to figure out that they’re talking to a bot, Heidrek takes out his sword
and attacks, only for Odin to turn into a bird and fly away.

The Socratic Method

Because I’m a professor, I am somewhat biased in my appreciation of
questions: both in the classrooms and on exams. But I hope one thing
that I can convince you of is that these are important as foundations
of civilization: the world would be a much worse place without these
question answering activities.

Let’s begin with the socratic method. If you haven’t heard of this
before, you might have experienced it (especially if you’re in my classes).
Let’s hear how John Houseman explain what it is in the 1971 film The
Paper Chase:

We use the Socratic Method here. I call on you, ask you a question. . . and
you answer it. Why don’t I just give you a lecture? Because through my
questions, you learn to teach yourselves.

Through this method of questioning, answering. . . questioning, answer-
ing. . . we seek to develop in you the ability to analyze that vast complex
of facts that constitute the relationships of members within a given society.
Questioning and answering.

At times you may feel that you have found the correct answer. I assure
you that this is a total delusion on your part. You will never find the
correct, absolute, and final answer. In my classroom, there is always
another question. . . another question to follow your answer.

Yes, you’re on a treadmill. My little questions spin the tumblers of your
mind. You’re on an operating table. My little questions are the fingers
probing your brain.

We do brain surgery here. You teach yourselves the law but I train
your mind. You come in here with a skull full of mush. . . and you leave
thinking like a lawyer.

I want to particularly hone in on the assertion that it “trains your
brain”. While not quite mythological, the term “Socratic Dialog” goes
back to ancient Greece. Plato featured Socrates in his dialogues Eu-
thyphro and Ion, giving the perspective of the student the student,
the person answering the questions, struggling with multiple interpre-

14 questioning artificial intelligence

tations and “showing their work” as they emerge on the other side,
enlightened by the exchange.

And indeed, one of the best moments for me as a professor is to see
the aha moment in students eyes after they answer a question correctly.
And this is still how we train lawyers, who have to use argument and
discussion to keep our society ordered! But as we will see in the next
chapter, that is not the only way the questions and answers create order
in our civilization.

3
How Question Answering Saved Civilization

Corruption and nepotism have been the downfall of multiple civilizations,
but the administration of carefully formed questions saved the United
States and China from sucumbing to these destructive forces. Civil service
exams broke the corruption and randomness of patronage and familial
bonds. By examining the reforms of Wu Zetian and the Pendelton Act,
this chapter examines how information and competence—measured by
questions asked in an exam—created meritocracy and social mobility.
The legacy of these exams built an understanding of what it means to
write a “fair” and “useful” question, and brought about massive social
change, allowing egalitarian and professional governments to bring order
to continent-spanning civilizations.

I mostly talk about computers answering questions. And I also talk
about silly trivia games. As a result, you may think that question
answering is unimportant, but it’s often deadly serious. Today, I’m
talking about how question answering is the bedrock of civilization:
humans answering questions is more common and more important than
computer question answering. My goal is to remind you how important
these question answering applications are and to see connections to
how we can learn from milenia of human question answering.

Another pillar of civilization is making sure that those who work for
society (in other words, civil servants) are competent. As governments
became larger and had to rule an entire continent, countries had to
develop civil service examinations. Many countries did this, including
the US, whose Pendelton act ended an era of political patronage.

But I’d rather talk about the granddaddy of civil service exams,
ke1ju3, which for 1300 years determined who became part of the
intelligentsia of Imperial China. It encouraged social mobility by getting
smart people good jobs and it encouraged good governance by making
sure that important jobs were done by smart people. And this is
important when you have a diverse, massive, empire that is run by
a centralized bureaucracy. Again, this shows that civilization is not
possible without effective systems of question answering.

This system worked well for so long because it was built on a

16 questioning artificial intelligence

foundation of fairness. The organizers thought about the potential for
bias: the exams were transcribed so that bad handwriting wouldn’t
be judged against an applicant, children of current members of the
imperial court had to submit their exams in their home province, etc.

Now, it wasn’t perfect, Most notably its quotas led to imbalances
between regions. But it was important enough that recent scholarship
has suggested that its abolition after the Russo-Japanese war and a
turn to “Western-style” education on the Prussian model that turns out
good soldiers, helped hasten the end of the Qing dynasty.

As Shiuon Chu argues, it’s not just that you have a test to make sure
that the smartest people are doing important jobs in society. Part of the
process is also to explain why people got the questions wrong! This
ensures that people trust how the questions are being graded. If it’s
just a black box, it is not an improvement on the capricious systems
of patronage that it’s supposed to replace. As evidence of this, during
the Dà Míng dynasty, there was furor over the punctuation of graded
exams.

So why am I, a computer science professor, talking all of this non-
sense about history? We use questions to test the intelligence of both
humans and machines. I talk about the Turing Test, the classic test of
computer intelligence, and modern leaderboards in other videos, but
in testing computer intelligence we shouldn’t forget about the lessons
we’ve learned about human intelligence.

One of those lessons that I think that we’ve forgotten is that questions
are not just an evaluation but also for instruction: in the lingo of
artificial intelligence, they’re training data. And because these training
data build intelligence, they should be as high quality as possible so
that the AI that results is as high quality as possible.

But even if you just take question answering as an evaluation for how
smart an AI is, society should be able to trust those evaluations. Just
as the civil service exams made people trust their interactions with the
government, as AI becomes more tightly integrated into our economy
and our society, our vetting of AI will become more important.

Question answering is just one of many ways to secure trust, but it’s
analogous to how to ensure lawyers, doctors, and pilots are qualified for
their jobs. So these tests should be unbiased, reliable, and the feedback
from the tests should be transparent and understandable.

And we should do these things not just because we’re trying to
make society work like a well-oiled machine or because we want to be
confident in our estimates of statistics about artificial intelligence. Just
like Socrates, the questions we ask are trying to get to the truth, and
scientific inquiry requires openness and a willingness to question the
outcomes of a test.

4
The Turing Test: A Game Show Pitch that Defined Artifi-
cial Intelligence

In the 1950s, Alan Turing proposed a parlor game that would come to
define the goal of creating human-like artificial intelligence: could a wiley
interrogator discern whom they were talking to just through posing clever
questions. Alan Turing’s eponymous Turing Test is the most durable (but
contentious) definition of what it means for a computer to be intelligent.
This chapter reviews how Alan Turing’s postwar thought experiment of
humans asking computers questions shaped the development of artificial
intelligence.

The history of artificial intelligence begins in many ways with a question
answering game. This idea came out of the research of a researcher at
the University of Manchester named Alan Turing.

He’s probably better known for being one of the scientists who
decoded the Nazi Enigma device (which is why his memorial bench
has ciphertext underneath his name) and helped bring World War II in
Europe to an earlier conclusion.

But Turing is also a game designer. Quoting from Bishop’s descrip-
tion:

Turing called for a human interrogator (C) to hold a conversation
with a male and female respondent (A and B) with whom the interroga-
tor could communicate only indirectly by typewritten text. The object
of this game was for the interrogator to correctly identify the gender of
the players (A and B) purely as a result of such textual interactions

The players can lie, so the key to correctly deciding the genders of the
players is more about determining which player lacks key knowledge
about the experience of being a man or a woman.

But what does this have to do with AI? Turing then thought, let’s
replace the man and the woman with a computer and a human. If the
interrogator cannot determine which is the computer and which is the
machine, then the machine has displayed something that looks like
intelligence.

18 questioning artificial intelligence

But I want to emphasize not just the broad strokes of the Turing Test,
but why we need to think critically about things that call themselves
the Turing test. Also, it’s more fun than talking abstractly about the
Turing test.

Let’s start with PARRY, a system designed by Kenneth Mark Colby
to simulate a paranoid schizophrenic. And when you connected psychi-
atrists to either real patients or PARRY, they couldn’t tell the difference.
So here the problem is the judges. Not because they aren’t experts–they
are–but because their backgrounds prevent them from being effective
judges.

Psychiatrists are doctors bound by the hippocratic oath: they cannot
ask probing, in-depth questions that might harm a patient. So, thus,
this really isn’t a Turing test.

Stu Schieber has a great take on this problem; I’d encourage you
to read the whole thing. His take is on a competition called the Loeb-
ner prize that purports to implement the Turing Test. But here, the
interrogators are limited in the topics they can ask about. So again,
competitions that don’t have skilled interrogators allowed to ask any
question they which.

Another example that some people claim is an example of AI passing
the Turing Test is Google Duplex. Here, the judge is fooled into thinking
that they’re talking to a human. But this doesn’t count either because
the judge doesn’t know they’re a judge! The poor employee on the
other end of the phone call is expecting a human until proven wrong.

All of this doesn’t mean that the Turing Test is flawed. It has re-
mained a part of AI for three quarters of a century because it’s a simple,
intuitive test of whether we have achieved artificial intelligence. So
although we haven’t had a real Turing Test yet, a judge asking questions
of either an AI or a human remains many researchers’ goal.

So let’s be true to the spirit of Turing’s idea of a parlor game. Let’s
make it visible to the public, let’s refine the rules and the judges to
make it more realistic and more fun. By putting these games in the
public view and letting judges learn the best strategies for discerning
humans from computers, both sides can become worthier adversaries.

And I think putting this slow advance of ever more capable comput-
ers answering trickier questions should be out in front of the public.
Not just to keep the interrogators honest but to also keep the companies
and interests that sell AI honest. The public has a vested interest in
knowing the limits of AI, and this is a fine way to make that public.
But on the other side of the coin, it is also worthwhile for the public to
know when AI has really advanced. . . the public has a right to know
how computers react to challenging scenarios. Better to see them first
played out for fun in a game than in high-stakes transactions, a doctor’s
office, or a courtroom.

the turing test: a game show pitch that defined artificial intelligence 19

But above all, this only works if we have good questions, so if we
believe that the Turing test really is the holy grail of AI, we as humans
need to know how to ask the right questions and computers need to be
able to answer any question that’s thrown at them.

5
The Cranfield Paradigm: How a University with an Airstrip
made Google Possible

Information retrieval is the foundation of many multi-billion dollar web
companies from Baidu in China to Yandex in Russia to Google and
Yahoo! in the US. But none of these companies would exist without the
ideas of reusable test collections and term-based queries, which came
about because of a few crazy experiments that happened in a small
UK University in Cranfield. This chapter lays out the history of this
methodology (which has become known as the Cranfield paradigm) and
how it was used to answer questions.

Often, when I talk about search engines and how to build them,
these ubiquitous portals to the Internet—whether you’re using Bing,
Yahoo!, Baidu, or Ask Jeeves—seem like a fundamental law of science.
But it wasn’t always like that: there was a time before search engines,
and although there’s a certain charm to card catalogs, that’s not a way
to find information.

My goal in this video is to tell the story of the Cranfield paradigm
and how it made the twentieth century Internet possible. Most of
this is drawn from the article “The Evolution of Cranfield” by Ellen
Voorhees, which I encourage you to read something with more detail,
more references, and fewer errors.

The story begins in 1967 with Cyril Cleverdon at Cranfield University
in England: which has an airport right on campus. Pretty cool! Here at
the University of Maryland we have to walk a whole fifteen minutes to
get to the oldest continuously operated airport in the world.

Cyril Cleverdon was in charge of their library there. And he was big
into computers. He wanted to see if he could measure how good an
index was.

Wait a second. When I say “index”, what do you think of?
If you’re over 35 and went to a public school, you might think of

this sort of thing in the back of a book. But if you’re younger and a
computer scientist, you probably think of an index as a lookup table of

22 questioning artificial intelligence

every darn word possible.
The reason you think that is because of the Cranfield experiments.

His claim, which was quite controversial at the time, was that you could
look up documents based on the words in the document. You didn’t
need laboriously curated indices you could use a machine, an engine if
you will, to search through them.

The academic community at the time was skeptical. There’s no way
these newfangled search engines could be better than a trained librarian
armed with a card catalog!

Before we analyze this, just a reminder of how a search engine query
is evaluated. Again, this is old hat now but was revolutionary at the
time. To evaluate a system’s ability to search a dataset, you take some
queries from users and then find the truly relevant documents to that
query. Then, given a system’s results, you compute the precision—out
of all of the documents they returned how many were right—and
recall—out of all possible right documents how many did they find.

Let’s pause for a moment to recognize how revolutionary this was.
Once you found the relevant documents, you can evaluate *any* system.
Before, you had to run an expensive user experiment every time you
tweaked your system: did that output look good? How about this
one. With a reusable test collection, you could turn the crank on your
retrieval system without pesky humans getting in the way. Just check
whether the red box finds the relevant documents!

But not everybody was convinced. The Cranfield paradigm is mak-
ing a lot of assumptions here: first, if a document is relevant, it’s equally
relevant: everything is equally relevant: showing you my explanation
of topic modeling is as good as a video from Siraj Raval’s The users’
information needs are static; the answer to the question “who is the
president of the united states” never changes, after all The next assump-
tion is that all users are the same: when I ask the question “why is the
sky blue”, I should get the same answer as my six year old daughter
Finally, the Cranfield paradigm that somebody, somehow can find the
right answer from thousands or millions of documents.

Despite all those flaws, the assumptions—on average—mostly hold.
That’s why we’re still talking about the Cranfield paradigm fifty years
later. And there were some big additions to the Cranfield paradigm.
Most prominent was the use of better document representations and
creating larger test collections, which was spearheaded by Karen Spärk
Jones a little bit west of Cranfield at Cambridge. These took the theo-
retical insights of the original Cranfield experiments and made them
into something that could actually work. Again, this was revolutionary:
as a result the British Computing Society named their annual award
for researchers in this area after Karen Spärk Jones.

But for the Cranfield paradigm to really shape how we get answers

the cranfield paradigm: how a university with an airstrip made google possible 23

from the internet, we need to leave central England and meet new
player: NIST. The American National Institute for Standards and Tech-
nology.

While the story of the birth of the Cranfield paradigm is an innovative
insight with Cyril Cleverdon combined with the vision of Karen Spärk
Jones, the story of NIST’s development of these test collections is one
of slow, methodological iteration. Building up decades of expertise and
slowly building up bigger and better test collections, updating them
each year so that by the time Google’s PageRank came around, there’s
no question about how to tell whether a search engine is good enough.

Just fire up the latest test collection from the TREC conference,
compute your precision and recall, and call it a day.

And this approach toward evaluation is with us in everything we
do. Test collections are how we evaluate virtual assistants, question
answering systems, and just about every aspect of the modern Internet.
And it’s not always for the best. The ubiquity of these reusable test
collections leads to overfitting. TREC puts out new datasets every
year or so, but that’s not fast enough for machine learning in the 21st
century! And while the focus on real user data is good, the data
you collect is biased by who is using technology (mostly rich people
from Western countries) and how they’ve been trained to ask questions
through decades of living with Cranfield-paradigm systems. And
unlike people who work on, say, human-computer interaction, those
building QA systems often don’t actually put their system in front of
real users. And I don’t think that’s what Cyril Cleverdon would have
wanted. His goal, as a librarian, was to help users. And yes, reusable
test collections help you do that—and they’ve spawned multibillion
dollar companies around the world—but at the end of the day you still
need to check whether real users are actually finding the information
they need.

JBG: Forward point to leaderboard chapter

Part II

Question Answering
Present

6
The Computers’ Ways of Asking

How do you ask a question: is it text, a picture, or a conversation? This
chapter reviews the different forms question answering can take and
what complexities that can introduce.

Conversational QA The goal of having intelligent computers is a
part of both the foundation of artificial intelligence in the form of the
Turing Test and science fiction.

But you don’t interact with these computers through a command
line or a search prompt. You talk to the computer! And the computer
remembers what you say, it has situational context to understand,
resolve ambiguities, and place your questions in context. This doesn’t
look a lot like the existing question answering settings that we’ve
discussed before. To answer questions in a conversation, we’ll need
new datasets, new evaluations, and new models.

Let’s start with the datasets. I mentioned some of these very briefly
in the datasets video, but now we can linger a little bit longer on these
conversational QA datasets. There are others, but I wanted to talk
about: QBLink, CoCa, Quack, and CANARD.

Now you might think that conversational QA might mean that you
might get a respite from my Quizbowl fixation, but not so fast! The
trivia community is also a source of found data for conversation-like
questions. With my former students, we created a dataset of questions
these questions start with a sentence to set the context and then you
have to answer three (usually) questions within that context.

Other than the Manchester-style questions and answers, there’s
nothing special like pyramidality that makes them “optimal”. I just
hink they’re neat.

For example, you have a leadin that gives the context. “Only twenty
one million units in this system will ever be created. Name this digital
payment system whose transactions are recorded on a “block chain”.
Now, notice that you cannot answer this question *just* from the literal
question . . . it depends on the context. There are plenty of cryp-
tocurrencies (more every day), but the 21 million number is unique to

28 questioning artificial intelligence

Bitchoin.
Then we move on to the next question: it was invented by this

person, who, according to a dubious Newsweek cover story, is a 64 year
old JapaneseAmerican man who lives in California. Now, you could
probably answer this just from the clue here, but it helps to know that
“it” here is Bitcoin. Otherwise you have to do a multihop to figure out
that this is Bitcoin and it was invented by someone who purported to
be Satoshi Nakamoto.

Finally, the final question is much easier if you know that Bitcoin is
involved.

Let’s move on to the next dataset, QuAC (Question Answering
in Context) which appeared at the same time as our dataset and is
noticeable for introducing emojis in paper titles. Two of my former
students—He He and Mohit—worked on this Cranfield paradigm
dataset, where two crowdworkers play the role of a teacher and a
student. The teacher gets to see a Wikipedia page but the student does
not. They have a conversation and the student tries to figure out as
much as possible about that topic.

And just like the QB link dataset, you need to do things like resolve
coreference, know the topic of the questions, etc.

And again, one of the big plusses is that the answers are all anchored
in the Wikipedia page (in this case Daffy Duck), so there’s gold evidence
that useful for machine reading techniques. But the challenge is that
you also need to embed the context somehow!

One approach would be to just transform the conversational, context-
specific questions into “normal” that look more like NQ or SQuAD,
so we had crowdworkers rewrite the questions into forms that don’t
require the context. We called this dataset Canard, short for Context
Abstraction: Necessary Additional Rewritten Discourse, where Canard
is of course the French word for “duck”.

And by conditioning on the entire context, you can indeed create
questions that don’t need additional context, but it’s not as good as the
human rewrites.

The final dataset I’d like to talk about is CoQA, which looks a lot
like QuAC—it came out a year after QuAC. But rather than anchoring
on a Wikipedia page, it is anchored on a short vignette, here it’s an
80th birthday party. Like in QuAC there’s a student and a teacher and
the student asks questions of the teacher. But unlike QuAC there are
also rationales that explain why a question has a particular answer.

One thing that you’ll notice about these datasets is that they’re not
really a true conversation. It’s kind of one sided. And part of that is
the tricky problem of evaluation. You need datasets to train models . . .
but to train a model you need a loss function. To have a loss function
you need to know if an answer is correct.

the computers’ ways of asking 29

In some cases, the evaluation can look a lot like our evaluations for
“normal” question answering. You just need to give an entity. Then you
can use the same metrics that we saw for, say, machine reading question
answering: entity equivalence, exact match, span F1, etc. That’s what
you can do for the datasets that we’ve talked about thus far.

But is a conversation just spouting the entities? No, of course not.
You can’t just have a conversation just through cultural references.

As we’ll talk about in the long-form question answering segment,
evaluating longer answers is really hard.

So are there ways that you can make the problem easier within a
conversational context? Research in dialog systems typically divide the
task into two phases: figure out a dialog act that fits in the context of
the conversation, and then given the correct dialog act, you then need
to generate the raw text that actually goes to the user.

So what’s a dialog act? There are many ways to define dialog acts,
here’s one example of an ontology of dialog acts created from real-world
conversations by a team from Colorado and SRI.

You need to be able to answer a question with yes or no, ask those
questions, ask “wh” questions like “When was your last training ses-
sion”. And because conversations aren’t just information exchange
sessions, sometimes you need to agree, give an opinion, or just let the
partner know you’re listening.

It’s sometimes lonely just talking into the void with nobody respond-
ing to you . . . what dialog act does a comment correspond to?

This was adapted by researchers from Virginia Tech to make it more
detailed. Sometimes you need to give an answer with an explanation,
sometimes you need to answer with a followup clarification question,
or say that you don’t know.

So now, to do an evaluation, you can make sure that your system
can reconstruct the dialog acts given the context. This turns it into a
classification task: does your predicted dialog act match the ground
truth? This is much easier than actually evaluating long, rambling
answers, which as we’ll talk about with generation is actually very
difficult.

