Sequence Models

Natural Language Processing: Jordan
Boyd-Graber
University of Maryland
LSTMS
Slides adapted from Christopher Olah

The Model of Laughter and Forgetting

- RNN is great: can remember anything
- RNN stinks: remembers everything
- Sometimes important to forget: LSTM

RNN transforms Input into Hidden

(Can be other nonlinearities)

LSTM has more complicated innards

LSTM has more complicated innards

Built on gates!

Gates

- Multiply vector dimension by value in $[0,1]$
- Zero means: forget everything
- One means: carry through unchanged
- LSTM has three different gates

Cell State

Can pass through (memory)

Deciding When to Forget

$$
f_{t}=\sigma\left(W_{f} \cdot\left[h_{t-1}, x_{t}\right]+b_{f}\right)
$$

Based on previous hidden state h_{t-1}, can decide to forget past cell state

Updating representation

Compute new contribution to cell state based on hidden state h_{t-1} and input x_{t}

Updating representation

$$
\begin{aligned}
i_{t} & =\sigma\left(W_{i} \cdot\left[h_{t-1}, x_{t}\right]+b_{i}\right) \\
\tilde{C}_{t} & =\tanh \left(W_{C} \cdot\left[h_{t-1}, x_{t}\right]+b_{C}\right)
\end{aligned}
$$

Compute new contribution to cell state based on hidden state h_{t-1} and input x_{t}. Strength of contribution is i_{t}

Updating representation

$$
C_{t}=f_{t} * C_{t-1}+i_{t} * \tilde{C}_{t}
$$

Interpolate new cell value

Output hidden

$$
\begin{aligned}
o_{t} & =\sigma\left(W_{o}\left[h_{t-1}, x_{t}\right]+b_{o}\right) \\
h_{t} & =o_{t} * \tanh \left(C_{t}\right)
\end{aligned}
$$

Hidden layer is function of cell C_{t}, not h_{t-1}

