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Ranked Retrieval

� Order documents by how likely they are to be relevant to the information
need
� Estimate relevance(q,di)
� Sort documents by relevance
� Display sorted results

� User model
� Present hits one screen at a time, best results first
� At any point, users can decide to stop looking

� How do we estimate relevance?
� Assume document is relevant if it has a lot of query terms
� Replace relevance with sim(q,di)
� Compute similarity of vector representations
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Aside: The Importance of Representation

� Central problem in NLP is how to store / represent / query text

� This is almost certainly wrong model . . . hopefully useful
� Modern NLP typically uses vector representations

� What’s the theory
� How do we build them
� How do they connect to other tasks?
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Representing documents

Each document is vector di =



wi ,1, . . .wi ,V

�

(each word is dimension)
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High-Dimensional Space (Heaps’ Law)

V = kDb (1)
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High-Dimensional Space (Heaps’ Law)

V = kDb (1) Vocabulary size
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High-Dimensional Space (Heaps’ Law)

V = kDb (1) Number of documents
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High-Dimensional Space (Heaps’ Law)

V = kDb (1) Constants (per-language, type of document)
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Intuitions

� Term weights consist of two components
� Local: how important is the term in this document?
� Global: how important is the term in the collection?

� Here’s the intuition:
� Terms that appear often in a document should get high weights
� Terms that appear in many documents should get low weights

� How do we capture this mathematically?
� Term frequency (local)
� Inverse document frequency (global)
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tf-idf Term Weighting

wi ,j = fi ,j log
�

D

di

�

(2)

� Word i ’s weight in document j

� Frequency of word i in document j

� Total number of documents

� Number of documents i appears in
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Frequency of Terms (Zipf’s Law)

The most frequent words (“the”) are everywhere but useless for queries.
The most useful words are relatively rare . . . but there are lots of them.

fi =
c

Ri
(3)

� The frequency of a word i is inversly proportional to

� The rank (in frequency) of word

� Scaled by a constant

Can’t just throw out useless words
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Zipf’s Law
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Similarity Metric

� “Angle” between vectors

cos(θ ) =
~dj · ~dk

|~dj || ~dk |
(4)

� More generally, dot (inner) product . . . normalized vectors

sim(dj ,dk) = ~dj · ~dk =
n
∑

i=1

wi ,jwi ,k (5)
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Not just for documents . . .

� Representations central to modern NLP

� Everything’s a vector . . .

� compare everything with cosine / dot products
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