But even so, this is not without complexity. These datasets have the
interactions between two people where presumably everything went
according to plan. But what happens if during evaluation if you select
a dialog act that’s different from the reference interaction?

The thing with conversational question answering is that mistakes
are not the end of an interaction. Ideally, a conversational system should
recover from it! Let’s take a look at this reference conversation where
the user asks the system what the capital of Georgia is. The system
should give an answer, and the user can give a followup question.

But what happens if the system gets the question wrong? For

30 questioning artificial intelligence

example with a wrong interpretation of which Georgia the user is
talking about. Well, if the system gives that answer, the user can react
in all sorts of ways! Perhaps they realize they cared about Georgia
the country all along (this is probably the most likely outcome if, say,
your “users” came from mechanical Turk and they’re pretending to ask
questions), perhaps they correct the system, or perhaps they want more
information: why did you say “Tblisi”?

In any event, we need to know how bad it is that the system said
Tblisi. And we can’t really do that without testing the system on real
users. Maybe it isn’t great that we said Tblisi, but it’s better than saying
that the capital of Georgia is “Peachtree” or “Washington”. But again,
we don’t know that this is a “near miss” because, again, it’s not in the
reference.

And it can go in the other direction too! Let’s say that the way
we generated the reference data was quite a bit worse than what an
“optimal” conversation partner could do. Let’s say that your system
does something better than the reference. Perhaps it asks which Georgia
you mean. That’s even better!

Just because you do the conversation a little differently than the
reference, doesn’t mean that it’s wrong.

So the challenge is to define an evaluation that measures how useful
an interaction is, not the answers of individual turns. I suspect that this
will need to take the form of human-centered evaluation. You need to
have people interact with a real system and get them to evaluate how
well it works.

And we’ll see something like that in our next video, where we’ll
talk about another way of moving beyond single, short answers: what
happens if the answers themselves are pretty darn long?

Long Form QA
As usual, let’s start with how complex questions are answered in

the real world. Let’s start with Apu Nahasapeemapetilon’s answer to
“What was the cause of the US civil war?”

Examiner : All right, here’s your last question. What was the cause of
the Civil War? Apu : Actually, there were numerous causes. Aside from
the obvious schism between the abolitionists and the anti-abolitionists,
there were economic factors, both domestic and inter... Examiner : Wait,
wait... just say slavery. Apu : Slavery it is, sir.

Like the examiner, it’s often easier to go for the shorter answer . . .
it’s easier to score, anway. There are many ways to answer “What was
the cause of the American Civil War”. Everything that Apu said was
correct, and there are many ways to phrase what he said. Detecting
all the things that are semantically equivalent to that is itself a NLP-
complete problem. To understand how, despite that difficulty, we’re
trying to build systems that can answer long complicated questions,

the computers’ ways of asking 31

we’ll go through two datasets that can help computers answer hard
questions and we’ll see what makes them both hard to answer and hard
to tell when the answer is right.

Let’s first begin with Complex Answer Retrieval, often called “CAR”
for short. This is a dataset from TREC and Laura Dietz at the University
of New Hampshire. If you haven’t seen our previous video about Like
many of the other question answering datasets we’ve talked about, the
source information comes from Wikipedia.

They start with questions like “How do you make Candy” or “Is
chocolate healthy” and run a search over all of Wikipedia. Like with
traditional relevance judgements, annotators then mark whether the
passages retrieved are a good answer for these questions. NIST annota-
tors mark whether a passage *must* be included in the answerset, *can*
be included, is on topic (but not a good answer) or just irrelevant.

Now, getting annotators to agree on this isn’t trivial: if you look
at the kappa statistics, it’s between 0.5 and 0.7. You can then run the
standard precision / recall statistics for an IR engine. So is it the case
that long form QA isn’t actually that hard?

No, it’s still that hard! This can only work if Wikipedia has the
perfect answer for every question already written down. But although
Wikipedia is pretty big, it’s not *that* big.

Another dataset that tries to address the “long answer” problem
is the ELI5 dataset. This is built from a subreddit where people pose
questions and people try to answer them using simple language. What
I like about Reddit is that there are clear rules about what questions
are allowed, how they can be answered, and then people vote on which
of the answers is best.

Despite these beautiful rules and style guidelines, the questions
aren’t as beautiful as the best examples of the Manchester paradigm,
which are carefully edited and polished until perfection. However,
they’re much better than the grabbag of the worst of the Cranfield
paradigm, since there are clear rules: you can’t ask questions that are
actually simple, the questions can’t be subjective, and the questions
must be about the “real world”.

So now we have examples of questions and good answers. But we
can’t just test whether the two strings are equal or not . . . so how do
you know if the output of a system is good or not?

This is actually very similar to the problem faced in machine transla-
tion: you want translations to be as close to a reference translation as
possible. So they developed a metric call BLEU, or Bilingual Evalua-
tion Understudy that counts up how many words overlap between a
reference translation and system outputs.

It’s called an “understudy” because it’s meant to mirror the adequacy
and fluency judgements of human annotators.

32 questioning artificial intelligence

But we’re not talking about machine translation today, but you can
use a very similar idea for comparing two pieces of English text. So
BLEU in French means “blue”; the other metric we’ll be talking about is
ROUGE, which means “red” in French, and stands for “Recall-Oriented
Understudy for Gisting Evaluation”. Unlike BLEU, which tries to get
the translation exactly right—in other words getting precision and recall
high—ROUGE focuses on recall.

Let’s see how it works. Like BLEU, ROUGE looks for a certain
number of n-grams. Let’s start with bigrams for simplicity. Let’s say
you want to compare these two sentences. First, you gather up all of
the bigrams. One of the four matches, so this means that it would have
a ROUGE-2 of ¼.

But ROUGE-N requires choosing what N should be. A more popular
variant is to use the “longest common subsequence” or LCS. Finding
the longest common subsequence is a popular example problem when
you’re first learning dynamic programming . . . while writing a program
to compute it can be a little tricky, for short sentences you can fairly
easy eyeball: what is the longest sequence of words that is in *both*
sequences. For these two sentences, that would be “parents annoy the
children”.

Given that LCS, we can then compute the precision and recall and
then we get the ROUGE-L measure. One nice thing about this is that
it’s upper bounded by the unigram overlap between the two strings.

We spent a lot of time talking about ROUGE-L . . . does that mean
that this is the right way to compute whether a long answer is a good
one or not? Compare the generated answer to the reference ELI5
answer? A recent paper from my former student Mohit shows that . . .
uhh maybe not!

ELI5, like a lot of other Cranfield QA datasets, have a lot of overlap
between the training and test set (this is less of a problem in the
Manchester paradigm, as the authors explicitly avoid repetition). Thus,
the system doesn’t always learn to generalize . . . it can memorize
instead.

I’m not going to talk about their system much—it’s a good one,
check out the paper linked in the description—but like you might do
for the CAR task, it also has a retrieval component. But it doesn’t really
matter what you retrieve! Getting random retrievals can add in some
specific words that can up your ROUGE-L score.

And it also seems that you can game the system with really stupid
baselines that *shouldn’t* get a good score and end up . . . doing
quite well. For example, just copying the answer over and over again
or copy/pasting a random training answer sometimes beat the gold
answer.

So this makes it hard to prove that your snazzy new algorithm is

the computers’ ways of asking 33

actually good. So what’s the answer? I think that question answering
always will depend on human evaluations, but while automatic fac-
toid question answering evaluations are often “good enough”, I don’t
think—as I record this in early 2022—we can confidently say that we
have a “good enough” automatic evaluation with long for question
answering.

So that means that you really need to do a human evaluation. There’s
nothing wrong with that! Again, I wish that this were more common
for question answering. But for our modern data-hungry algorithms
and our fast-paced research culture, projects don’t always have the
luxury to do evaluation right . . . with the finicky, expensive human
evaluations of these very long answers.

So what’s the right way to quickly evaluate QA systems that output
more than a couple of words? Well, I have the answer right here
. . . unfortunately it’s this video is too small to contain it. Answering
questions about images

Mostly we’ve been talking about computers that can talk to you and
answer questions about text. But is that the extent of our ambitions?
Take a look at this clip from Kubrick’s 2001:

Hal 9000: Have you be doing some more work? Dave Bowman: A
few sketches? Hal: May I see them? Dave Bowman: Sure. Hal 9000:
That’s a very nice rendering, Dave.

And even beyond the fanciful dreams of future AI, there are people
today who could really use help answering questions about images.
For example, the VizWiz project from Jeff Bigham connected blind
users with a QA system over images. Here’s Tom Dekker, who is blind,
showing off VizWiz.

Tom Dekker: So now we have VizWiz, which I’ll open. Phone: Use
the camera button to take a new photo. Tom Dekker: I’m going to get
positioned above these things so they’re nicely viewable. Phone: Start
and Stop Recording a Question Tom Dekker: What color are these two
socks? And what color is the one that’s folded in half?

As you’ll see compared to the other datasets that people are training
QA systems on, we’re nowhere near the ability to answer these ques-
tions. The VizWiz project is what’s called a “Wizard of Oz System”: it’s
a human pretending to be a machine.

Oscar Zoroaster Phadrig Isaac Norman Henkle: Pay no attention to
that man behind the curtain. The great and powerful Oz has spoken!

And these workers are hired on Amazon Mechanical Turk, named
after another human pretending to be a machine.

Tom Dekker: It took about a minute and a half. Now let’s see . . .
Phone: Folded sock is black. The other one is half white, half gray,
divided down the middle. –Webworker Phone: New answers available.

And there are other cases where it’s not a question of ability but of

34 questioning artificial intelligence

volume: you might be responsibility for watching lots of camera feeds
and a visual QA system could quickly narrow down things that are
interesting from huge quantities of data. For example, I could look at
my doorbell footage and ask . . . when did my newspaper come today
or who took my Amazon package?

So let’s take a step back from those fanciful ambitions and take a
look at the “real” datasets that are out there for multimodal question
answering. The most prominent is “VQA” or visual question answering,
which has become nearly synonymous with this girl wearing a banana
mustache. This dataset set up the paradigm of looking at a picture and
answering the question.

The crowdworkers who wrote the questions in the Manchester
paradigm (since they knew the answers) were instructed to write ques-
tions that a human could answer but that a robot could not. While it
has the flavor of an adversarial setting, there wasn’t a specific adversary
. . . the workers had to have their own mental model.

However, just like many of the datasets we’ve looked at, there were
many shortcuts that the models could take: if the question asked “is
there a” the answer was almost certainly yes, and if there was a sport
involved, it was usually about tennis.

So to correct these issues, VQA 2.0 paired two pictures together so
that the answer to the same question is different in each of the pictures.
So for instance here the man or the woman is wearing glasses. This
makes it so that the dataset is intrinsically balanced and the model can’t
just win through a text only baseline.

So can models answer these questions? The accuracy has been
climbing by 14 points over the last four years . . . getting near 80%
accuracy. So what models are behind these impressive numbers?

Like with text, transformers with Muppet names like Oscar, BERT,
and Ernie are to blame. But how do transformers deal with *visual*
input? Thus far, we’ve only been talking about words and word em-
beddings. Just like you need to split a sentence into word pieces, the
first step is to break an image into pieces to correspond to objects.

Now, I don’t know how this works and even if I did, it would be out
of scope for this course, so I won’t talk about how all these fancy boxes
come about. But once you have these boxes, you can then embed these
boxes through a linear or non-linear transformation of the constituent
pixels which—unlike words—are already continuous vectors. Just like
words have an embedding based on the word’s type and the token’s
position, the visual word embedding also is a function of the pixels and
its location.

So then you can get a combined visual and text representation of
an image, caption or image, question pair. And because a transformer
isn’t as tied to the strict linear order of a sentence thanks to its attention

the computers’ ways of asking 35

map, it doesn’t really matter in what order you plop down the objects.
Okay, so how do you pretrain transformers with visual and text

input? First, you can do masked word prediction, just like you did with
text-based BERT. But if you can do that for words, why not also do it
for objects? Finally, just like we did next sentence prediction for text
representations, we can match images with their captions.

So the models (after you get past object recognition) look a lot
like our text-only models. I think you’d agree that visual question
answering can be quite a bit harder . . . so why are the accuracies so
much higher than for text-based QA?

That’s because all of the questions in VQA are multiple choice! It
basically boils down to selecting which of four answers is correct. And
it’s not just VQA, other visual datasets are all multiple choice.

And while other datasets are implicitly multiple choice—if you ask
SQuAD when something happened, it’s essentially multiple choice
among all the things that look like dates—it’s not as clear-cut as here.
And datasets like Quizbowl are a multiple choice task over tens of
thousands of entities.

So why is QA over images always multiple choice? Because we
have a hard time agreeing on what the answer should be! We saw this
problem for long-form QA and even for factoid QA you need to be sure
to have all of the relevant names for an item. Because we don’t have
text to ground the answer (again, which makes text-based QA more
like multiple choice), even for everyday items you need to figure out
what name to give something.

So, for example, take the question what is Mr. Burns wearing in the
picture? What should you call these? Mules? Houseshoes? I personally
think that some of these are better than others, but arguably all of these
should be accepted. And Mr. Burns seems to prefer “Slippers”. And
this isn’t just a problem in English: here’s a map for what slippers are
called in the German-speaking world. Naming things from a picture is
hard, describing what a thing is doing is even harder, and harder still
is describing *interactions*. What is Mr. Burns doing to his slippers?
Dancing? Bouncing? Flaunting? Tapping? Given all of that flexibility,
evaluating whether an answer is correct is just generally hard, as we’ve
seen many times before.

And images aren’t static . . . often we care about answering ques-
tions about moving pictures. I.e., movies or TV. There have also been
datasets about these questions as well. Just like VQA, these are mul-
tiple choice . . . But does that mean you need to watch the movie to
answer the questions? Not necessarily . . . movies also have closed
captions/subtitles,audio descriptions, and scripts. Just in case you’re
not familiar with these, let’s talk about them and discuss what they can
and cannot answer. Captions are the text that appear at the bottom of

36 questioning artificial intelligence

the screen and are available for people who are hard of hearing or who
just want to be able to also read what the person is saying. They’re not
always purfect, but they usually get the point acroos. It’s a lot of work
to do it manually! [But a good place to hide jokes!]

While captions were first intended to make movies more accessible
for the deaf, audio descriptions are created for the blind . . . for example
here’s a clip from Frozen. They explain what’s going on in the movie
beyond the dialog. While humans typically get this through audio, they
are written down at some point and so these can be provided to the
computer as text as well.

Finally, most movies and TV shows come from a text called a script.
These contain not just the dialog, which get turned into caption but ad-
ditional information like where a scene takes place and the instructions
to the actors about what actions they need to take. While not as verbose
as the descriptions, it nonetheless provides a way of interpreting the
raw audiovisual representation of a movie.

Here are two datasets—MovieQA and TVQA—that have questions
(multiple choice, of course) based on movies. And just like how you
can insert both visual and text information into BERT, you can feed
in recognized objects, the captions (called subtitles in this figure) into
BERT.

So all of this looks a lot like how you do machine reading questions
given a context . . . but the other kind of question answering we saw
was “open domain” question answering using systems like DPR?

Yes! And just like for DPR where we had an encoder for the context
and an encoder for the evidence, we can do the same thing for images
and text: try to learn encoders such that the encoding of the image
description and the encoding of the image are as close together as
possible. As I record this in 2022, there are two big models that are
doing this: CLIP from OpenAI and ALIGN from Google. They both
have fairly similar architectures.

Then you can do things like find good captions for an image auto-
matically or given a search string, find appropriate images for it.

As I wrap up, I hope that you’ve noticed the pattern here: the tools
that we created to help people with visual or hearing impairments end
up not just being a good idea for everyone, but they’re also one of the
key tools that we’re using to build up computers’ ability to understand
the interaction between text and images. So the moral of the story is
that if you want to support AI, support accessibility! And maybe we’ll
have AIs that can sort everybody’s socks and answer questions about it
afterward. The future can’t come fast enough!

This is just a single lecture from a course.
YouTube likes to show you these videos out of order, but if you go to

the course web page linked below, you can see the lectures in the right

the computers’ ways of asking 37

order and you can get resources like homeworks or suggested reading.
You can also visit QANTA dot org if you want to learn about our

systems for creating computers that can answer questions.
Where QANTA stands for “question answering is not a trivial activ-

ity”.
If you want to help the channel provide a big gradient to the algo-

rithm by liking and subscribing.
How Punters Cheating with AI has Made Pub Quizzes’ Audio

Rounds Better
If you went to a pub quiz at the turn of the century, one staple that

you’d *always* see was music identification: the pub master plays a
song and you’re supposed to identify it. But that’s far less common
these days. A big reason is that—as far as AI is concerned—it’s mostly
a solved problem . . . apps like Shazam and YouTube content ID can do
this with extremely high accuracy even in a noisy bar. And thus it has
become really easy to cheat in a pub quiz. It’s also why, even though
this video is about answer questions about music, I’m not going to put
any popular music in this video.

Bleeding Gums Murphy was never popular.
So how do trivia competitions ask questions about music now?

In the same way that YouTube videos speed up or distort music to
get around content ID, pub quizzes have increasingly adopted using
transformations of songs to ask questions. Identify the song given
only a single instrument from the track or identify the song from the
bluegrass cover.

In the same way that these questions reward deeper knowledge,
there has also been a movement to reward real music knowledge:

This symphony’s second movement . . . features a rising horn call of
a C major arpeggio followed an A-flat sixteenth pickup to a G.

[orchestral music with a French horn solo]
And this is just asked using text . . . you need to know that an

arpeggio is a chord played in sequence, you need to know what a
French horn sounds like, and you need to know what a C vs. an A-flat
sounds like. Mapping this to an underlying musical score is hard . . .
there’s no beautiful music track that I added in with my L337 editing
skills. But of course, as is de rigueur in the Manchester paradigm,
afterward the pyramidal sequence of clues ends with the much easier
clue: For 10 points, identify this symphony sometimes called the “Song
of the Night”, which numerically precedes its composer’s “Symphony
of a Thousand.” Remember that the Manchester paradigm that we
talked about before structures questions to go from difficult clues to
easy clues, which rewards knowledge and better discriminates between
teams.

But I want to emphasize the virtuous cycle here: Pub quiz hosts

38 questioning artificial intelligence

were writing lazy questions that essentially amounted to playing an
iTunes playlist in a crowded bar Deep convolutional neural networks
allowed lazy pub quiz participants to to cheat on those questions Out
of outrange and to restore equity, pub quiz hosts started writing better
questions

The next step—which hasn’t happened yet—is for AI systems to
start using that training data to build systems that have to think a little
bit harder to identify the songs.

So that’s what has happened for audio questions . . . let’s now turn
to questions about images in the Manchester paradigm. Similarly,
pyramidal questions about visual art describe less well-known details:

A sword stuck in its holder and the head of a corpse are seen near
bushes on the lower left.

A rabbit runs to take cover from the central object in this work,
which approaches the viewer.

If you know the painting well, then you’ll be able to answer the
question. If not, since it’s a pyramidal question, in the rest of the
question you’ll get the rest of the clues.

FTP, name this painting depicting the seacliffs of Crete and the pair
of legs belonging to a drowning youth, by Pieter Brueghel the Elder.
And you can’t just run your favorite computer vision system to figure
out the title here . . . ships in the harbor? Ploughman on the hill? No,
the title of this picture is “Landscape with the Fall of Icarus”. And
there’s nothing in this picture that actually looks like Icarus here . . . ah,
there he is. His legs anyway.

Or going back to our alleged rabbit . . .
FTP, name this 1844 landscape depicting a train crossing a bridge, a

depiction of "the Great Western Railway" by J.M.W. Turner.
If you know the answer to this question, put it as a comment down

below.
And this isn’t just about visual salience. The most well-known aspect

of Bronzino’s Venus, Cupid, Folly, and Time isn’t obvious but is better
known than the rest of the painting because of Terry Gilliam’s use of it
in Monty Python.

So this is how textual clues are rendered. And in the Manchester
paradigm, you present the clues in pyramidal order, going from difficult
to easy. But these are textual clues. And yeah, perhaps you have to look
at a painting or listen to a piece of music to answer it (and I think it
would be fun to use visual or auditory information to better answer
these questions . . . project idea). But the question is still text . . . can
you ask pyramidal questions when the question itself is multimedia?
The answer, I think, is yes, but before I go into that, I first need to
explain why for the skeptics in the back.

The Manchester paradigm for question answering tries to make

the computers’ ways of asking 39

questions that are difficult to answer so that it rewards knowledge,
understanding, and robustness. Just like Shazaam isn’t impressive if
it only works with clear, undistorted input . . . that it works in such
an adversarial environment like a crowded bar is pretty awesome!
If we want robust question answering and true artificial intelligence,
computers need to be able to “make do” with less and employ the same
reasoning and recall ability that humans are able to do.

So let’s see how the Manchester paradigm does that! One way
is to have the normal presentation of material but to severely limit
the quantity. For example, on the game show “Name that Tune”,
contestants bid each other down to see who can name the tune with
the fewest notes.

Let’s see that in action . . .
Wash: I can name that tune in four notes Sandy: Wash, I can name

that tune in three notes Wash: Sandy, name that tune Jim Lange: Alright,
Sandy you get a chance to name that tune. Here’s your clue once again.
Introduced as a title tune of a 30s Broadway musical, this tune later
appeared in the film Young Frankenstein and was revived in 1984.
Listen carefully, here are your three notes . . . [Three notes play] Jim
Lange: Sandy? Sandy: Farmer in the Dell? [Sad Buzzer]

The answer of course, is . . .
Gene Wilder as Frederick FrankenSTEEN: If you’re blue and you

don’t know where to go to, why don’t you go to where fashion sits . . .
Peter Boyle as the Monster: Ich han mis Portmone verloore!

did you get it?
Oh, that wasn’t very clear, let’s try that again . . .
Taco: Putin’ on the Ritz
that’s right, Puttin’ on the Ritz.
But this shows another way that this can be pyramidal . . . go through

performances from the lesser known, unintelligible warbling of Peter
Boyle to the intelligible but niche performance of Taco to the canonical
performance of Fred Astaire.

This is similar to how we structured the human vs. computer com-
parison at the Efficient QA competition. Give systems a shot at hard
examples with little evidence, provide more and more evidence until
you see where the first system gets it right. Creating pyramidal exam-
ples with n views is much easier than creating n examples of varying
levels of difficulty.

For example, we could create a visual version of the Landscape with
the Fall of Icarus question by only revealing part of the image . . . going
in reverse order of salience, just like the text of the question did: the
hills in the background, the sword and skull, the farmer, and then
finally the harbor with the two tiny legs.

Alternatively, you could pixelate the image, decreasing the pixelation

40 questioning artificial intelligence

until it can be identified. Again, if you know what this painting is,
leave a comment down below.

But wait, Jordan, I hear you say. This just corresponds to different
layers or different pools in a convolutional net. This won’t make it that
much harder for a computer to understand an image.

That’s true! And until there is a Shazzam equivalent that’s as good
and as popular for images, we’re probably going to have to wait for the
kind of innovation we’ve seen for audio questions. But some of this
is happening. For example, I’ve seen things like “identify the movie
or TV show from the Muppet-ized version”. So you can’t just identify
raw pixel patterns, they need to understand what part of the image is a
Muppet and which is a part of the underlying media property.

And if we want a computer to be able to do that, we need to repeat
this cycle, probably multiple times. But not just for images, but for all
of the kinds of questions that we want a computer to answer.

But one part of this process is AI helping humans cheat! Are you
condoning cheating? No, of course not. Because what this is really
doing is helping the smart, clever people who create these questions
be more creative. But we as AI researchers can make it easier for that
adversarial authoring process to happen. Easier both for the authors,
who end up with a better output with less effort and easier for the AI
systems that need to train on data to get the most challenging data that
requires actually *understanding* the underlying information.

And that is what makes this sort of research so fun. Just as a pub
quiz should reward knowledge and add excitement of competition, we
can use that same creative energy to make our algorithms less brittle
and more robust.

What makes it hard to answer spoken questions? When we talked
about Watson (link in the description), one of my minor criticisms was
that it didn’t listen to questions. Now we’re going to talk about why
that’s a scientific issue and what makes this problem difficult.

Now, if you’ve just been watching the error rate for automatic speech
recognition (ASR for short), the numbers are really impressive. And
Microsoft has claimed that these results are superhuman! But these
headline numbers are typically given as a word error rate, or more
precisely a token error rate. And it’s true that the word error rate is
average is lower than human numbers, that’s hiding something. The
most common word in English is the . . . so just getting that right
doesn’t mean that much.

Indeed, the most frequent words in English appear *a lot*. This
is called a Zipfian distribution, where the probability of a word is
inversely proportional to its frequency rank. So getting these highly
frequent words right is easy and counts for a lot of the word error rate.

But are these the words that matter for question answering? No!

the computers’ ways of asking 41

Named entities are the things that matter, and they’re much less com-
mon. Let’s take a look at question answering data. Every dot here is
an error, and when the original word is very common . . . there aren’t
many speech recognition errors.

Let’s look at where the error actually are: when the original word is
“Gupta” (e.g., the empire of Chandragupta), “Clarendon” (as in Henry
II’s council that restricted ecclesiastical power in England) or “Kermit”
(proud UMD alum), these either are unknown to the ASR system, as
in the case with our green friend here, they get recognized as more
common words. “Clarendon” becomes the allergy medication “claritin”
and “gupta” becomes “group”.

Plus, they often come from foreign languages and are easily con-
fused or mispronounced. This is also a problem of the Cranfield vs.
Manchester paradigm: while Alex Trebek is unlikely to mispronounce
anything (he has watchdogs to rerecord anything that sounds off), a
clueless user might indeed mispronounce “Where was Mao Zedong
born?”

So what can you do to better answer spoken questions? First, you
can ignore words from the recognized text that aren’t confident: if
there’s enough redundancy in the question, you might still be able to
get it right. Or you can look at the different options for recognized
words; in other words, look at the “lattice” of the different options. If
the top guess isn’t right, maybe you’ll find it under the old one.

Finally, you can also look for words that “sound” similar to words
that you’re looking for. So perhaps the original question had “Dumas”
and the system detected “Dummy”, you might be able to pull up the
correct author because it shares the syllable “Dum”. But this requires
different algorithms: you need to be able to search by syllable rather
than by just words.

And you need datasets to do this. One cheap way is to use text to
speech (i.e., have a computer do the speaking) and then try to recognize
this. This is strictly easier than the real world: there’s no background
noise, the pronunciations are always consistent, and there’s only one
speaker.

We did this first for the Manchester paradigm, and then a group
from CMU did it for the Cranfield paradigm. As far as I know, there’s
no dataset of *real* speech even though there are tons of podcasts
and youtube videos of people reading and answering questions. And
because the question are all written down, you could line then up. But
to the best of my knowledge, nobody has done that: project idea!

And if you have diverse speakers, you could contend with the dis-
parities in ASR: much of the training data come from white men, so
when tested on other groups, accuracy drops.

And then you could also get to some of the other challenges in

42 questioning artificial intelligence

parsing questions: for instance, this dataset from Google tackles the
disfluencies or corrections that often come up in Cranfield paradigm
questions.

Anvil yesterday sets and quest ions, reignite improv broth arable
Tuesday quest ions and to wreck a nice beach. And maybe get better
captions on YouTube, as long as people are good about uploading good
data.

7
The Manchester Paradigm: The Art of Asking the Perfect
Question

While computer scientists were getting their feet wet answering questions,
during the same period trivia enthusiasts were perfecting how to ask the
perfect question. This chapter outlines the conventions and processes
of the highest form of question answering—in the biased but informed
opinion of the author—variously called University Challenge, College
Bowl, or Quiz Bowl and argues for why many of these processing could
be a part of creating data for computer question answering.

The qa community is obsessed with evaluation. Schools, companies,
and newspapers hail new sotas and topping leaderboards, giving rise
to troubling claims (Lipton and Steinhardt, 2019) that an “ai model tops
humans” (Najberg, 2018) because it ‘won’ some leaderboard, putting
“millions of jobs at risk” (Cuthbertson, 2018). But what is a leaderboard?
A leaderboard is a statistic about qa accuracy that induces a ranking
over participants.

Newsflash: this is the same as a trivia tournament. The trivia
community has been doing this for decades (Jennings, 2006); Sec-

tion ?reference? ?? details this overlap between the
qualities of a first-class qa dataset (and its requisite leaderboard). The
experts running these tournaments are imperfect, but they’ve learned

from their past mistakes (see Appendix ?reference? ??
for a brief historical perspective) and created a community that reli-
ably identifies those best at question answering. Beyond the format
of the competition, trivia norms ensure individual questions are clear,
unambiguous, and reward knowledge (Section 7).

We are not saying that academic qa should surrender to trivia
questions or the community—far from it! The trivia community does
not understand the real world information seeking needs of users or
what questions challenge computers. However, they have well-tested
protocols to declare that someone is better at answering questions than

44 questioning artificial intelligence

another. This collection of tradecraft and principles can nonetheless
help the qa community.

Beyond these general concepts that qa can learn from, Section 7

reviews how the “gold standard” of trivia formats, qb can improve tra-
ditional qa. We then briefly discuss how research that uses fun, fair, and
good trivia questions can benefit from the expertise, pedantry, and pas-

sion of the trivia community (Section ?reference? ??).
Last year, I wrote a position paper about the AI researchers who

make question answering systems can learn from trivia nerds. Given the
time constraints of the conference and the need to be more “academic”,
I couldn’t say everything I wanted to. So I’ll try not to be too repetitive
in this video. What I would like to do is talk more about how the trivia
community learned hard lessons and how the question answering
community is still learning those lessons. I’m hoping by going into
a little more detail about how the trivia community made mistakes
. . . might prod computer scientists to see how they might be relevant
to how we’re training and evaluating computer question answering
systems.

Even if you don’t care about question answering specifically, I think
this will help get ideas across about how to do effective evaluation in
machine learning. Okay, so what are hard won lessons of the trivia
community that the geniuses working on AI have yet to master? 1.
Don’t cheat. 2. Reward knowledge 3. Write good questions. While that
may seem simple, it took a while for humans to figure these things out
for trivia competitions, and the artificial intelligence community is still
figuring it out.

GI Bill Footage from CBS This Morning: https://www.youtube.com/watch?v=fgtvMceoimU
As veterans returned home from World War II, there was a huge

thirst for new forms of entertainment. The Manhattan project and
the space race showed the importance of knowledge and expertise,
and the GI Bill turned open the taps of knowledge to an information-
thirsty populace. These trends were naturally reflected in popular
entertainment, as new quiz shows like Twenty One sprang up.

https://youtu.be/JRKxNpwqBac?t=1154

What’s the matter with 21? It was rigged, as Herb sandbagged to let
his opponent win as documented in the 1994 movie Quiz Show!

https://youtu.be/bj-m3Ddmn0E?t=83

The handsome Charles van Doren was able to peek at the answers
and did pretty well!

Now, the obvious version of cheating is something that we don’t
often see in AI research. But there are subtler ways that systems after a
manner cheat. Let’s think about this very abstractly. Let’s say that when
you are asked some questions, you get to absorb some information that

the manchester paradigm: the art of asking the perfect question 45

you can use next time.
Now, in the 21 cheating scandal, the process allegedly went some-

thing like this: Let’s try practicing these questions! Sure . . . Ooh, you
got two wrong, here are the correct answers You could then compute
the total length of the correct answers and that’s how much information
“leaked” from the test set. That’s a lot!

Now, let’s compare that with a more “reasonable” system that re-
sembles what you actually see for a lot of question answering datasets.
You can submit a system that answers questions (usually as a docker
container to make sure it doesn’t phone home), and then you get back
a score with how well you did. There’s no problem here, right? You
don’t know what the answer is, right?

Well, don’t forget that computers have infinite patience . . . think
about it like cracking a password. You could try all possible answers
for position 1, all possible answers for position 2, etc. But computers
can crack more cleverly . . . you have a set of answers and have some
confidence on each guess. Take your lowest confidence answer, switch
the answer. If the score goes up, the guess went from wrong to right. If
the score goes down, the guess went from right to wrong. If the score
stays the same, the guess stayed wrong . . . keep hunting. But in this
example, the score went up, so we know that that answer was actually
correct. Nobody explicitly told us the answer was Uluru, but the effect
is the same. If you do it this way, there are thousands of possibilities
to try, not millions. And this is clearly in the realm of possibility for
computers: even if you can’t probe every answer, you can still crank up
your score quite a bit (and don’t forget that outcomes are correlated!).

Now, I don’t think people would actually do this (or at least admit to
it), but there are many black box neural network optimization toolkits
that adjust the many parameters of a neural model (often on dev data).
And implicitly, even on test data, you get higher numbers for some
models than others . . . and that’s a signal. People try out many different
models and just use the highest score as the legitimate representative
of a system or a technique.

Jesse Dodge has done some great work on how to more fairly report
experimental results without cheating: essentially, you need to have a
budget for how many comparisons you make. And then you need to
apply the same budget to every system fairly.

And this is why I think the human model for comparing question
answering ability (i.e., a trivia tournament) is the model we should
follow: you only get to run on the test data.

And, yeah, maybe the reason is that we can’t wipe human memories.
But I think it’s more realistic, even for computers: you only have a
single chance to make a first impression on a user. And this is why the
model is also what happens for DARPA evaluations.

46 questioning artificial intelligence

Now, bad stuff happens in this style of evaluation. We had a particu-
larly embarrassing outing in 2016 when we lost . . . very badly against
some smart humans. Despite having done much better the year before.

Us losing (badly) to top quiz bowlers: https://www.youtube.com/watch?v=c2kGD1EdfFw
Ugh, that still hurts. But that’s not an argument against these style

of evaluations. You should lower your embarrassment threshold and
do evaluations more frequently.

And this is why I use surprise questions for my courses to see how
well systems react to novel data.

But it’s not just the sanctity of the test set. Let’s move on to how you
ask questions.

Regular viewers of this channel will know that I am an advocate of
the Quizbowl model of asking questions. But let’s dig into its evolution
a little bit more.

The mythology of Quizbowl says that it was a USO diversion created
by Canadian Don Reid as a way of entertaining allied troops in Europe.
However, in my reading it seems that a lot of the core ideas were
introduced by host Allen Ludden once it became a radio program.

But the key idea is that the questions can be interrupted, meaning
that part of the skill is correctly balancing your own uncertainty. Every
word is an opportunity for either team to show that it knows more
than the other team. I have videos arguing for why this is the right and
proper way to evaluate who knows more about a topic, so I will keep
this brief.

In that 2020 paper I mentioned before, Ben Boerschinger and I
argued that you want question answering datasets to be maximally
discriminative.

See the paper for the equations! But the moral of the story is that the
Quizbowl format popularized by College Bowl created the right format
for reliably determining who knows the most about a topic. Every
question is discriminative. In other words, rewarding knowledge rather
than buzzer speed or luck (you can see my other videos for why, for
instance Jeopardy isn’t a good test of human vs. computer intelligence).

But the format is a necessary but not sufficient condition: you also
need to have good quality questions.

Let’s now turn to the final lesson from the trivia community: writing
good questions. During the early nineties, three heroes created the
Academic Competition Federation. As a point of Terrapin pride, John
and Ramesh were Maryland students. Together, with Carol Guthrie,
they created an organization dedicated to creating questions that fully
take advantage of the beauty and elegance of the Quizbowl format.

So what innovations did they introduce? First, avoiding ambiguity:
So what does a good question look like? First, you don’t want to have

ambiguous questions. For example, if you ask the question “What’s the

the manchester paradigm: the art of asking the perfect question 47

capital of Georgia”, you answer beautiful Tblisi but the official answer
is Atlanta, then you’re going to be upset!

Sewon Min recently had a great paper highlighting this problem in
modern question answering datasets in 2020, but this was a big part of
the diatribes Carol was making in the early nineties.

Part of ACF’s style was to make sure that what they’re asking is
obvious as a reaction to some of the excesses of ambiguous or mislead-
ing college bowl questions. There are many dimensions of this. For
example, making sure that you don’t just ask “when was the Battle
of Hastings” you say things like “in what year” or “day and month
required”. This is a problem in datasets like SQuAD and Natural
Questions where it’s not always clear what’s required to answer the
question: annotators just highlight whatever is convenient.

So why is this a problem? Machine learning algorithms have an
objective function that they’re trying to optimize. If they give a correct
answer, they should be rewarded so that they can repeat the process
on the next question. If you get the question, “What is the capital
of Georgia” and you’re ruled incorrect when you say “Atlanta” (after
learning the opposite lesson from the previous training example), you
are going to be upset. And this is true whether you’re a human or a
machine learning algorithm.

Similarly, you need to accept all of the possible answers to a question.
Again, we see the same pattern as before: research papers are only now
recapitulating the lessons learned by the trivia community 40 years
ago. A great undergrad I’m working with showed that this can make
machine learning question answering systems more robust. If you
only accept “Timothy Donald Cook” as the correct answer for “Who
is the CEO of Apple”, then that makes “Tim Cook” as wrong as “Tim
Apple”. Again, this confuses algorithms that are trying to learn how to
answer these questions. And even if you just care about climbing the
leaderboards, we recently had a paper explaining how to squeeze out a
few more points by paying attention to that.

https://slate.com/culture/2019/04/jeopardy-quiz-bowl-connection-
ken-jennings.html

Another organization that should be mentioned in the promulgation
of good Quizbowl is National Academic Quiz Tournaments, founded by
R. Hentzel. Not only have they created a system of good, discriminative
high-quality tournaments for middle school and high school students
in North America, they have also served as the employer of people
like Ken Jennings and Larissa Kelly (and full disclosure, me too in the
early aughts) and have made Quizbowl more professional. Here’s Ken
Jenning’s extolling the virtues of Quizbowl in a NAQT promotional
video.

There are many ways that this is relevant: things have different

48 questioning artificial intelligence

names because of language, history, pen names, nicknames, conve-
nience, mathematical equivalence, or domain-specific rules. The new
professional organizations have created systematic evaluations that,
because the goal is to reward knowledge, also are the kinds of rules
for judging the correctness of machine answers. Even if a user might
prefer to get their answers in Fahrenheit, the computer should know
that they’re the same thing!

But these organizations are not just question writing organizations.
Their goal is to create efficient systems for as quickly as possible de-
termining out of 256 teams at a convention center which knows the
most. In addition to the Quizbowl format, the selection of appropriately
difficult questions asked at the right time to the right teams makes this
possible.

Here, I don’t even have a “perfect” recent paper to flash on the
screen to show that, yeah, computer science knows that it’s a problem
40 years to late. We’ve been working on using item response theory
and adversarial interfaces, but there’s still quite a ways to go.

Let’s take how computer comparisons lag behind those for humans.
While there are monthly competitions to see which human can best
answer questions, computers are reusing stale data from 2018 to see
who’s best. And those questions are written by random people on the
internet: either crowdworkers or clueless people looking for answers
in a search engine. In contrast, domain experts are writing questions
lovingly edited by people like Ken Jennings and Larissa Kelly when
people go to NAQT or ACF competitions.

And while things like Dynabench are trying to create adversarial
datasets (or our own TrickMe interface), these datasets are tiny com-
pared to the tens of thousands of questions written every year for
human trivia competitions. I, of course, think that this is a possibility
for synergies between the two communities.

Computers can help find patterns and reduce drudgery: make hu-
man trivia more exciting and efficient. And the trivia experts, with
their depth of knowledge, can help computers understand more of the
world. Likewise, the best practices of the hard won victories of the last
seventy years of trivia can help machine learning researchers avoid the
same mistakes.

And, most importantly, I think it can be fun for everybody, especially
us researchers.

The Craft of Question Writing

Trivia enthusiasts agree that questions need to be well written (despite
other disagreements). Asking “good questions” requires sophisticated
pragmatic reasoning (Hawkins et al., 2015), and pedagogy explicitly

the manchester paradigm: the art of asking the perfect question 49

acknowledges the complexity of writing effective questions for assessing
student performance (Haladyna, 2004, focusing on multiple choice
questions).

qa datasets, however, are often collected from the wild or written
by untrained crowdworkers. Crowdworkers lack experience in crafting
questions and may introduce idiosyncrasies that shortcut machine
learning (Geva et al., 2019). Similarly, data collected from the wild such
as Natural Questions (Kwiatkowski et al., 2019) or AmazonQA (Gupta
et al., 2019) by design have vast variations in quality. In the previous
section, we focused on how datasets as a whole should be structured.
Now, we focus on how specific questions should be structured to make
the dataset as valuable as possible.

