Frameworks

Natural Language Processing: Jordan Boyd-Graber
University of Maryland
BACKPROP IN PYTORCH

Simple Model

```
import torch
import torch.nn as nn
class LogisticRegression(nn.Module):
def __init__(self, input_size, num_classes):
    super(LogisticRegression, self).__init__()
    self.linear = nn.Linear(input_size, num_classes)
def forward(self, x):
    out = self.linear(x)
    return out
```


Simple Model

>>> model = LogisticRegression(5, 2)
>>> model.parameters
<bound method Module.parameters of LogisticRegression (
(linear): Linear(in_features=5, out_features=2, bias=True) >
>>> model.linear.weight
Parameter containing:
tensor ([[0.0650, 0.0221, 0.1673, -0.1365, -0.1233], [-0.1289, 0.2455, 0.3255, 0.0409, -0.1908]], rec
>>> model.linear.bias
Parameter containing:
tensor([-0.2208, 0.2562], requires_grad=True)

Where did these numbers come from?

class Bilinear (Module) :

```
r"""Applies a bilinear transformation to the incoming
    :math: 'y = x_1 A x_2 + b'
    """
def reset_parameters(self):
    stdv = 1. / math.sqrt(self.weight.size(1))
    self.weight.data.uniform_(-stdv, stdv)
    if self.bias is not None:
        self.bias.data.uniform_(-stdv, stdv)
```


Where did these numbers come from?

class Bilinear (Module):

```
    r"""Applies a bilinear transformation to the incoming
    :math: 'y = x_1 A x_2 + b'
    " ""
    def reset_parameters(self):
        stdv = 1. / math.sqrt(self.weight.size(1))
        self.weight.data.uniform_(-stdv, stdv)
        if self.bias is not None:
        self.bias.data.uniform_(-stdv, stdv)
```

Beauty and peril of working with something like PyTorch!

Computation Graph and Expressions

- Create basic expressions.
- Combine them using operations.
- Expressions represent symbolic computations.
- Actual computation:
. value()
.npvalue()
.scalar_value()
. cuda()
.forward()

```
#numpy value
    # move to GPU
# compute expression
```


Running Computation Forward

```
>>> x = torch.Tensor(1, 5)
>>> x
tensor([[ 0.0000, -0.0000, 0.0000, -0.0000, 0.0000]])
>>> x = x*0 + 1
>>> x
tensor([[1., 1., 1., 1., 1.]])
>>> model.forward(x)
tensor([[-0.2263, 0.5485]], grad_fn=<ThAddmmBackward>)
```


Modules allow computation graph

- Each module must implement forward function
- If forward function just uses built-in modules, autograd works
- If not, you'll need to implement backward function (i.e., backprop)

Modules allow computation graph

- Each module must implement forward function
- If forward function just uses built-in modules, autograd works
- If not, you'll need to implement backward function (i.e., backprop)
- input: as many Tensors as outputs of module (gradient w.r.t. that output)
- output: as many Tensors as inputs of module (gradient w.r.t. its corresponding input)
- If inputs do not need gradient (static) you can return None

Trainers and Backprop

- Initialize a Optimizer with a given model's parameter
- Get output for an example / minibatch
- Compute loss and backpropagate
- Take step of Optimizer
- Repeat...

Trainers and Backprop

```
optimizer = torch.optim.SGD(model.parameters(),
                        lr=learning_rate)
# Training the Model
for epoch in range(num_epochs):
    for i, (Variable(doc), Variable(label)) in \
    enumerate(train_loader):
    optimizer.zero_grad()
    prediction = model(doc)
    loss = nn.CrossEntropyLoss(prediction, label)
    loss.backward()
    optimizer.step()
```


Options for Optimizers

Adadelta
Adagrad
Adam
LBFGS
SGD

Closure (LBFGS), learning rate, etc.

Key Points

- Create computation graph for each example.
- Graph is built by composing expressions.
- Functions that take expressions and return expressions define graph components.

Word Embeddings and Lookup Parameters

- In NLP, it is very common to use feature embeddings
- Each feature is represented as a d-dim vector
- These are then summed or concatenated to form an input vector
- The embeddings can be pre-trained
- But they are usually trained (fine-tunded) with the model

"feature embeddings"

Word Embeddings

```
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
torch.manual_seed(1)
word_to_ix = {"hello": 0, "world": 1}
embeds = nn.Embedding(2, 5) # 2 words in vocab, 5 dim embe
lookup_tensor = torch.tensor([word_to_ix["hello"]],
                                    dtype=torch.long)
hello_embed = embeds(lookup_tensor)
```

