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What makes neural models different?

� Sequence-to-sequence: train directly on sentence pairs

� No intermediate steps (e.g., alignment): generalizable

� Fluent!
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What makes neural models different?

� Sequence-to-sequence: train directly on sentence pairs

� No intermediate steps (e.g., alignment): generalizable

� Fluent! (Looks better, hard to diagnose errors)

� More popular, seems to work better (with enough data)
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RNNs to the rescueNeural	Machine	Transla/on	(NMT)	

am a student _ Je suis étudiant

Je suis étudiant _

I

5/19/16	 Thang	Luong	-	Neural	Machine	TranslaHon	 15	

•  Recurrent	Neural	Networks:	
– Model	P(target	|	source)	directly.		

– Can	be	trained	end-to-end.	
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•  Recurrent	Neural	Networks:	
– Model	P(target	|	source)	directly.		

– Can	be	trained	end-to-end.	

Boundary	marker	
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RNNs to the rescue

Neural	Machine	Transla/on	(NMT)	

am a student _ Je suis étudiant

Je suis étudiant _

I

Encoder	 Decoder	

•  Recurrent	Neural	Networks:	
– Model	P(target	|	source)	directly.		

– Can	be	trained	end-to-end.	

Boundary	marker	
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Test time . . .

Tes/ng	

•  Feed	the	most	likely	word	
5/19/16	 Thang	Luong	-	Neural	Machine	TranslaHon	 46	
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Test time . . .

Tes/ng	

Simple	beam-search	decoders!	
5/19/16	 Thang	Luong	-	Neural	Machine	TranslaHon	 50	
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Problems

� Out of vocabulary words

� Complicated morphology

� Long sentences
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Problems
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� Complicated morphology: character-level models
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Attention
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Beyond simple models

� Active area of research

� Implementations in all frameworks

� Reinforcement learning is huge component

� Low data

Computational Linguistics: Jordan Boyd-Graber | UMD Machine Translation | 7 / 7