Avoiding ambiguity and assumptions

Ambiguity in questions not only frustrates answerers who resolve the
ambiguity ‘incorrectly’. Ambiguity also frustrates the goal of using
questions to assess knowledge. Thus, the us Department of Trans-
portation explicitly bans ambiguous questions from exams for flight
instructors (Flight Standards Service, 2008); and the trivia commu-
nity has likewise developed rules and norms that prevent ambiguity.
While this is true in many contexts, examples are rife in format called
qb (Boyd-Graber et al., 2012), whose very long questions1 showcase 1 Like Jeopardy!, they are not syntactically

questions but still are designed to elicit
knowledge-based responses; for consis-
tency, we still call them questions.

trivia writers’ tactics. For example, qb author Zhu Ying (writing for
the 2005 parfait tournament) asks participants to identify a fictional
character while warning against possible confusion [emphasis added]:

He’s not Sherlock Holmes, but his address is 221B. He’s not the Janitor
on Scrubs, but his father is played by R. Lee Ermy. [. . .] For ten points,
name this misanthropic, crippled, Vicodin-dependent central character of
a FOX medical drama.
ANSWER: Gregory House, MD

In contrast, qa datasets often contain ambiguous and under-specified
questions. While this sometimes reflects real world complexities such
as actual under-specified or ill-formed search queries (Faruqui and Das,
2018; Kwiatkowski et al., 2019), ignoring this ambiguity is problematic.
As a concrete example, Natural Questions (Kwiatkowski et al., 2019)
answers “what year did the us hockey team win the Olympics” with
1960 and 1980, ignoring the us women’s team, which won in 1998

and 2018, and further assuming the query is about ice rather than field
hockey (also an Olympic event). Natural Questions associates a page
about the United States men’s national ice hockey team, arbitrarily
removing the ambiguity post hoc. However, this does not resolve the
ambiguity, which persists in the original question: information retrieval
arbitrarily provides one of many interpretations. True to their name,

50 questioning artificial intelligence

Natural Questions are often under-specified when users ask a question
online.

The problem is neither that such questions exist nor that machine
reading qa considers questions given an associated context. The prob-
lem is that tasks do not explicitly acknowledge the original ambiguity
and gloss over the implicit assumptions in the data. This introduces
potential noise and bias (i.e., giving a bonus to systems that make
the same assumptions as the dataset) in leaderboard rankings. At
best, these will become part of the measurement error of datasets (no
dataset is perfect). At worst, they will recapitulate the biases that
went into the creation of the datasets. Then, the community will im-
plicitly equate the biases with correctness: you get high scores if you
adopt this set of assumptions. These enter into real-world systems,
further perpetuating the bias. Playtesting can reveal these issues (Sec-

tion ?reference? ??), as implicit assumptions can rob a
player of correctly answered questions. If you wanted to answer 2014 to
“when did Michigan last win the championship”—when the Michigan
State Spartans won the Women’s Cross Country championship—and
you cannot because you chose the wrong school, the wrong sport, and
the wrong gender, you would complain as a player; researchers instead
discover latent assumptions that creep into the data.2 2 Where to draw the line is a matter of

judgment; computers—which lack com-
mon sense—might find questions am-
biguous where humans would not.

It is worth emphasizing that this is not a purely hypothetical problem.
For example, Open Domain Retrieval Question Answering (Lee et al.,
2019) deliberately avoids providing a reference context for the question
in its framing but, in re-purposing data such as Natural Questions,
opaquely relies on it for the gold answers.

Avoiding superficial evaluations

A related issue is that, in the words of Voorhees and Tice (2000), “there is
no such thing as a question with an obvious answer”. As a consequence,
trivia question authors delineate acceptable and unacceptable answers.

For example, in writing for the trivia tournament Harvard Fall XI,
Robert Chu uses a mental model of an answerer to explicitly delineate
the range of acceptable correct answers:

In Newtonian gravity, this quantity satisfies Poisson’s equation. [. . .] For
a dipole, this quantity is given by negative the dipole moment dotted
with the electric field. [. . .] For 10 points, name this form of energy
contrasted with kinetic.
ANSWER: potential energy (prompt on energy; accept specific types like
electrical potential energy or gravitational potential energy; do not accept or
prompt on just “potential”)

Likewise, the style guides for writing questions stipulate that you
must give the answer type clearly and early on. These mentions specify

the manchester paradigm: the art of asking the perfect question 51

whether you want a book, a collection, a movement, etc. It also signals
the level of specificity requested. For example, a question about a
date must state “day and month required” (September 11, “month
and year required” (April 1968), or “day, month, and year required”
(September 1, 1939). This is true for other answers as well: city and
team, party and country, or more generally “two answers required”.
Despite these conventions, no pre-defined set of answers is perfect,
and every worthwhile trivia competition has a process for adjudicating
answers.

In high school and college national competitions and game shows, if
low-level staff cannot resolve the issue by throwing out a single question
or accepting minor variations (America instead of usa), the low-level
staff contacts the tournament director. The tournament director, who
has a deeper knowledge of rules and questions, often decide the issue.
If not, the protest goes through an adjudication process designed to
minimize bias:3 write the summary of the dispute, get all parties to 3

https://www.naqt.com/rules/#protest

agree to the summary, and then hand the decision off to mutually
agreed experts from the tournament’s phone tree. The substance of
the disagreement is communicated (without identities), and the experts
apply the rules and decide.

Consider what happened when a particularly inept Jeopardy! contes-
tant4 did not answer laproscope to “Your surgeon could choose to take 4

http://www.j-archive.com/showgame.php?game_id=6112

a look inside you with this type of fiber-optic instrument”. Since the
van Doren scandal (Freedman, 1997), every television trivia contestant
has an advocate assigned from an auditing company. In this case, the
advocate initiated a process that went to a panel of judges who then
ruled that endoscope (a more general term) was also correct.

The need for a similar process seems to have been well-recognized in
the earliest days of qa system bake-offs such as trec-qa, and Voorhees
(2008) notes that

[d]ifferent qa runs very seldom return exactly the same [answer], and it
is quite difficult to determine automatically whether the difference [. . .]
is significant.

In stark contrast to this, qa datasets typically only provide a single
string or, if one is lucky, several strings. A correct answer means
exactly matching these strings or at least having a high token overlap
F1, and failure to agree with the pre-recorded admissible answers
will put you at an uncontestable disadvantage on the leaderboard

(Section ?reference? ??).
To illustrate how current evaluations fall short of meaningful dis-

crimination, we qualitatively analyze two near-sota systems on squad

V1.1: the original xlnet (Yang et al., 2019) and a subsequent iteration
called xlnet-123.5 5 We could not find a paper describing

xlnet-123, the submission is by http://

tia.today.

https://www.naqt.com/rules/#protest
http://www.j-archive.com/showgame.php?game_id=6112
http://tia.today
http://tia.today

52 questioning artificial intelligence

Despite xlnet-123’s margin of almost four absolute F1 (94 vs 98) on
development data, a manual inspection of a sample of 100 of xlnet-123’s
wins indicate that around two-thirds are ‘spurious’: 56% are likely to
be considered not only equally good but essentially identical; 7% are
cases where the answer set omits a correct alternative; and 5% of cases
are ‘bad’ questions.6 6 Examples in Ap-

pendix ?reference? ??.
Our goal is not to dwell on the exact proportions, to minimize the

achievements of these strong systems, or to minimize the usefulness of
quantitative evaluations. We merely want to raise the limitation of blind
automation for distinguishing between systems on a leaderboard.

Taking our cue from the trivia community, we present an alternative
for mrqa. Blind test sets are created for a specific time; all systems are
submitted simultaneously. Then, all questions and answers are revealed.
System authors can protest correctness rulings on questions, directly
addressing the issues above. After agreement is reached, quantitative
metrics are computed for comparison purposes—despite their inherent
limitations they at least can be trusted. Adopting this for mrqa would
require creating a new, smaller test set every year. However, this would
gradually refine the annotations and process.

This suggestion is not novel: Voorhees and Tice (2000) accept auto-
matic evaluations “for experiments internal to an organization where
the benefits of a reusable test collection are most significant (and the
limitations are likely to be understood)” (our emphasis) but that “satisfac-
tory techniques for [automatically] evaluating new runs” have not been
found yet. We are not aware of any change on this front—if anything,
we seem to have become more insensitive as a community to just how
limited our current evaluations are.

Focus on the bubble

While every question should be perfect, time and resources are limited.
Thus, authors and editors of tournaments “focus on the bubble”, where
the “bubble” are the questions most likely to discriminate between top
teams at the tournament. These questions are thoroughly playtested,
vetted, and edited. Only after these questions have been perfected will
the other questions undergo the same level of polish.

For computers, the same logic applies. Authors should ensure
that these discriminative questions are correct, free of ambiguity, and
unimpeachable. However, as far as we can tell, the authors of qa

datasets do not give any special attention to these questions.
Unlike a human trivia tournament, however—with finite patience

of the participants—this does not mean that you should necessarily
remove all of the easy or hard questions from your dataset. This could
inadvertently lead to systems unable to answer simple questions like

the manchester paradigm: the art of asking the perfect question 53

“who is buried in Grant’s tomb?” (Dwan, 2000, Chapter 7). Instead,
focus more resources on the bubble.

Why qb is the Gold Standard

We now focus our thus far wide-ranging qa discussion to a specific
format: qb, which has many of the desirable properties outlined above.
We have no delusion that mainstream qa will universally adopt this
format (indeed, a monoculture would be bad). However, given the
community’s emphasis on fair evaluation, computer qa can borrow
aspects from the gold standard of human qa.

We have shown example of qb questions, but we have not explained
how the format works; see Rodriguez et al. (2019) for more. You might
be scared off by how long the questions are. However, in real qb

trivia tournaments, they are not finished because the questions are
interruptible.

Interruptible A moderator reads a question. Once someone knows
the answer, they use a signaling device to “buzz in”. If the player who
buzzed is right, they get points. Otherwise, they lose points and the
question continues for the other team.

Not all trivia games with buzzers have this property, however. For
example, take Jeopardy!, the subject of Watson’s tour de force (Ferrucci
et al., 2010). While Jeopardy! also uses signaling devices, these only
work once the question has been read in its entirety; Ken Jennings, one of
the top Jeopardy! players (and also a qber) explains it on a Planet Money
interview (Malone, 2019):

54 questioning artificial intelligence

Jennings: The buzzer is not live until Alex finishes reading the question.
And if you buzz in before your buzzer goes live, you actually lock yourself
out for a fraction of a second. So the big mistake on the show is people who
are all adrenalized and are buzzing too quickly, too eagerly.
Malone: ok. To some degree, Jeopardy! is kind of a video game, and a
crappy video game where it’s, like, light goes on, press button—that’s it.
Jennings: (Laughter) Yeah.

Jeopardy!’s buzzers are a gimmick to ensure good television; however, qb

buzzers discriminate knowledge (Section ?reference? ??).
Similarly, while Triviaqa (Joshi et al., 2017) is written by knowledgeable
writers, the questions are not pyramidal.

Pyramidal Recall that effective datasets discriminate the best from
the rest—the higher the proportion of effective questions ρ, the better.
qb’s ρ is nearly 1.0 because discrimination happens within a question:
after every word, an answerer must decide if they know enough to
answer. qb questions are arranged so that questions are maximally
pyramidal: questions begin with hard clues—ones that require deep
understanding—to more accessible clues that are well known.

Well-Edited qb questions are created in phases. First, the author selects
the answer and assembles (pyramidal) clues. A subject editor then
removes ambiguity, adjusts acceptable answers, and tweaks clues to
optimize discrimination. Finally, a packetizer ensures the overall set is
diverse, has uniform difficulty, and is without repeats.

Unnatural Trivia questions are fake: the asker already knows the
answer. But they’re no more fake than a course’s final exam, which—
like leaderboards—are designed to test knowledge.

Experts know when questions are ambiguous (Section 7); while
“what play has a character whose father is dead” could be Hamlet,
Antigone, or Proof, a good writer’s knowledge avoids the ambigu-
ity. When authors omit these cues, the question is derided as a

“hose” (Eltinge, 2013), which robs the tournament of fun (Section ?reference? ??).
One of the benefits of contrived formats is a focus on specific phe-

nomena. Dua et al. (2019) exclude questions an existing mrqa system
could answer to focus on challenging quantitative reasoning. One of
the trivia experts consulted in Wallace et al. (2019a) crafted a question
that tripped up neural qa by embedding the phrase “this author opens
Crime and Punishment” into a question; the top system confidently
answers Fyodor Dostoyevski. However, that phrase was in a longer

the manchester paradigm: the art of asking the perfect question 55

question “The narrator in Cogwheels by this author opens Crime and Pun-
ishment to find it has become The Brothers Karamazov”. Again, this shows
the inventiveness and linguistic dexterity of the trivia community.

A counterargument is that real-life questions—e.g., on Yahoo! Ques-
tions (Szpektor and Dror, 2013), Quora (Iyer et al., 2017) or web
search (Kwiatkowski et al., 2019)—ignore the craft of question writing.
Real humans react to unclear questions with confusion or divergent
answers, explicitly answering with how they interpreted the original
question (“I assume you meant. . . ”).

Given real world applications will have to deal with the inherent
noise and ambiguity of unclear questions, our systems must cope with
it. However, addressing the real world cannot happen by glossing over
its complexity.

Complicated qb is more complex than other datasets. Unlike other
datasets where you just need to decide what to answer, in qb you also
need to choose when to answer the question.7 While this improves 7 This complex methodology can be an

advantage. The underlying mechanisms
of systems that can play qb (e.g., re-
inforcement learning) share properties
with other tasks, such as simultaneous
translation (Grissom II et al., 2014; Ma
et al., 2019), human incremental process-
ing (Levy et al., 2008; Levy, 2011), and
opponent modeling (He et al., 2016).

the dataset’s discrimination, it can hurt popularity because you cannot
copy/paste code from other qa tasks. The cumbersome pyramidal
structure complicates8 some questions (e.g., what is log base four of

8 But does not necessarily preclude, as
the Illinois High School Scholastic Bowl
Coaches Association shows:

This is the smallest counting
number which is the radius
of a sphere whose volume is
an integer multiple of π. It
is also the number of distinct
real solutions to the equation
x7 − 19x5 = 0. This number
also gives the ratio between
the volumes of a cylinder and
a cone with the same heights
and radii. Give this number
equal to the log base four of
sixty-four.

sixty-four).

8
Watson on Jeopardy!:
Unquestioned Answers from ibm’s tour de force

It’s been nearly a decade since IBM Watson crushed two puny humans
on Jeopardy! Some people took that to mean that computers were
definitively better than humans at trivia. But that isn’t the complete
answer—this chapter, inspired by Jeopardy!’s gimmick of responding
to answers to questions, questions some of the “answers” that emerged
from IBM’s tour de force.

I remember when I first heard rumblings of Watson. Because I had
a foot in both the ai and trivia communities, I heard two different
stories. I heard rumors of amazing work in parsing and semantic role
labeling happening from researchers who ventured north to Nassau
county in New York (I was doing my PhD at Princeton). From the trivia
community, I heard of some people who were being paid by ibm to
play trivia games but that they couldn’t say anything more.

I was very sceptical. By the time that Watson came to fruition, I had
moved to the University of Maryland. Then, my scepticism turned to
jealousy. I watched, along with the rest of the world, one of the greatest
achievements of ai unfold in front of me. What was I doing wasting
my time working on topic models if this was also legitimate research?

Let me be clear that the technical triumphs are indisputable (and,
in my opinion, under-appreciated). From the work on wagering to
synthesizing multiple information sources, Watson (Ferrucci et al.,
2010) was from top to bottom a top-notch well-oiled machine. And
it computed all of this in real time—something that wasn’t strictly
necessary but still impressive.

After talking a little about how Watson works, I’ll get into how
Watsons victory left me feeling unconvinced about the primacy of
computers’ ability to answer questions.

58 questioning artificial intelligence

How Watson Works

While “neural” question answering (which we’ll discuss in the next
chapter) is the big thing these days, Watson came of age in the statistical
age. To understand some of how Watson works, its helpful to review
some of the work that came before Watson that helped inspire it.

Preceeding the statistical age of qa was the rule-based age: systems
that were impressive on individual questions about baseball or geology
but that faltered as soon as it saw a question that was unexpected in
terms of the domain, they’d fail miserably.

One of the guiding principles of the statistical age was “the unrea-
sonable effectiveness of big data”, and this required scaling approaches
to web-scale data. The first things that people tried was scaling up the
“good, old-fashioned” approaches that defined the rule-based systems.
Probably the most prominent system in this category is Start from Boris
Katz at MIT. This system first launched in 1993. This like many of the
systems in this era, take an approach that’s somewhat similar to to the
old-fashioned AI approaches: parse the query with a and look it up in
a knowledge base. And since this was in the age of the semantic web,
this was in the form of RDF files.

But this is more a change in scale rather than in form from LU-
NAR and BASEBALL. . . but still an amazing achievement to deal with
the messiness of Internet text. And its ability to search the Internet
to find answers is clearly a huge influence on later techniques that
we’ll see like Watson today and Dense Passage Retrieval later (Chap-

ter ?reference? ??).
A more transformative approach was the qasm approach from

Radev at al. It used the concepts from machine learning to find answers
given a query. In the information theory interpretation of machine
translation, you imagine that all of the utterances in a target language
is a corruption of English. Now this is pretty complicated for machine
translation, but this is a little bit like what happened with how the the
game show Jeopardy! came to be.

In Chapter ?reference? ??, we’ll talk about the cheat-
ing scandal around the American game show 21, where Charles van
Doren got the answers in advance. Part of the mythology of Jeopardy!
is that Merv Griffen said, why don’t we just give them the answers!
So you have clues like “During WWII this computer scientist & code
breaker converted his money into silver & buried it; he never found his
buried treasure”. The correct response, which is phrased as a question,
is “Who is Alan Turing?” In other words, the central conceit of Jeop-
ardy! is that it converts questions into answers (and then the contestants

watson on jeopardy!: unquestioned answers from ibm’s tour de force 59

need to give a response to that answer in the form of a question).
What qasm is doing is doing the reverse: it has a model that tries

to turn questions into the search string that could find the answer to
the question. There are a number of transformations that it applies:
swapping words, deleting words, ignoring words (e.g., if you have
Cleveland, Ohio and ignore Ohio, you’ll find more things about US
president Grover Cleveland), etc.

In the end, you have a model that creates specialized queries from
the original question. Later on, when we talk about dense passage
retrieval, those systems are doing something similar, except they’re
generating the query in a continuous vector space. Doing it with real
words like QASM is more interpretable: a human could understand
what’s going on, while a vector query is inscrutable it seems to work
better.

Okay, enough delay. Let’s talk about Jeopardy! and how Watson
answers Jeopardy! clues. First, Jeopardy! doesn’t have one kind of clue.
There are many different types. Let’s start with rhyme time: from the
name of the category, you know that both words in the response have to
rhyme with each other. This is in essence a constrained search: “tramp
stamp” you could find with a single search, but other times you need
to do two searches and try to find the thing that rhymes.

In other cases, the constraint is that the correct answer starts with a
particular letter.

The category that I feared the most was anagrams: where you need
to rearrange the letters in the clue to get to the answer. This is actually
easier for a computer than a human!

Each of these can have different approaches that can generate guesses
that might be the correct answer. And you might think that this is all
encoded in the category. Not so!

And for “normal” clues, this looks a lot like the reformulations that
we saw in QASM: 400th anniversary of 1898 gets rewritten to 27th
May 1498, India gets transformed into Kappad, and then you can find
something with the correct response: Vasco de Gama.

So the first phase of the Watson pipeline is to—in parallel—generate
all sorts of guesses based on different interpretations of the question.
Some try to solve anagrams, others look for rhymes, others run an IR
query like the Start system we talked about before, others are doing
transformations like the QASM approach we talked about before.

And sometimes the approaches need to take a recursive approach,
combining different subsystems to get to the right answer.

From this you have dozens of possible guesses. How do you know
which—if any—to select? This all gets fed into a logistic regression
problem. This can take into account how consistent the evidence
matches the clue, how popular the response is, and it can even take

60 questioning artificial intelligence

into account things like Jeopardy!’s love of puns.
In my homework code, I call this component the buzzer. And this is

the same function that the logistic regression function plays here. If the
logistic regression is confident enough, Watson buzzes in to answer.

How Does Watson Know when to Buzz?

If you’re watching this video, I’m assuming you know both about
logistic regression and a little bit about IBM’s Watson that played the
US game show Jeopardy! If you want to know more, I have some
suggestions for videos linked into the description.

The most interesting part of what Watson did to answer questions
was to estimate its confidence: how likely is guess a to clue c going to
be correct. It gathered a bunch of individual clues together to figure
this out.

But how did Watson actually put this information together? It used
a tool called logistic regression. The goal of this approach is to take all
of the information about a possible guess and output a probability of
how likely it thought the guess would be correct. The higer the score,
the more it trusted the guess.

There are many little pieces that could go into thinking that a guess
is good or not. These pieces of evidences are called features. While
features aren’t always active, when they are, they provide evidence of
whether a guess is good. For example, you could have a feature (and
Watson probably did) for when a category has a quote in it.

In a computer programming language, this could simply be an if
statement: if ASCII character 34 is in this string, return 1. But just
knowing that there’s a quote in the category does’t tell you which clues
to favor. You would need to make the the feature more specific.

Let’s go to a question that I got while I was on Jeopardy! And
this shows that these aren’t just a category-specific phenomenon: .
However, this can also apply to individual clues as well. In a quite
normal category about geography, this clue came up:

"G.I." hope you know that 0 degrees latitude & 180 degrees longitude
is just east of this group, part of Kiribati

Notice that “G.I.” is in quotation marks. This is a signal, that the
correct response will start with G.I., in this case the correct response
is “Gilbert Islands”. Named of course for Johnny Gilbert, “the voice of
Jeopardy!”. Actually not, it’s far more confusing than that: it was named
by a German admiral—Adam Johann von Krusenstern—who led the
first Russian circumnavigation of the globe. Krusenstern recognized
that the British Captain Thomas Gilbert had described each of the
islands individually and applied the the name to the group of islands.

So perhaps we need to have multiple features to capture whether our

watson on jeopardy!: unquestioned answers from ibm’s tour de force 61

answer is consistent with this clue. To be clear, we don’t know exactly
what features Watson used, but it could look something like this. You
might have one feature to indicate that there is a quotation mark in the
clue. You could have another feature to show that the quote matches
the candidate guess. Perhaps you have another feature that indicates
whether the feature matches a multiword guess.

But these are just answering yes or no questions . . . how does the
system know how to balance these different features to come to a final
decision? At this point, you need to look at the cases where the system
has generated a lot of guesses and seen which of them are correct or
not. From this, you can learn that when a letter is in quotes and it
matches, that’s a good sign. These are called feature weights and for
the binary features that we’ve talked about, they’re either on or off.

But not all of the features need to be binary. Another very good
feature might be how well the guess matches the clue (e.g., cosine
similarity between representations). So a way to generalize both the
binary features and continuous features is to take the dot product of a
vector representing all of the features and all of the weights to compute
a score for the guess. The higher the score, the better the guess and the
more likely the system will answer.

This is not a one and done process. If you’re building a system like
this, you should look at things the system is still getting wrong and
add a new feature to correct the issue. This is the same process that
Watson used to build their statistical system. Maybe the system got
confused when somebody has a quote from literature and you need to
make sure that doesn’t get counted or add a new feature to handle that
case. It’s very rare to get the features right the first time around.

The statistical approach has some advantages over the neural ap-
proach we’ll see in the next chapter: it is easy to understand why a
system is doing what it is. And it’s easy to fix problems as they pop up.

Learning as You Go

Something that is particularly unique to Jeopardy! and not to the other
QA settings we’ve looked at is that the category is a huge constraint on
what the correct responses are. A large part of the Jeopardy! buzzer is
figuring out the “lexical answer type”. Part of this is is looking at clues
in the question, things like “this country” or “this game” tell you what
kind of entity the response would be. And this is sometimes at odds
with the category, as shown here.

And part of what made Watson a good Jeopardy! Player is that
it would learn as it explored the category. After getting a couple of
months wrong, Watson can learn that all of the answers should be a
month.

62 questioning artificial intelligence

One thing that made Watson particularly impressive was that it
not just computed raw accuracy but also compared against human
performance.

This chart showed how Watson progressed in different iterations
of the system, inching up to the cloud of Jeopardy! champions. Ken
Jennings is in red there, still clearly dominating even the final version
of Watson.

This Game is Rigged, I Tell Ya!

These successes have been well documented (not least by ibm itself,
who rightly celebrated the great achievements); however, things were
not perfect. . . the game was rigged. It’s useful to go over the lifecycle of
an entire question: how it was written, how it’s communicated, how
players answer, and how the game unfolds afterward. At every stage,
there’s a slight benefit to the computer, which taken together makes
this an unfair competition.

This is a problem! First, it’s a problem scientifically because we want
to have fair comparisons of human vs. computer intelligence. More im-
portantly, I want to have my turn having my question answering robots

face off against trivia whizzes (Chapter ?reference? ??),
and I can’t do that if everybody thinks that Watson’s spin on Jeopardy!
settled the issue (and it hasn’t).

But first, in case you don’t know how Jeopardy! works, we’ll review
that. However, if you’ve calculated a Coryat score before, you can go
ahead and skip ahead.

What Jeopardy! is and How it Works

Jeopardy! is a gameshow created by Merv Griffin that debuted in
1967 (Griffin, 2003). Its big gimmick is that the player responses are
given in the form of a question in reaction to infamous cheating scan-
dals. For example, the clue

The CAPTCHA test against spam & robot programs is called the
‘reverse’ test named for this British code breaker

would have response Who is Alan Turing. The clues are arranged in a
grid: columns represent categories and rows represent difficulty, with
the more difficult questions being worth more.

There are three players who stand side by side behind podiums.
When a clue is read, any of the three players can “buzz in” to say that
they want to give a response. If they give the correct response, they
then have “control of the board” and can select the next clue.

watson on jeopardy!: unquestioned answers from ibm’s tour de force 63

One advantage of controlling the board is that some questions are
called “Daily Doubles” which allow the player to potentially double
their score: a player can wager any part of their score, and if they get it
right they get that ammount added to their score (but a wrong response
will subtract it from their score).

The Pool of Questions

JBG: Citation needed
Part of the agreement between Jeopardy! and ibm was that the com-

petition would take place on normal, written questions. In the media
coverage of the competition, this focused on avoiding video and picture
daily doubles (fairly reasonable, but we’ll discuss this more in a bit).
However, this causes two problems: the questions are too easy and do
not necessarily challenge computers.

So what makes up “normal” questions? Every game of Jeopardy! has
questions that range in difficulty. Because it’s a television show, many
questions are easy enough that the average viewer at home can get
them. Moreover, the humans on the stage with Watson are not normal
contestants. Ken Jennings is certifiably the greatest of all time (Low,
2020, goat) Jeopardy! player, and Brad Rutter isn’t bad himself.

The average “normal” Jeopardy! contestant, including not so great
players like yours truly, know a large majority of the clues. For top
players like Brad and Ken, they know—with a handful of exceptions–all
the clues. In a one-on-one fight with normal clues, Ken and Brad would
be fighting over every clue: it would come down to who could buzz
first.

This isn’t fun to play. Nor is it fun to watch. This is why Jeop-
ardy!’s tournament of champions is played on much more difficult
clues (Harris, 2006). Nonetheless, this is the battlefield where Wat-
son won: “normal” questions that didn’t challenge the human players.
Instead, it all came down to the buzzer.

John Henry vs. the Buzzing Machine

Unlike qb (Chapter ?reference? ??), while Jeopardy! also
uses signaling devices, these only work once the question has been read
in its entirety; Ken Jennings (also a former qb player while he was a
student at byu) himself explains it on a Planet Money interview (Malone,
2019):

Jennings: The buzzer is not live until Alex finishes reading the question.
And if you buzz in before your buzzer goes live, you actually lock yourself
out for a fraction of a second. So the big mistake on the show is people who
are all adrenalized and are buzzing too quickly, too eagerly.

64 questioning artificial intelligence

Malone: ok. To some degree, Jeopardy! is kind of a video game, and a
crappy video game where it’s, like, light goes on, press button—that’s it.
Jennings: (Laughter) Yeah.

Jeopardy!’s buzzers are a gimmick to ensure good television; however,
qb buzzers discriminate knowledge.

So how does this interact with Watson? Watson receives all of the
clues electronically and likewise gets an electronic signal to know when
it is safe to buzz in. In contrast, humans have to either guess when it is
safe to buzz or wait for a light to turn on.

JBG: citation needed for gurus
Jeopardy! gurus explicitly advise new players not to wait for the

light—your puny human reflexes are too slow. Indeed, one of Ken
Jenning’s strengths was his uncanny ability to internalize the cadence of
Alex’s voice and when a technitian would activate the buzzer (Jennings,
2006). In contrast, Watson is literally an electromechanical buzzing
machine that could get first crack at every question it wants.1 1 In practice, this is not always true. Be-

cause Watson computed its responses in
real time, it could not come up with a
response in time for particularly short
questions.

Unfortunately, despite subjecting everyone within earshot to these
rants, the computer science community thinks that the question is
settled: computers are better than humans at answering questions. This
is despite Ken basically saying that it did, indeed, come down to the
buzzer.

Moreover, what makes for a “normal” difficulty question for a human
does not always apply to a computer. Let’s first talk about what makes
a clue easier for a computer and then we’ll talk about what makes a
clue harder for a computer.

Easy for a Computer. When I appeared on Jeopardy!, my final Jeopardy!
was:

After this woman’s death, her daughter wrote, “As far as we in
the family are concerned, the alphabet now ends at Y”

All of us got the question right; it just so happened that Jeopardy! used
a very similar clue that aired as we were recording:

“G” is for grand master as well as this woman who received the
2009 Grand Master Award.

The correct response is of course Sue Grafton. For poorly read contes-
tant like myself, only studying previous clues allowed us to get the
answer right. I’ve never read a Grafton book, but I know she writes
mystery books and has titles of the form “A” is for Alibi (and that’s the
only title I can think without looking at Wikipedia).

For Watson, this is “memorization” is trivial: a single letter implies
that the answer is Grafton. But just like you should not think that I’m
smart for getting lucky to have seen a reused clue, you should not

watson on jeopardy!: unquestioned answers from ibm’s tour de force 65

praise Watson for finding near-repeat questions. And it’s not just trivia
games: Google’s dataset of questions (which we’ll talk about in more
detail the next chapter) have many identical questions (Lewis et al.,
2021). Moreover, Watson can also store the entirety of Wikipedia, easily
looking up capitals, authors, etc.

Indeed, when a computer can find an exact quote (as was in my final
Jeopardy! clue), the question becomes even easier. Then the computer
just needs to find the appropriate article that contains the quote and
then just find whatever entity is mostly likely to be a Jeopardy! answer.

Where systems like Watson struggle are on computation, matching
novels and movies to plots, combining multiple clues, lateral thinking,
and wordplay (Kaushik and Lipton, 2018). And this is not just a matter
of degree: computers struggle with all such questions, even if they’re
in the top row of Jeopardy!. While a computer is theoretically good
at math, the kinds of programs that answer trivia questions struggle
answering match questions with numbers in the double digits (Wallace
et al., 2019b).

This is why the goal of ai is general artificial intelligence (Chap-

ter ?reference? ??): while we can build specialized sys-
tems for Jeopardy! questions or math questions, unlike a reasonably
smart human, a single program can’t “do it all”. Unlike for human
contestants, the “difficulty” of Jeopardy! questions for a computer has no
relationship to the nominal value. We talk about how Facebook/Meta

dealt with this problem in Chapter ?reference? ??: tell
the authors what’s hard for a computer.

Two Nice Guys, One Computer with no Shame

Given the “too easy” questions and the buzzer, what does this actually
mean for gameplay? A question comes in, and Watson has the choice
of answering it or not: it can win every race to the buzzer if it wants.
Then, of the things it cannot answer, Ken and Brad fight over the scraps.
Thus, for a computer to win this competition, it needs only to be able
to answer a third of the questions correctly.

Now, the Jeopardy! nerds reading the book (I love you all), will point
out that this isn’t true, because the clues are not weighted equally:
some are worth more than others. However, as we discussed above,
what’s difficult for a computer isn’t always difficult for a human (and
vice versa), so it really is a random third of the questions. While a good
human player might be weak on the buzzer and be confident that if
they know more they’ll win the harder clues, this isn’t true for a human
facing off against Watson.

Moreover, the computer has no shame: it uses a strategy called the

66 questioning artificial intelligence

“Forrest Bounce” (Rogak, 2020, more infamously associated with James
Holzhauer and Arthur Chu). Rather than going through the categories
top to bottom (easy to hard), Watson goes through the clues somewhat
randomly, searching for Daily Doubles and trying to optimize its score.
Again, there’s nothing wrong with this—it’s the optimal strategy! But
if it’s the “right” way to play the game, why doesn’t every human do
it?

That’s because humans want to follow social norms. The producers
of the show (hi, Maggie and Corinna!) tell you up and down that you
shouldn’t play the game like that, and you don’t want to make them
unhappy with you. . . they can make your life miserable. I remember
watching Jeopardy! with my grandmother and when someone hunted
for the Daily Double, she would always say “who does he think he
is” (and it was always a he). Alex Trebek also wasn’t a fan (Marchese,
2018):2 2 Rogak (2020) quotes a saltier take Tre-

bek offered to Howard Stern: “It only
works, dickweed, if you know the correct
response to everything that’s up there.”

When the show’s writers construct categories they do it so that there’s a
flow in terms of difficulty, and if you jump to the bottom of the category
you may get a clue that would be easier to understand if you’d begun at
the top of the category and saw how the clues worked. I like there to be
order on the show, but as the impartial host I accept disorder.

And nobody, nobody, wants to make Alex unhappy.
Ken would sometimes do a little hunding for the Daily Double

against a particularly formiddable opponent, but he would normally be
well-behavied so as not to upset the powers that be. Watson, however,
was a soulless machine; and having a machine on the stage was no
exciting that nobody faulted it for its strategy. If anyone is to blame,
it’s probably Gary Tesauro; adding his strategy for playing the board
increased Watson’s win percentage considerably (Tesauro et al., 2013).
But if you put him in a room with the withering stares of Jeopardy!
producers (or worse, Alex Trebek) and that code would be deleted in
no time.

The Legacy of Watson

Let’s review Watson’s appearance on Jeopardy!:

1. all questions are of “normal” difficulty;
2. thus the two human contestants know nearly all of the clues; but
3. Watson can win the buzzer race whenever it wants.

If Watson wins such a match, does that mean that it is superior to these
supurb humans?

I hope that you are reluctant to answer “yes” (not just because Jeop-
ardy! has trained you to respond to answers with questions). Perhaps

watson on jeopardy!: unquestioned answers from ibm’s tour de force 67

I’ve planted a seed of doubt: no, we cannot yet conclude computer supe-
riority from this experiment. While many might want to believe that
Watson is the end of human–computer question answering competi-
tions, it’s only the beginning. Watson was just the beginning of the
story, a story that unfolds further in the next few chapters.

While Jeopardy! and quiz bowl are the domain of trivia nerds, what
happens when computer scientists set the stage to decide whether
humans or computers are smarter? Do humands stand a chance on that
battlefield?

9
Found qa Data: Are they rough or diamonds?

The cliche is that data are the new oil, powering ai. Fortunately, because
humans naturally ask questions, there are many datasets that we can
find ’for free’. However, these datasets still come at a cost: many of these
datasets have inherent problems (e.g., ambiguities and false presuppo-
sitions) or oddities (only talking about American men) that make them
difficult to use for question answering.

10
Build Your Own Dataset

If you can’t find the data you need, build it yourself. But this is not
always a perfect solution. This chapter discusses the datasets that people
have built and the problems that this can create.

11
Answering Questions through Knowledge Bases

The first question answering approaches were about extracting specific
nuggets from a database using natural language. These first approaches
are not just historically important but are still influencing many question
answering approaches of today. This chapter reviews how we can turn
natural language queries into actionable queries in databases.

12
Machine Reading

However, putting information in a database is difficult and time-consuming. . . not
all information is in a database (indeed, some information defies strict
database schemas). Thus, we need to teach computers how to read. This
chapter reviews the process of “machine reading”, where computers find
information in a large text corpus and then extracts the answer from it.

13
The Advent of Deep Learning

As deep learning became practical, the field has moved from representing
text with discrete words to continuous vectors. This is also the case for
question answering. This chapter reviews how these representations can
help us find relevant answers to questions.

14
Machine Reading

The deep learning revolution not just helps us find answers but to gen-
erate them. This chapter talks about the promise and peril of these
approaches: how we can synthesize much richer information, make stuff
up, encourage these agents to bow to our wishes, and how it’s hard to
tell if an answer is any good.

15
Siri takes the SAT

How do we know how smart a machine is? Like a human, we typically
give it a test; the difference is that tests for computers are called ‘leader-
boards’. This chapter talks about the pros and cons of leaderboards and
how some of the methods used to analyze human standardized tests can
help us understand the strengths and weaknesses of computer question
answering, and how human trivia tournaments can help make deciding
the smartest computer more efficient.

In a previous video, I talked about how questions created modern
civilization: the use of exams to select civil servants. Compared to the
alternative that preceded them, I think these tests were an unmitigated
good.

Today, we’re talking about something where the verdict of history is
less clear-cut: standardized tests and the psychometric analysis that is
applied on top of them. When standardized tests were introduced, the
ideal was that these tests could make admissions more scientific and
less random or connected to family ties.

At the end of the 19th century, a couple of universities banded
together to create the “College Board” to administer tests to see who
could get into universities like Harvard, Yale, and Princeton. Do well
on the test, and you get in!

We’ll talk about the math in the next video, but for now I want to
focus on the promise and the big picture of standarized testing and how
it relates to the leaderboards that have taken over machine learning.

Let’s talk about what the College Board and later Educational Testing
Service promises: anybody can sign up for a test whenever they want,
and it gives a number that pops out that accurately describes how smart
they are. Let’s call that number theta to stand for the skill of a student.

So can you just report accuracy? Would that be a good way of getting
theta? No! The test in January might not be the same as the test in July.
So the mathematical challenge is how to create that estimate theta so
that it’s consistent against different tests and to select questions from
the pool of possible questions so that you can reliably generate that

82 questioning artificial intelligence

number theta. And that’s where the “standardized” in standardized
tests comes from.

The process has changed over the years. . . at first you had to give
everybody the same test at each offering of the test, but now they do
adaptive testing to do a better job of estimating theta for a specific
test-taker. But the two big problems remain the same: making theta
standardized and describing in general what kind of questions they
should be asking.

JBG: Need to also connect to leaderboards
So why am I, a machine learning researcher, talking about this? Is

it because I want to talk about how Harvard added admissions essays
to standardized tests because they were concerned that too many Jews
were getting in? Or because the federal government deemed UCLA’s
admissions policies racist because not enough qualified Asians were
getting in? Or how there’s now a backlash against standardized tests
because African Americans systematically have lower scores than other
groups? Nope! As animated as I get about these topics, these are
decidedly out of scope of this video.

But I mention them because they’re definitely real problems, and
causes a lot of people to hate standardized tests. But it’s not a problem
with the *math* behind standardized tests. It’s a problem with the
people who write the questions and what happens when the results
come out. And QA systems aren’t immune from these problems either,
as I talk about elsewhere. But the math is sound.

Hopefully it reminds you of a leaderboard: systems come in, you
need to give them a score. But the machine learning community has
a distinct advantage here. You can wipe the memory of a computer
system, so you can give it the same test over and over again. But as I
argued before in my plea for an embrace of the Manchester paradigm
from trivia shows, this isn’t always the case: there’s still some informa-
tion that gets leaked.

So we’ll get into the math soon. But it’s not just for creating leader
boards in machine learning and natural language processing. Very
similar models are used for rating players in chess and other games
and for predicting how politicians will vote on particular bills.

Leaderboards are Shiny

Leaderboards are widely used in nlp and push the field forward. While
leaderboards are a straightforward ranking of nlp models, this simplic-
ity can mask nuances in evaluation items (examples) and subjects (nlp

models). Rather than replace leaderboards, we advocate a re-imagining
so that they better highlight if and where progress is made. Building
on educational testing, we create a Bayesian leaderboard model where

siri takes the sat 83

Figure 15.1: Difficulty and Ability Dis-
criminating (dad) leaderboards infer the
difficulty, discriminativeness, and feasi-
bility of examples. Negative discrim-
inability suggests an annotation error; for
example, the question with most negative
discriminability asks “Why did demand
for rentals decrease?” when the answer
is “demand for higher quality housing
increased.”

latent subject skill and latent item difficulty predict correct responses.
Using this model, we analyze the ranking reliability of leaderboards.
Afterwards, we show the model can guide what to annotate, identify
annotation errors, detect overfitting, and identify informative examples.
We conclude with recommendations for future benchmark tasks.

Leaderboard evaluations—for better or worse—are the de facto stan-
dard for measuring progress in question answering (?) and in many
nlp tasks (?). An unfortunate side effect of leaderboard popularity is
sota-chasing, often at the expense of carefully inspecting data and
models (?). For example, the same “super-human” models that top
question answering leaderboards (Najberg, 2018) often fail spectacu-
larly (??) by learning non-generalizable statistical patterns (??). Finally,
focusing solely on metrics conflates progress on a specific task with
progress on real-world nlp problems behind the task (?). Plainly, focus-
ing on headline sota numbers “provide(s) limited value for scientific
progress absent insight into what drives them” and where they fail (?).

In this work we take leaderboards “as they are,” and imagine how
they might better support research. Leaderboards establish differences
between models on a fixed task. Hence, leaderboards should enable
and encourage the comparison of models and inspection of examples.
And leaderboards should also signal when they have outlived their
usefulness (?).

How to Direct Leaderboards’ Light

To help focus attention on examples and models of interest, we propose
Difficulty and Ability Discriminating (dad) leaderboards that explicitly
model both task and submissions jointly, rather than either in isolation.
dad’s underlying model is based on Item Response Theory (??, irt,
reviewed in §15), a widely used (?) alternative in educational testing to
simple summary statistics (?).

dad can explicitly identify the difficulty and discriminability of items
(Figure 15.1),1 which in turn can lead to a more nuanced ranking of 1 Example and feasibility distribution in

Appendix 15. Interactive visualization
linked from http://irt.pedro.ai.

models, identifying poor items, and better understanding of a dataset
and task. Throughout the paper, we use the question answering (qa)
benchmark squad 2.0 (?). For example, dad can identify questions that
are challenging to models and questions that are wrong (incorrectly an-
notated). In addition to better understanding datasets, it is also helpful
for efficiently selecting evaluation items to annotate. We conclude with
recommendations for future leaderboards (§15) and discuss where irt

in nlp can go next (§15).

https://irt.pedro.ai

84 questioning artificial intelligence

How the SAT can Help Leaderboards

If you’ve ever applied to a university, you’ve probably had to take a
standardized test. As we talked above, the “standardized” in standard-
ized test means that the score you get makes sense no matter when you
took the test. So how does the math work that lets that happen?

The big idea is that we want to model the probability of a person j
getting question i right. We’re going to treat this as a logistic regression.
As with every logistic regression, you pass some number through a
sigmoid function to generate a probability. The number that you pass
in this function—like a feature in a logistic regression—helps explain
your data. And in the case the data are a big matrix of who got what
questions right and who got what questions wrong.

In the lingo of irt, the questions are the “items”, the agents an-
swering the questions are the “subjects” and then whether they got a
question right or not is the “response”. So now hopefully you see what
it’s called item response theory. The goal is to predict each of these
binary responses as if it were a logistic regression.

So like all logistic regression, the prediction comes out of a sigmoid
function that you hopefully remember. So what goes *in* to that
sigmoid function? We’ll add more parameters soon, but let’s start with
the first two: difficulty and skill.

For concreteness, let’s assume that we have a question-answering
task and two subjects: Ken, who is good at trivia, and Burt, who is
not. In the simplest irt models, each subject j has a random variable θj

corresponding to their skill: Ken’s is big, Burt’s is small. The higher
the skill number (theta), the more likely they are to answer questions
correctly.

But you cannot know that until you start asking them questions of
varying difficulty βi. Harder questions have a higher difficulty (“what is
the airspeed of an unladen swallow”) than easy ones (“who is buried in
Grant’s tomb”). The bigger the margin between a subject’s skill θj and
an item’s difficulty βi, θj − βi, the more likely that subject j responds
correctly pi,j(ri,j = 1).

So how do these two numbers feed into a sigmoid function? You
take the difference between the difficult and the skill. When the skill
minus the difficulty is high, the higher the probability of the subject
answering it correctly. If the skill matches the difficulty, then the subject
has a 50-50 chance of answering correctly.

Okay, so let’s make this a little more complicated and add two
additional terms: discriminability and feasibility: discriminability γi

and feasibility λi.

siri takes the sat 85

Discrimination Discriminability is how well the question distinguishes
better subjects from worse ones. It’s multiplied by the difference be-
tween the skill and the difficulty. Mathematically, this changes the slope
of the response curve. A discriminative question is challenging but
can still be answered correctly by a strong subject. If Ken’s ability is
higher than most items’ difficulty (θj − βi is large), item discriminability
multiplies this gap by γi. Questions with low γi are low quality: they
have annotation error or do not make sense.

Here’s a picture of that for a question with zero difficulty. As the skill
(x-axis goes up), the more likely the subject is to answer the question.
The bigger the discriminability, the steeper the curve. Here it is for 0.5
and here it is for 2.0.

This would never happen in practice, but let’s imagine you could
create a test set where every question had perfect discrimination. Then
the response curve won’t be a curve, it’ll be a step function. So let’s
say you have a question with difficulty 0.2 and perfect discrimination.
Anybody with skill greater than 0.2 will get it right 100% of the time.

But if you can do it once, you can do it again. Let’s create several
perfect discriminators with a nice grid of difficulty. So now, when a
person comes in, they’ll answer every question correct until their skill
is surpassed by the question. First question they get wrong means they
can leave the test and go home early.

Again, this fantasy is impossible, but you can imagine why folks
want these sorts of questions on a standardized test. There’s more
information about a subject’s skill for each question.

Feasibility Another way of capturing poor quality questions is the
feasibility λi. For example, if the question “who was the first president”
has the answer Rajendra Prasad, the question has an unstated implicit
assumption that subjects must guess what country or company the
question is about. In the model TODO, FIX ME!!!! , if a large fraction
of subjects all get an item wrong, everyone’s probability of getting the
item right is capped at λi. In nlp terms, 1 − λi corresponds to the
prevalence of annotation errors that lead to unsolvable items.

Let’s now see what feasibility does. Feasibility is relevant to NLP
since infeasible questions suggest an annotation error. Let’s go back
to our favorite “bad” question: what is the capital of Georgia? If this
sort of question can have the answer “Atlanta” or “Tblisi” with equal
probability, then nobody, no matter how smart they are, can get this
right with more than 0.5 probability.

Mathematically, see how the feasibility parameter works is more
straightforward. It’s just a linear scaling, that brings down the maxi-
mum value the probability can take on. The normal logistic curve is on
top, lambda=1, but it gets squished down as lambda gets smaller and

86 questioning artificial intelligence

Figure 15.2: A dad leaderboard uses
irt to jointly infer item difficulty βi , dis-
criminability γi , feasibility λi , and sub-
ject skill θj. These predict the likelihood
pij(rij = 1) of a correct response rij.

smaller. If lambda=½, then no matter how smart you are, it’s basically
a coin flip whether you can answer the question.

A Generative Story for Leaderboards

Leaderboards are a product of the metrics, evaluation data, and subjects
(machine or human) who answer items (Figure 15.2).

Generally, given n test items X = (X1, . . . , Xn) and m subjects
S = (S1, . . . , Sm), where each subject answers every item, we want to
estimate subject skills and item difficulties. To discover the random vari-
ables that best explain the data, we turn to probabilistic inference Pearl
(1988).

Having introduced all of the constituent elements of the model, we
can now present the full generative model:

1. For each subject j:

(a) Draw skill θj ∼ N (µθ , τ−1
θ)

2. For each item i:

(a) Draw difficulty βi ∼ N (µβ, τ−1
β)

(b) Draw discriminability γi ∼ N (µγ, τ−1
γ)

(c) Draw feasibility λi ∼ U[0, 1]

3. Draw subject i response on item j,
rij ∼ pij(rij | θj, βi, λi) =

pij(rij = 1|θj) =
λi

1 + e−γi(θj−βi)
. (15.1)

For TODO, FIX ME!!!! , γi and λi are fixed to 1.0, while for TODO,
FIX ME!!!! , only λi is fixed.2 2 In psychometrics, TODO, FIX ME!!!! is

called a Rasch (?) or 1 parameter logistic
(1PL) model, TODO, FIX ME!!!! is a 2PL
model, and TODO, FIX ME!!!! is a 4PL
model with guessing set to zero.

Means µθ , µβ, µγ are drawn from N (0, 106) and τθ , τβ, τγ from a Γ(1, 1)
prior, as in ? and recommended by ?.3

3 We differ by allowing γ < 0 to identify
bad items.

Because it is difficult to completely codify skill and difficulty into a
single number, we can rewrite the exponent in Equation 15.1 as a sum
over dimensions −γi(∑k θj,k − βi,k), where each dimension captures
the interaction between an item’s difficulty and a subject’s skill. For
example, perhaps Burt could better exploit artifacts in one dimension
(their skill for θj,k=5 is high but everywhere else is low) while Ken
might not know much about a particular topic like potent potables
(θj,k=2 is low but everywhere else is high). We call this model TODO,
FIX ME!!!! .4 Multidimensional irt models (?) could—in addition 4 We do not incorporate feasibility into

the TODO, FIX ME!!!! model since it al-
ready improves over 1D models without
it.

to better modeling difficulty—also cluster items for interpretation; we
briefly experiment with this (Appendix 15), but leave more to future
work (§15).

siri takes the sat 87

Examples are Not Equally Useful

irt’s fundamental assumption is that not all items and subjects are
equal. This explains why leaderboards can fail while having “normal
looking” accuracies. As a thought experiment, consider a dataset that
is one third easy (βi ∈ [0, 1]), one third medium difficulty (βi ∈ [2, 3]),
and one third hard (βi ∈ [6, 7]). Suppose that Ken has skill θk = 4
while Burt has skill θb = 2. A standard leaderboard would say that Ken
has higher accuracy than Burt. But suppose there’s a new subject that
wants to challenge Ken; they are not going to reliably dethrone Ken
until their skill θc is greater than six.

This is a more mathematical formulation of the “easy” and “hard”
dataset splits in question answering (???). In TODO, FIX ME!!!! , this
recapitulates the observation of ? that annotation error can hinder
effective leaderboards. dad helps systematize these observations and
diagnose dataset issues.

Inference

To estimate the latent parameters of our model, we use mean-field
variational inference Jordan et al. (1999). In variational inference, we
propose a distribution over the latent variables, qϕ(·), that approximates
the true but intractable posterior p(·). We then minimize the kl-
divergence between these distributions, equivalent to maximizing the
evidence lower-bound (elbo) with respect to the variational parameters.

In our case, qϕ(·) is a mean-field distribution, which means it fac-
torizes over each of the latent variables (the product is over the n × m
subject-item pairs)

qϕ(θ, β, γ, µ, τ) = q(µ)q(τ)∏
i,j

q(θj)q(βi)q(γi)

Specifically, for our key latent variables z ∈ {θ, β, γ}, the associated
variational distributions are of the form q(z) = N (uz, t−1

z). Recall that
in the generative distribution, each latent z is drawn from a N (µz, τ−1

z)

whose parameters are also latent variables; for these variables, we use
the variational distributions q(µz) = N (uµz , t−1

µz) and q(τz) = Γ(aτz , bτz).
We optimize the elbo with respect to the variational parameters

ϕ = {uz, tz, uµz , tµz , aτz , bτz , λ}

for all z using adam (?).
With dad’s leaderboard irt model introduced, we next discuss

how leaderboard subjects are statistically compared and alternative
methods—such as using irt parameters—to evaluate whether two
models are truly different.

88 questioning artificial intelligence

Ranking and Comparing Subjects

Fundamentally, the objective of comparative evaluations like leader-
boards is to decide whether model A is better than model B. A thread
of nlp has rightfully advocated for adding rigor to these decisions
using statistics (?, Classical Testing Theory) where the objective is to
infer a true score T from the observed test score X = T + E given a
measurement error E, uniform across subjects. However, in educational
testing—a field measuring skill and knowledge in humans—irt is a
primary measurement instrument (?, p. 2). A major motivation for
irt is that subjects of different skill have different errors. irt explicitly
accounts for the bandwidth-fidelity dilemma (?): items can either accu-
rately measure a narrow ability range (fidelity) or inaccurately measure
large ability ranges (bandwidth).5 This section and the next contrast 5 Estimation error of θ varies by position

(Appendix 15).methods for identifying the best model and advocate for irt.
Implicit in nearly all leaderboard evaluations is ranking models by

a statistic such as the average accuracy. As we show in §15, naïve
rankings are noisier than irt rankings.

IRT for Leaderboards

Leaderboards should: (1) reliably and efficiently rank better models
ahead of worse models (??) and (2) guide inspection of items and
subjects (§15). The first ameliorates the unavoidable randomness of
finite evaluations while the second enables error analysis (?) and model
probing (??). First we verify that irt models accurately predict the
responses of subjects (§15). Next, a ranking stability analysis shows that
irt has modestly better reliability than classical rankings (§15). Lastly,
using irt to actively sample items for annotation yields rankings with
better correlation to complete test data (§15).

Why a Linear Model Baseline

At first blush, the differences between irt and logistic regression are
minimal, but we include the comparison to address natural questions
from the nlp community: (1) do the idiosyncrasies of the irt formu-
lation hurt accuracy? (2) should we add features to better understand
phenomena in the questions? (3) why not use deep models?

The next section argues that both irt and logistic regression are
accurate even without laboriously engineered task-specific features.
Adding obvious features such as item words (e.g., questions) only
minimally improves the accuracy. We explicitly omit less interpretable
deep models since our goal is to make leaderboards more interpretable.

siri takes the sat 89

Response Prediction is Accurate

Just as educational testing researchers validate irt models by seeing if
they predict subject responses correctly (?), we validate how well dad

predicts whether squad models get questions right.
We compare against a logistic regression linear model (lm) imple-

mented with Vowpal Wabbit (?). Since integrating hand-crafted features
is easy, we incorporate features derived from subject ids; item ids; func-
tions of the squad question, answer, and title; and irt parameters
(details in Appendix 15). As in irt, logistic regression predicts whether
a subject correctly responds to an item. Later, we discuss ways to
integrate more features into irt (§15).

SQuAD Leaderboard Data

Experiments are on the squad 2.0 leaderboard. Development data are
publicly available, and organizers provide test set responses. There
are 161 development subjects, 115 test subjects, and 11,873 items (1.9
million total pairs). Experiments that do not need test responses use all
development subjects; those that do use the smaller test subset.

Evaluation Scheme

Following prior work (?), we evaluate irt and linear models by holding
out 10% of responses and computing classification metrics.6 In squad, 6 Everywhere else in the paper, we train

on all responses.predicting whether a response is correct is an imbalanced classification
problem (80.4% of responses in the development set are correct). Thus,
we use roc auc, macro F1, and accuracy.

IRT Response Prediction is Accurate

irt models that incorporate more priors into the generative story
should be better, but are they? We compare four irt models: TODO,
FIX ME!!!! , TODO, FIX ME!!!! , TODO, FIX ME!!!! , and TODO,
FIX ME!!!! (§15). The more sophisticated models are better and all
improve over the lm (Figure 15.3) and correlate well with each other
(Appendix 15). To be clear, while higher accuracy than lm is good, our
goal is to validate that irt models are accurate; later, we inspect model
errors and identify annotation errors (§15).

Figure 15.3: We compare each irt and
linear model (lm) by how well they pre-
dict subject responses. We focus on
roc auc since predicting responses is an
imbalanced classification problem (most
subjects are correct). Under that metric,
all irt models improve over the best lm,
and the strongest lm ablation only uses
irt features. That textual features are
predictive in the lm suggests they could
improve future models.

90 questioning artificial intelligence

Figure 15.4: Compared to the final rank-
ing over a large test set, how well does
a small test set correlate? The left
shows correlation between mutually ex-
clusive development set samples and the
right between development samples and
the full test set. In both experiments
(panes), ranking systems by irt ability
is more stable—across all sample sizes—
than mean accuracy and thus more reli-
able (Kendall’s rank correlation is higher).
Bands show 95% confidence intervals of
rank correlations across ten trials per
sample size.

What Model Features are Predictive?

Integrating additional features into Bayesian models is not trivial, so
we instead use the flexibility of linear models to identify useful features.
Our leave-one-in ablation compares features (Figure 15.3): the top
ablations both use irt features, further validating irt parameters. The
subject and item identifier features are also strongly predictive, but
item is the stronger of the two. Text-based features are weaker, but this
suggests future work to better integrate them into irt models (§15).

Ranking with IRT

Leaderboards should produce reliable subject rankings: can dad rank
systems even with a tiny test set? Thus, we compare the correlation
both of traditional average accuracy (§15) and irt rankings on the
whole test set compared to the rankings of the same metric on a smaller
test set. Our first experiment (§15) examines the stability of existing
items and subjects while the second (§15) investigates stability of “new”
evaluation data using sampling strategies.

IRT Rankings Have Better Reliability

Rankings should be reliable within the same dataset (e.g., on dev set)
and generalize to similar datasets (e.g., with a test dataset). To test the
first, we measure the ranking stability of mutually exclusive samples of
the development data ?. To test the second, we measure the correlation
between development set sample rankings to test set rankings (?).

Specifically, for a range of sample sizes7 we (1) sample two partitions 7 The sample size must be less than half
the size of the development data so that
we can obtain two samples.

of the data, (2) compute the classical ranking8 and the irt ranking

8 For squad, ordering by mean exact
match score.

from a refit TODO, FIX ME!!!! model, then (3) compute Kendall’s
correlation (?) between the samples for each ranking (details in Ap-
pendix 15). In both cases irt rankings have higher correlation than
classical rankings (Figure 15.4, left). Since the benefit is strongest at low
sample sizes, irt can improve the reliability of small-scale evaluations.

The second experiment examines ranking generalization: irt yields
more reliable measures of subject skill, implying a greater consistency
in subject rankings across evaluation settings. Figure 15.4 compares the
development set sample rankings computed above to rankings obtained
using subjects’ test set responses (with the same irt model).

Across all sample sizes, subjects’ irt ability estimated on the de-
velopment set correlates well test set ability. Crucially, this is better
than the corresponding classical metrics like accuracy (Appendix 15

siri takes the sat 91

Figure 15.5: Suppose we need to cold
start and collect annotations for a new
subject: what order would most rapidly
increase correlation to the full test data?
As we expect, the correlations eventually
converge, but with little data, irt has bet-
ter correlation than other methods. We
suspect that the irt information under-
performs early on when the subject abil-
ity estimate is unstable.

quantifies the statistical significance of the difference), supporting our
original motivation for using irt.9 9 Since the maximum trial size was lim-

ited, we train one final model with
the full data, see Table 15.3 in the Ap-
pendix 15.IRT Improves Cold Start Reliability

irt can also guide the construction of tests. Just as irt practitioners
prepare tests for humans, we too construct tests for machines. In
educational testing, collecting responses from humans is expensive;
likewise, although questions are cheap in search-based qa tasks (??),
annotating answers is expensive. Likewise, “grading” machine dialog
responses is expensive and irt helps (?). To emulate this setting, we
use computerized adaptive testing (?) to iteratively select squad items
to “annotate.”

As in human test preparation, we use existing annotations to infer
item parameters and iteratively infer the ability of new subjects. This
experiment splits m subjects into a training group (80%) and a testing
group (20%). The training group represents subjects for which we
have full item predictions and annotations; the testing group represents
a new group of subjects that we need to rank. To efficiently rank,
we should iteratively choose items to annotate that yield the most
information about the ranking if all the data were annotated.

This experiment compares how well several item selection strategies
work. For each selection method, we (1) choose a sample size, (2),
sample from the development set, (3) compute the ranking of subjects,
and (4) compute Kendall’s rank correlation (Figure 15.5).10 10 We compute correlations with the com-

plete development set on ten trials to
build 95% confidence intervals.

Which item selection strategies should we compare? As a baseline,
we use naïve random sampling. Like prior work, we compare selecting
items with the highest difficulty and the highest discriminability (?) as
well as the sum of the two.11 We propose that items should be selected 11 We train an TODO, FIX ME!!!! model

to simplify sampling (e.g., avoiding a
tradeoff between feasibility and discrim-
inability).

according to their Fisher information content (?)

Ii(θj) =
(p′ij)

2

pij(1 − pij)
= γ2

i pij(1 − pij) (15.2)

as derived by ?, p. 70.
Intuitively, if we do not yet know the true skill θj, we should pick

items whose expected response we are most uncertain about. Our
uncertainty (entropy) is maximized when the likelihood of a correct
response pij is the same as the likelihood of an incorrect response 1− pij,
which corresponds to the maximal value of Ii(θj); it is also sensible this
value increases as discriminability γi increases.

To infer the maximally informative items, we estimate the ability
θj of each subject using the currently selected items, use the ability

92 questioning artificial intelligence

Figure 15.6: We partition evaluation data
by irt difficulty and discriminability
with accuracy in each quartile. Most
improvements in high-accuracy systems
come from getting high-difficulty ques-
tions right. Items with low discriminabil-
ity (and thus prone to annotation errors)
are difficult for all subjects except the
overfit args-bert model. We include
top-performing squad subjects, several
notable subjects (systems), and a pair
from the bottom of the leaderboard.

to compute the information of each yet-to-be-annotated item for each
subject, and then aggregate the informativeness

Info(i) = ∑
j

Ii(θj) (15.3)

by item i summed over subjects j. This approach is similar to uncer-
tainty sampling and reduces to it for the TODO, FIX ME!!!! model (?).
We initially seed with the twenty-five most discriminative items (details
in Appendix 15).

Like computerized adaptive testing (?), Figure 15.5 shows that at
lower sample sizes three of the irt sampling methods are better than
random sampling—difficulty does worse. The other irt methods have
comparable correlation. Thus, by using irt, dad can both improve
rankings and guide annotation.

Qualitative Insights on Leaderboards

dad also helps qualitative analysis of items and subjects. First, irt

identifies overfitting and generalizes partitioning datasets by difficulty.
Then we show that—like in educational testing—irt identifies good
and bad items.

Guiding Analysis with IRT

Several works curate easy and hard qa subsets based on how many
models answer correctly (?) or heuristics (?). irt can create similar
subsets using TODO, FIX ME!!!! , the best 1D model. Difficulty
finds where subjects improve while discriminability and feasibility can
surface items that may be invalid. For example, one low feasibility
question (Figure 15.10) asks “what are two examples of types of Tur-
ing machines?” which has two problems: (1) the answer omits five
types and (2) span-based evaluation precludes selecting non-contiguous
types.

After excluding items with negative discriminability—they are likely
erroneous—we sort items into bins. We break both difficulty and dis-
criminability into four bins—taking the 25

th, 50
th, and 75

th percentiles—
creating eight total bins. Then we select representative squad subjects
with their exact match scores (Figure 15.6). Let’s examine a feasible
item with positive difficulty and discriminability like “what reform was
attempted following the Nice treaty?”12 In this case, the annotator’s 12 A: “there was an attempt to reform the

constitutional law of the eu and make
it more transparent.” (Appendix Fig-
ure 15.11)

span is too long—resulting in almost no correct answers and a low
fuzzy match (token F1). In contrast, one highly discriminative question

siri takes the sat 93

Figure 15.7: We annotate squad items by
discriminability, difficulty, and irt pre-
diction errors. For example, one question
with negative discriminability was clas-
sified as “Wrong” with the explanation
that the annotated answer indicates it is
not answerable, but the question actually
is answerable. Items with negative dis-
criminability or where irt’s prediction is
wrong have a much higher rate of annota-
tion error (“Flawed” or “Wrong”). Using
similar methodology, errors in datasets
could be more rapidly identified.

succeeds because there are multiple plausible guesses to “who did the
Normans team up with in Anatolia?”13 While both the Armenian state 13 Example with statistics in Appendix

Figure 15.12.and Turkish forces are superficially plausible answers, only Turkish
forces is correct; nonetheless, some models are fooled. Using irt to
guide subject analysis is helpful; next, we test how efficient it is in
identifying annotation error.

Identifying Annotation Error

To test if irt can identify annotation error, we inspect sixty squad

development set items. We select ten items from each of these groups:
the most negative discriminability, discriminability nearest to zero,
the highest discriminability, the least difficult, most difficult, and irt

model errors. For each, we annotate whether the item was correct,
was “correct” yet flawed in some way, or simply wrong (Figure 15.7).14 14 Annotation guidelines provided in sup-

plementary materials; Figure 15.7 uses
the first set of annotations which were
later augmented by two additional sets
of annotations.

Inter-annotator agreement between three authors on this three-way
annotation with Krippendorff’s α (??) is 0.344. Despite only modest
agreement, just as in the development of education tests, negative
discriminability is predictive of bad items. When discriminability is
negative, then the probability of getting the answer right is higher when
ability is lower, which is undesirable: Ken consistently loses to Burt
on those items. This could identify bad items in evaluation sets for
removal.

A Re-Imagined Leaderboard Dashboard

pr: Move to separate demo paper
Basing a new leaderboard on irt models has another significant

benefit: as they are purposefully interpretable, they are very useful for
visualizing leaderboard data. The final component of this work is a
demonstration—based on squad—of components that a re-imagined
leaderboard may have.15 Our proposed visualization has three main 15 The visualization doubles as my course

project for CMSC734: Information Visu-
alization.

components: (1) an improved model listing, (2) a model-centric view,
(3) an example-centric view.

The majority of leaderboards list only one ranking metric or list
multiple while only ordering models by a primary metric. However,
multiple factors—including multiple metrics—should be integrated
such as model size and efficiency (?). This presents a challenge: how
should all these be visualized? In our proposed model listing, while
there would be a default ranking, our visualization would support
ranking by any metric or combinations of rankings while showing the

94 questioning artificial intelligence

influence of each as in the parallel axis plots in LineUp (?).

Figure 15.8: A proof-of-concept visualiza-
tion that compares two models—a bert

and ir retrieval system—by visualizing
which examples model agree or disagree
on. We propose extending this to incor-
porate more than two models.

Similarly to Manifold (?), the goal of the model-centric view is to
understand the differences—based on predictions—between models.
An initial approach (Figure 15.8) compares how pairs of models differ,
but could be extended to support multiple models by enhancing the
underlying software. Another approach to a model-centric views in-
stead attempts at characterizing the performance along partitions of
the data (?). For example, ? propose faceted histograms as a way to
“un-aggregate” metrics to inspect qa accuracy by factors like question
type and confidence. In addition to visualizing which instances pairs
of models agree as in Manifold, we propose integrating irt parameters
to better identify instances that have a larger influence over the output
ranking.

A dominant approach to inspecting models examines their perfor-
mance on individual examples or partitions of examples sharing a
trait (?). In addition to domain-relevant traits, we can guide exam-
ple sample selection with irt which makes it more likely to identify
important issues over random sampling (?) while still combining care-
ful specification of error types (?). Similarly, visualizations can use
the multidimensional irt parameters for clustering which can also be
combined with domain-specific attributes like question type or topic.

A major advantage of our approach—embedding these comparisons
in leaderboards—is that model developers can compare the outputs
of many models on individual or small sets of examples. While there
are numerous tools for comparing models, error analysis, and related
tasks, they face the headwinds of convincing practitioners that they are
worthwhile time investments. Instead, we aim to provide real benefits of
leaderboard-wide analysis without incurring up-front time commitment
from practitioners. Although this does require commitment from task
organizers, we believe that the trade-off of inherently improving the
evaluation while providing practitioners with “shiny tools” is well
worth it.

Related Work

dad draws together two primary threads: we use irt to understand
datasets, which has been applied to other nlp tasks, and apply it to
improving leaderboards. Finally, we explore how the insights of irt can
improve not just the analysis of test sets but to improve the construction
of test sets.

siri takes the sat 95

irt in nlp irt is gaining traction in machine learning research (??)
where automated metrics can be misleading (?): machine translation (?)
and chatbot evaluation (?). Concurrent with our work, ? compare
nlp test sets with irt. Closest to our work in nlp is ?, who rank
machine translation subjects and compute correlations with gold scores.
Similarly, ? use irt on non-language ai video game benchmarks. Just
as we use irt to identify difficult or easy items, ? create challenge sets
for textual entailment. We test irt as a way to guide annotation, but
it can also train nlp models; for example, deep models learn “easy”
examples faster (?) and maintain test accuracy when training data are
down-sampled (?).

Improving Leaderboards The rise nlp leaderboards has encouraged
critical thought into improving them (?), improving evaluation more
broadly (?), and thoughtful consideration of their influence on the direc-
tion of research (??). dad aims make leaderboard yardsticks (?) more
reliable, interpretable, and part of curating the benchmark itself. In line
with our reliability goal, just as statistical tests should appear in publi-
cations (??), they should be “freebies” for leaderboard participants (?).
Alternatively, ? posit that leaderboards could be automatically extracted
from publications. How to aggregate multi-task benchmarks (???) and
multi-metric benchmarks (?) is an open question which—although we
do not address—is one use for irt.

This work implicitly argues that leaderboards should be continually
updated. As a (static) leaderboard ages, the task(s) overfit (?) which—
although mitigable (??)—is best solved by continually collecting new
data (?). Ideally, new data should challenge models through adversarial
collection (??) and related methods (?). However, if making an easy
leaderboard more difficult is possible, the leaderboard has outlived its
helpfulness and should be retired (?).

Part of our work centers on alternate task efficacy rankings, but this
naïvely assumes that task efficacy is the sole use case of leaderboards.
Indeed, focusing solely these factors can mislead the public (?) and
may not reflect human language capabilities (?). Leaderboards are also
well positioned to provide incentive structures for participants to prior-
itize fairness (?) and efficiency (???) or incorporate testing of specific
capabilities (??). To enable these more nuanced analyses, leaderboards
should accept runnable models rather than static predictions (?).

Active Learning Beyond irt, the analysis of training dynamics and
active learning (?) is helpful for actively sampling specific items or
identifying low-quality items (?). For example, ? and ? propose
alternative training dynamics-based methods for identifying difficult
items as well annotation errors. Even closer to goals, ? use active

96 questioning artificial intelligence

learning to build a test collection. Explicitly measuring how effectively
examples separate the best subject from the rest allows test set curators
to “focus on the bubble” (?), prioritizing examples most likely to reveal
interesting distinctions between submitted systems.

Alternate Formulations irt is an example of convergent evolution of
models that predict subject action given an item. Ideal point models ?
consider how a legislator (subject) will vote on a bill (item) and use a
similar mathematical formulation. The venerable elo model Glickman
and Jones (1999) and modern extensions ? predict whether a player
(subject) will defeat an opponent (item) with, again, a similar mathe-
matical model. Certain irt models can also be formulated as nonlinear
mixed models ?, where the item parameters are fixed effects and the la-
tent subject parameters are random effects. This allows for comparisons
between irt models and other mixed effects models under a consistent
framework. TODO, FIX ME!!!! and TODO, FIX ME!!!! can be
formulated as nonlinear mixed models, and TODO, FIX ME!!!! can
be formulated as a discrete mixture model over items. As we discuss
further in the next section, dad’s application of irt can further be
improved by adopting interpretable extensions of these models.

Conclusion

This paper advocates incorporating decades of research in crafting edu-
cation tests to improve how we evaluate the capabilities of nlp models.
We propose and validate an alternate irt ranking method for leader-
board evaluations, show it can guide annotation, detect annotation
error, and naturally partition evaluation data. Just as educators moved
from classical testing to irt, the nlp community should consider future
evaluations with irt.

Limitations

Although there is much to gain through irt evaluation, there are
limitations which make it hard to implement. First, it requires access to
item-level responses for all examples for all subjects which are often
only available to organizers. Second, ? notes that sampling mutually
exclusive subsets has drawbacks—samples are not entirely independent.
Lastly, our work is a proof of concept using squad 2.0 as a test bed and
our results may not generalize.

siri takes the sat 97

Future Work

We see a few directions for future work. First, this paper is intended
to validate irt and its usefulness as an active part of the leaderboard
lifecycle; the natural next step is to implement it in a leaderboard. Sec-
ond, our irt models do not incorporate the item content (e.g., example
text) to predict responses, but in principle could; Bayesian models
with metadata (?) and ideal point models from political science (?)
that incorporate bills and speeches do exactly this (???). Analogously,
irt for leaderboards can and should also incorporate text from pas-
sages, questions, and answers to better model what makes questions
difficult. Such a model can also predict which characteristics would
create discriminating or difficult items. Lastly, multidimensional irt

models to evaluate multiple skills could aid multi-task or multi-metric
leaderboards like mrqa (?) and Dynaboard (?).

Acknowledgements

For their work on early iterations of leaderboard visualizations, we
thank Jacob Bremerman and Wei Wei Chi. For insightful discussions
and ideas we thank Shi Feng, Doug Oard, João Sedoc, Mike Wu, and
Patrick Lewis. We thank Peter Rankel for recommendations on statisti-
cal testing methods. For discussion and feedback on visualizations, we
thank Leo Zhicheng Liu, Calvin Bao, and classmates in umd’s Fall 2020

“Information Visualization” course. For suggestions on topic modeling,
we thank Philip Resnik and Maria Antoniak. For feedback on prior
versions of this paper, we thank our anonymous acl reviewers and
members of the umd clip lab. Boyd-Graber and Rodriguez’s work
at umd were supported by nsf Grant iis-1822494. The views and
conclusions contained herein are those of the authors and should not
be interpreted as necessarily representing the official policies, either
expressed or implied, of the sponsor. The U.S. Government is autho-
rized to reproduce and distribute reprints for governmental purposes
notwithstanding any copyright annotation therein.

SQuAD Item Examples

Figures 15.9, 15.10, 15.11, and 15.12 show previously discussed squad

examples (§15) in full. On the same page, we provide a web interface
for inspecting the parameters of the irt models. Figure 15.13 shows
the feasibility distribution corresponding to Figure 15.1.

98 questioning artificial intelligence

Discriminability: -9.63 Difficulty: -0.479 Feasibility: 0.614 Mean Exact Match: 0.472

Wikipedia Page: Economic inequality Question ID: 572a1c943f37b319004786e3

Question: Why did the demand for rentals decrease?
Official Answer: demand for higher quality housing
Context: A number of researchers (David Rodda, Jacob Vigdor, and Janna Matlack), argue that a shortage of
affordable housing – at least in the US – is caused in part by income inequality. David Rodda noted that from
1984 and 1991, the number of quality rental units decreased as the demand for higher quality housing increased
(Rhoda 1994:148). Through gentrification of older neighbourhoods, for example, in East New York, rental prices
increased rapidly as landlords found new residents willing to pay higher market rate for housing and left lower
income families without rental units. The ad valorem property tax policy combined with rising prices made it
difficult or impossible for low income residents to keep pace.

Figure 15.9: The example from squad

with the lowest discriminability. Surpris-
ingly, it had a negative discriminability,
implying that the less skilled a subject
is, the more likely their response is to be
correct.

Discriminability: 3.24 Difficulty: 3.86 Feasibility: 0 Mean Exact Match: 0

Wikipedia Page: Computational Complexity Theory Question ID: 56e1b00ce3433e14004230a1

Question: In the determination of complexity classes, what are two examples of types of Turing machines?
Official Answer: probabilistic Turing machines, non-deterministic Turing machines
Context: Many types of Turing machines are used to define complexity classes, such as deterministic Turing
machines, probabilistic Turing machines, non-deterministic Turing machines, quantum Turing machines, symmetric
Turing machines and alternating Turing machines. They are all equally powerful in principle, but when resources
(such as time or space) are bounded, some of these may be more powerful than others.

Figure 15.10: This question is regarded
as infeasible by the irt model. Upon fur-
ther inspection, the answer omits five ac-
ceptable answers, but more importantly
does not permit all combinations of Tur-
ing machines.

Logistic Regression Features

The linear model (§15) includes features based on item ids, subject
ids, textual features of the question, context, and answer, and topic
model features. Table 15.1 lists the feature names from Figure 15.3 with
descriptions of each. When irt features or the statistics features are
used, they include interaction terms with themselves.

IRT Model Type Correlation

Although each irt model differs in expressiveness, they should—in
general—produce similar results. This is confirmed by computing
the Kendall’s rank correlation between the subject abilities and item
difficulties (Table 15.2).

Ranking Stability Experiments

Here we provide further details for the ranking stability experiments
(§15). First, we filter from the 161 subjects that have development set
scores to the 115 that also have test set scores.16 In our simulation, we 16 The squad organizers curate the test

set subjects to avoid overfit, garbage, or
duplicate submissions.

run 10 trials for every sample size; sample size begins at 100 and with
steps of 100. In addition to these, we also run trials for sample sizes 25,
50, and 75. Since each sample can be no larger than half the dataset, we
stop at half the dataset.

siri takes the sat 99

Discriminability: 2.1 Difficulty: 2.38 Feasibility: 0.995 Mean Exact Match: 0.00621 Mean F1: 0.546

Wikipedia Page: European Union Law Question ID: 57268f2bf1498d1400e8e3c4

Question: What reform was attempted following the Nice Treaty?
Official Answer: an attempt to reform the constitutional law of the European Union and make it more transparent
Context: Following the Nice Treaty, there was an attempt to reform the constitutional law of the European Union
and make it more transparent; this would have also produced a single constitutional document. However, as a result
of the referendum in France and the referendum in the Netherlands, the 2004 Treaty establishing a Constitution
for Europe never came into force. Instead, the Lisbon Treaty was enacted. Its substance was very similar to the
proposed constitutional treaty, but it was formally an amending treaty, and – though it significantly altered the
existing treaties – it did not completely replace them.

Figure 15.11: This example shows that
the answer span is likely too large, caus-
ing models to fail in both squad’s exact
match and F1 metrics.

Discriminability: 8.01 Difficulty: -1.41 Feasibility: 0.939 Mean Exact Match: 0.64 Mean F1: 0.667

Wikipedia Page: Normas Question ID: 56de10b44396321400ee2595

Question: Who did the Normans team up with in Anatolia?
Official Answer: Turkish forces
Context: Some Normans joined Turkish forces to aid in the destruction of the Armenians vassal-states of Sassoun
and Taron in far eastern Anatolia. Later, many took up service with the Armenian state further south in Cilicia and
the Taurus Mountains. A Norman named Oursel led a force of "Franks" into the upper Euphrates valley in northern
Syria.. . .

Figure 15.12: This highly discrimina-
tive question succeeds because there are
many plausible answers. For example,
although only “Turkish forces” is cor-
rect, some models answer “the Armenian
state.”

Development and Test Set Correlations

Table 15.3 uses a TODO, FIX ME!!!! model since we noticed that in
comparison TODO, FIX ME!!!! overfit the data, yielding worse results.
The correlations with the full data are all strong, but not the same. We
conclude that—at least on squad—irt rankings are modestly more
reliable than classical rankings.

Statistical Significance of Difference in Kendall Tau Coefficients

While Figure 15.4 shows a consistent difference in correlation between
ranking methods, it is unclear whether this difference is statistically
significant. We estimate the statistical significance of the difference
through bootstrap sampling (?).

Since the null case is no difference in correlation coefficients, we
seek a symmetric sampling distribution centered at zero that represents
a realistic density function. Each ranking stability experiment17 trial 17 One experiment for development sam-

ple to development sample and one for
development sample to test set.

results in two lists of number pairs. The lists correspond to subject
scores on two datasets;18 each number pair is the subject’s accuracy

18 In the first experiment, development set
samples; in the second, a development
set sample and the full test set.

and irt score. To create the bootstrap distribution, we (1) sample with
replacement pairs from one list, (2) compute the correlation between the
resampled ranking and unused ranking when using accuracy versus
irt score, and (3) compute and store the irt correlation score minus
the accuracy correlation score. We repeat this process 1000 times for
each of the 10 trials in the original experiment and aggregate all the
differences to build the bootstrap distribution. For each sample size we

100 questioning artificial intelligence

Figure 15.13: The feasibility parame-
ter λ of our irt model represents the
probability that an example is unsolv-
able. For example, annotation error could
lead to an example always being scored
incorrectly—regardless of how good the
model is. In squad 2.0, λ < .434 in the
5% percentile, λ < .698 for the 7.5%, and
λ < .931 in the 10% percentile.

Feature Description

All All the features
irt irt values for difficulty, discriminability, feasi-

bility, and ability
Item id The item’s id

Subject id The subject’s id

Question Question words
Context Context words
Stats Question & context lengths; answerability, an-

swer position & length; difficulty from ?
Subject & Item id Item and Subject id

Topics 1K Topic weights of question words
Title Wikipedia page title words
Baseline No features, majority class baseline

Table 15.1: The linear model integrates a
variety of features to determine which are
most predictive of a subject responding
correctly to an item.

compute the empirical P-Value on each trial which we show in box and
whisker plots (Figure 15.14).

The IRT Statistical Test

The irt test differs in two substantial ways from other tests: (1) it does
not assume that items are equally informative and (2) it does assume
that the informativeness of items is a function of the subject’s skill θj.
In the literature, this is closely connected to reliability (?) and each item
provides information about the location of θj; as we accumulate more
evidence for the location of θj the error of estimation decreases. It is a
well known result in irt that standard error of estimate (see) σ(θ̂|θ)
varies with respect to the agent location parameter θ (?, p. 30) and is
connected to the Fisher information

Ii(θ) =
(p′i)

2

pi(1 − pi)
(15.4)

of each item. For a 2PL model, information

Ii(θ) = γ2 pi(1 − pi) (15.5)

is maximized when pi = (1 − pi). Since Fisher information is additive,
the information of the evaluation set is maximal when items have a
50% chance of being responded to correctly. As derived by ?, p. 102,
the standard error of estimation

SEE(θ) =

√
1

∑i Ii(θ)
. (15.6)

is computed by accumulating the information gained from each item.
Given two subjects X and Y, one can use the probability distribution of

siri takes the sat 101

Ability TODO, FIX ME!!!! TODO, FIX ME!!!! TODO, FIX ME!!!!

TODO, FIX ME!!!! 1.00 0.947 0.895
TODO, FIX ME!!!! 0.947 1.00 0.907
TODO, FIX ME!!!! 0.895 0.907 1.00

Table 15.2: Table entries are Kendall’s
τ rank correlation of irt subject ability
between rows and columns. Generally,
the models agree on the ranking with
the TODO, FIX ME!!!! and TODO, FIX
ME!!!! having the strongest correlation.

EMdev EMtest Abilitydev Abilitytest

EMdev 1.00 0.953 0.954 0.931
EMtest 0.953 1.00 0.944 0.947
Abilitydev 0.954 0.944 1.00 0.950
Abilitytest 0.931 0.947 0.950 1.00

Table 15.3: Entries are Kendall’s rank
correlation between rows and columns.
Scores are squad Exact Match (EM) and
TODO, FIX ME!!!! ability.

score differences

N(θY − θX , SEE(θX)
2 + SEE(θY)

2) (15.7)

to compute the probability that the difference in skill is greater than
two standard errors which corresponds to an α ≤ .05 significance level.

Multidimensional IRT Clustering

While we achieve strong held-out accuracy with 10 dimensional irt (
TODO, FIX ME!!!!), we had limited success in interpreting parameters.
We use tsne

19 plots overlayed with features like item accuracy, the 19 We use openTSNE (?) with default pa-
rameters.question’s Wikipedia page, if the question was answerable, length

of questions, and topic model weights. Of these, item accuracy and
answerability showed the most obvious patterns (Figure 15.15).

We repeated this approach with the multi-task question answering
shared task mrqa (?). However, instead of using 10 dimensions we use
6 to match the number of development set tasks in mrqa. Although
questions in NarrativeQA standout (Figure 15.16), there is not a dis-
cernible pattern amongst the other tasks. We leave more sophisticated
methods for making multidimensional irt models interpretable to
future work.

Reproducibility Checklist

Here we provide reproducibility details to complement our source code
(https://irt.pedro.ai).

Software and Parameters

All irt models are implemented in PyTorch (?) and Pyro (?). Linear
models are trained with Vowpal Wabbit (?). The topic model that
generates features for the linear model uses Mallet (?).

https://irt.pedro.ai

102 questioning artificial intelligence

Figure 15.14: P-values of the rank correla-
tion difference for each sample size and
trial in Figure 15.4. The inherent noise in
dev set sampling makes inferring signifi-
cance difficult (left); test set driven results
(right) are more significant.

Figure 15.15: In squad, tsne shows a
relationship between mean exact match
(item accuracy) and answerability with re-
spect to multidimensional difficulty and
discriminability.

The number of irt model parameters is proportional to the number
of subjects m and the number of items n. The TODO, FIX ME!!!! has
one parameter per subject and one per item. The TODO, FIX ME!!!!
has one parameter per subject and two per item. The TODO, FIX ME!!!!
has one parameter per subject and three per item. The TODO, FIX
ME!!!! has ten parameters per subject and thirty per item.

Hyperparameters

We did not invest significant effort in hyper-parameter tuning the irt

models and instead used the defaults in the py-irt software20 provided 20 github.com/jplalor/py-irt

by ?. The TODO, FIX ME!!!! , TODO, FIX ME!!!! , and TODO, FIX
ME!!!! models were trained for 1000 epochs with no early stopping
conditions and a learning rate of 0.1 with adam (?). The TODO, FIX
ME!!!! model was trained for 2500 epochs and used 10 dimensions.

In the linear model, we used a Hyperopt-based (?) tool provided by
Vowpal Wabbit21 for hyper parameter search. For each lm, the tool 21 github.com/VowpalWabbit/vowpal_wabbit

spent 20 iterations optimizing the learning rate, L2 regularization, and
number of bits against the logistic loss function. The learning rate was
searched from 0.001 to 10 with loguniform sampling, L2 regularization
from 1e − 8 to 1, and bits from 20 to 23 as categorical variables.

The topic model that generated features for the linear model used
mallet, and we followed the recommendations of the software to set
hyper parameters.22 Specifically, we used an optimization interval 22 mallet.cs.umass.edu/topics.php

of 10, removed stop words, trained for 1000 iterations, and used a
document-topic threshold of 0.05. Each document was comprised of
the Wikipedia page title and the question text.

Computational Resources

The majority of experiments were conducted on a single workstation
with an Intel i7-7700K cpu, 47gb of ram, and an Nvidia 1080Ti. The
average runtime for the TODO, FIX ME!!!! model on cpu is 113

seconds with a standard deviation of 2.31 over 5 trials. The average
runtime of the TODO, FIX ME!!!! model on gpu is 110 seconds with a
standard deviation of 0.5 over 5 trials.

Since each ranking stability experiment required (§15) re-training
an TODO, FIX ME!!!! model on each subset, we parallelized this
experiment on a cpu cluster where each trial received two cpu cores
and 16gb of ram. In total, this included 520 trials which corresponds
to twice that many trained irt models since one model is trained on

https://github.com/jplalor/py-irt
https://github.com/VowpalWabbit/vowpal_wabbit
http://mallet.cs.umass.edu/topics.php

siri takes the sat 103

Figure 15.16: In mrqa, tsne shows a re-
lationship between whether the task is
NarrativeQA with respect to multidimen-
sional difficulty and discriminability.

each subset of the data.

Part III

Question Answering Future

16
Human–Machine Collaboration

If existing datasets and game show appearances aren’t enough to tell
whether humans or computers are better at answering questions, what
can we do? While there is an argument for focusing on natural data,
modern language models are changing not just what is possible com-
putationally but changing the language itself. Thus, we need to select
examples specifically to challenge computers. These examples are called
adversarial examples, and this chapter presents how to gather them and
how they can reveal the strengths and weaknesses of computer question
answering.

17
Question Answering in Science Fiction

From humans and dieties posing each other questions to humans and
computers facing off in the Turing test, these face-offs have also become a
staple of science fiction. This chapter reviews human–computer question
answering in 2001, Star Trek, The Terminator, Blade Runner, Futurama,
and novels and what these depictions reveal about both human concep-
tions of artificial intelligence and how it might shape future deployments
of question answering.

18
What AI Dystopias You Should be Afraid of

Beyond the imagining of science fiction, what are the actual downsides to
the widespread availability and deployment of ‘intelligent’ ai? This chap-
ter talks about ai’s ability to amplify existing negative human tendencies
and how—while dangerous and worthy of mitigation—don’t demand us
to halt the development of modern ai.

19
Computer Game Shows of the Future

The year is 2025, and there’s a new gameshow that not only showcases
the most advanced ai available but also keeps the public informed about
the limitations and struggles of current technology. This chapter outlines
the ten seasons of the show and how it tracks the development of machine
intelligence, leading to the Turing Test.

Bibliography

Jordan Boyd-Graber, Brianna Satinoff, He He, and Hal Daume III.
Besting the quiz master: Crowdsourcing incremental classification
games. 2012.

Anthony Cuthbertson. Robots can now read bet-
ter than humans, putting millions of jobs at risk.
Newsweek, 2018. URL https://www.newsweek.com/

robots-can-now-read-better-humans-putting-millions-jobs-risk-781393.

Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel Stanovsky, Sameer
Singh, and Matt Gardner. DROP: A reading comprehension bench-
mark requiring discrete reasoning over paragraphs. 2019. URL
https://www.aclweb.org/anthology/N19-1246.

R. Dwan. As Long as They’re Laughing: Groucho Marx and You Bet Your
Life. Midnight Marquee Press, 2000. ISBN 9781887664363. URL
https://books.google.ch/books?id=hO0KAQAAMAAJ.

Stephen Eltinge. Quizbowl lexicon, 2013. URL http://www.pace-nsc.

org/pace-quizbowl-lexicon/.

Manaal Faruqui and Dipanjan Das. Identifying well-formed natural
language questions. 2018.

David Ferrucci, Eric Brown, Jennifer Chu-Carroll, James Fan, David
Gondek, Aditya A. Kalyanpur, Adam Lally, J. William Murdock,
Eric Nyberg, John Prager, Nico Schlaefer, and Chris Welty. Building
Watson: An Overview of the DeepQA Project. AI Magazine, 31(3),
2010.

Flight Standards Service. Aviation Instrutor’s Handbook, volume FAA-
H-8083-9A. Federal Aviation Administration, Department of Trans-
portation, 2008.

Morris Freedman. The fall of Charlie Van Doren. The Virginia Quarterly
Review, 73(1):157–165, 1997. ISSN 0042675X. URL http://www.jstor.

org/stable/26439004.

https://www.newsweek.com/robots-can-now-read-better-humans-putting-millions-jobs-risk-781393
https://www.newsweek.com/robots-can-now-read-better-humans-putting-millions-jobs-risk-781393
https://www.aclweb.org/anthology/N19-1246
https://books.google.ch/books?id=hO0KAQAAMAAJ
http://www.pace-nsc.org/pace-quizbowl-lexicon/
http://www.pace-nsc.org/pace-quizbowl-lexicon/
http://www.jstor.org/stable/26439004
http://www.jstor.org/stable/26439004

116 questioning artificial intelligence

Mor Geva, Yoav Goldberg, and Jonathan Berant. Are we modeling the
task or the annotator? an investigation of annotator bias in natural
language understanding datasets. 2019.

Mark E Glickman and Albyn C Jones. Rating the chess rating system.
Chance, 12, 1999. URL http://scholar.google.de/scholar.bib?

q=info:r4leZxFtllwJ:scholar.google.com/&output=citation&

scisig=AAGBfm0AAAAAUm2XckUml2ofzJwFf4A_kI-bLVVMwfdI&scisf=

4&hl=en&scfhb=1.

Merv Griffin. Merv : making the good life last. Thorndike Press, Waterville,
Me, 2003. ISBN 0786253533.

Alvin Grissom II, He He, Jordan Boyd-Graber, and John Morgan. Don’t
until the final verb wait: Reinforcement learning for simultaneous
machine translation. 2014.

Mansi Gupta, Nitish Kulkarni, Raghuveer Chanda, Anirudha Rayasam,
and Zachary C. Lipton. AmazonQA: A review-based question an-
swering task. 2019.

Thomas M. Haladyna. Developing and Validating Multiple-choice Test
Items. Lawrence Erlbaum Associates, 2004.

Bob Harris. Prisoner of Trebekistan : a decade in Jeopardy. Crown Publishers,
New York, 2006. ISBN 0307339564.

Robert X. D. Hawkins, Andreas Stuhlmüller, Judith Degen, and Noah D.
Goodman. Why do you ask? Good questions provoke informative
answers. In Proceedings of the 37th Annual Meeting of the Cognitive
Science Society, 2015.

He He, Jordan Boyd-Graber, Kevin Kwok, and Hal Daumé III. Oppo-
nent modeling in deep reinforcement learning. 2016.

Shankar Iyer, Nikhil Dandekar, and Kornél Csernai. Quora
question pairs, 2017. URL https://www.quora.com/q/quoradata/

First-Quora-Dataset-Release-Question-Pairs.

Ken Jennings. Brainiac: adventures in the curious, competitive, compulsive
world of trivia buffs. Villard, 2006. ISBN 9781400064458.

Michael I. Jordan, Zoubin Ghahramani, Tommi S. Jaakkola, and
Lawrence K. Saul. An introduction to variational methods for graph-
ical models. Machine Learning, 37(2):183–233, 1999. ISSN 0885-6125.
doi: 10.1023/A:1007665907178.

Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke Zettlemoyer. Trivi-
aQA: A large scale distantly supervised challenge dataset for reading

http://scholar.google.de/scholar.bib?q=info:r4leZxFtllwJ:scholar.google.com/&output=citation&scisig=AAGBfm0AAAAAUm2XckUml2ofzJwFf4A_kI-bLVVMwfdI&scisf=4&hl=en&scfhb=1
http://scholar.google.de/scholar.bib?q=info:r4leZxFtllwJ:scholar.google.com/&output=citation&scisig=AAGBfm0AAAAAUm2XckUml2ofzJwFf4A_kI-bLVVMwfdI&scisf=4&hl=en&scfhb=1
http://scholar.google.de/scholar.bib?q=info:r4leZxFtllwJ:scholar.google.com/&output=citation&scisig=AAGBfm0AAAAAUm2XckUml2ofzJwFf4A_kI-bLVVMwfdI&scisf=4&hl=en&scfhb=1
http://scholar.google.de/scholar.bib?q=info:r4leZxFtllwJ:scholar.google.com/&output=citation&scisig=AAGBfm0AAAAAUm2XckUml2ofzJwFf4A_kI-bLVVMwfdI&scisf=4&hl=en&scfhb=1
https://www.quora.com/q/quoradata/First-Quora-Dataset-Release-Question-Pairs
https://www.quora.com/q/quoradata/First-Quora-Dataset-Release-Question-Pairs

BIBLIOGRAPHY 117

comprehension. 2017. URL https://www.aclweb.org/anthology/

P17-1147.

Divyansh Kaushik and Zachary C. Lipton. How much reading does
reading comprehension require? a critical investigation of popular
benchmarks. 2018.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael
Collins, Ankur Parikh, Chris Alberti, Danielle Epstein, Il-
lia Polosukhin, Matthew Kelcey, Jacob Devlin, Kenton Lee,
Kristina N. Toutanova, Llion Jones, Ming-Wei Chang, An-
drew Dai, Jakob Uszkoreit, Quoc Le, and Slav Petrov. Nat-
ural questions: A benchmark for question answering research.
2019. URL https://tomkwiat.users.x20web.corp.google.com/

papers/natural-questions/main-1455-kwiatkowski.pdf.

Kenton Lee, Ming-Wei Chang, and Kristina Toutanova. Latent retrieval
for weakly supervised open domain question answering. 2019.

Roger Levy. Integrating surprisal and uncertain-input models in online
sentence comprehension: Formal techniques and empirical results.
2011.

Roger P. Levy, Florencia Reali, and Thomas L. Griffiths. Modeling the
effects of memory on human online sentence processing with particle
filters. 2008.

Patrick Lewis, Pontus Stenetorp, and Sebastian Riedel. Question and an-
swer test-train overlap in open-domain question answering datasets.
In Proceedings of the 16th Conference of the European Chapter of the Asso-
ciation for Computational Linguistics: Main Volume, pages 1000–1008,
Online, April 2021. Association for Computational Linguistics. URL
https://aclanthology.org/2021.eacl-main.86.

Zachary C. Lipton and Jacob Steinhardt. Troubling trends in ma-
chine learning scholarship. Queue, 17(1), February 2019. ISSN
1542-7730. doi: 10.1145/3317287.3328534. URL https://doi.org/10.

1145/3317287.3328534.

Elaine Low. Jeopardy! goat ken jennings on trebek, trash talk and why
he’s hanging up his buzzer. Variety, January 2020.

Mingbo Ma, Liang Huang, Hao Xiong, Renjie Zheng, Kaibo Liu,
Baigong Zheng, Chuanqiang Zhang, Zhongjun He, Hairong Liu, Xing
Li, Hua Wu, and Haifeng Wang. STACL: Simultaneous translation
with implicit anticipation and controllable latency using prefix-to-
prefix framework. 2019.

https://www.aclweb.org/anthology/P17-1147
https://www.aclweb.org/anthology/P17-1147
https://tomkwiat.users.x20web.corp.google.com/papers/natural-questions/main-1455-kwiatkowski.pdf
https://tomkwiat.users.x20web.corp.google.com/papers/natural-questions/main-1455-kwiatkowski.pdf
https://aclanthology.org/2021.eacl-main.86
https://doi.org/10.1145/3317287.3328534
https://doi.org/10.1145/3317287.3328534

118 questioning artificial intelligence

Kenny Malone. How uncle Jamie broke Jeopardy. Planet Money, (912),
May 2019.

David Marchese. In conversation: Alex trebek the jeopardy! icon
on retirement, his legacy, and why knowledge matters. Vulture,
November 2018.

Adam Najberg. Alibaba AI model tops humans in read-
ing comprehension, 2018. URL https://www.alizila.com/

alibaba-ai-model-tops-humans-in-reading-comprehension/.

Judea Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 1988. ISBN 1558604790.

Pedro Rodriguez, Shi Feng, Mohit Iyyer, He He, and Jordan Boyd-
Graber. Quizbowl: The case for incremental question answer-
ing. CoRR, abs/1904.04792, 2019. URL http://arxiv.org/abs/1904.

04792.

Lisa Rogak. Who is Alex Trebek? : a biography. Thomas Dunne Books, an
imprint of St. Martin’s Publishing Group, New York, NY, 2020. ISBN
1250773660.

Idan Szpektor and Gideon Dror. From query to question in one click:
Suggesting synthetic questions to searchers. 2013.

Gerald Tesauro, David C. Gondek, Jonathan Lencher, James Fan, and
John M. Prager. 21, 2013.

Ellen M. Voorhees. Evaluating Question Answering System Performance,
pages 409–430. Springer Netherlands, Dordrecht, 2008. ISBN 978-1-
4020-4746-6. doi: 10.1007/978-1-4020-4746-6_13. URL https://doi.

org/10.1007/978-1-4020-4746-6_13.

Ellen M Voorhees and Dawn M Tice. Building a question answering
test collection. 2000.

Eric Wallace, Pedro Rodriguez, Shi Feng, Ikuya Yamada, and Jordan
Boyd-Graber. Trick me if you can: Human-in-the-loop generation of
adversarial question answering examples. Transactions of the Associa-
tion of Computational Linguistics, 10, 2019a.

Eric Wallace, Yizhong Wang, Sujian Li, Sameer Singh, and Matt
Gardner. Do NLP models know numbers? probing numeracy
in embeddings. In Proceedings of the 2019 Conference on Empiri-
cal Methods in Natural Language Processing and the 9th International
Joint Conference on Natural Language Processing (EMNLP-IJCNLP),

https://www.alizila.com/alibaba-ai-model-tops-humans-in-reading-comprehension/
https://www.alizila.com/alibaba-ai-model-tops-humans-in-reading-comprehension/
http://arxiv.org/abs/1904.04792
http://arxiv.org/abs/1904.04792
https://doi.org/10.1007/978-1-4020-4746-6_13
https://doi.org/10.1007/978-1-4020-4746-6_13

BIBLIOGRAPHY 119

pages 5307–5315, Hong Kong, China, November 2019b. Associa-
tion for Computational Linguistics. doi: 10.18653/v1/D19-1534. URL
https://aclanthology.org/D19-1534.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime G. Carbonell, Ruslan
Salakhutdinov, and Quoc V. Le. XLNet: Generalized autoregressive
pretraining for language understanding. 2019.

https://aclanthology.org/D19-1534

	Introduction: The Unanswered Question
	Who am I?
	How the Book is Structured

	I Question Answering Past
	The Mythic Roots of Question Answering
	The Sphynx
	Gestumblindi
	The Socratic Method

	How Question Answering Saved Civilization
	The Turing Test: A Game Show Pitch that Defined Artificial Intelligence
	The Cranfield Paradigm: How a University with an Airstrip made Google Possible

	II Question Answering Present
	The Computers' Ways of Asking
	The Manchester Paradigm: The Art of Asking the Perfect Question
	The Craft of Question Writing
	Why qb is the Gold Standard

	Watson on Jeopardy!: Unquestioned Answers from ibm's tour de force
	How Watson Works
	How Does Watson Know when to Buzz?
	Learning as You Go
	This Game is Rigged, I Tell Ya!
	The Legacy of Watson

	Found qa Data: Are they rough or diamonds?
	Build Your Own Dataset
	Answering Questions through Knowledge Bases
	Machine Reading
	The Advent of Deep Learning
	Machine Reading
	Siri takes the SAT
	Leaderboards are Shiny
	A Generative Story for Leaderboards
	Ranking and Comparing Subjects
	IRT for Leaderboards
	Qualitative Insights on Leaderboards
	A Re-Imagined Leaderboard Dashboard
	Related Work
	Conclusion
	Future Work
	SQuAD Item Examples
	Logistic Regression Features
	IRT Model Type Correlation
	Ranking Stability Experiments
	The IRT Statistical Test
	Multidimensional IRT Clustering
	Reproducibility Checklist

	III Question Answering Future
	Human–Machine Collaboration
	Question Answering in Science Fiction
	What AI Dystopias You Should be Afraid of
	Computer Game Shows of the Future

