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Ranked Retrieval

= Order documents by how likely they are to be relevant to the information
need

o Estimate relevance(gq, d})
o Sort documents by relevance
o Display sorted results

= User model

o Present hits one screen at a time, best results first
o At any point, users can decide to stop looking

= How do we estimate relevance?

o Assume document is relevant if it has a lot of query terms
o Replace relevance with sim(g, d;)
o Compute similarity of vector representations
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Aside: The Importance of Representation

= Central problem in NLP is how to store / represent / query text

= This is almost certainly wrong model . . . hopefully useful
= Modern NLP typically uses vector representations
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Aside: The Importance of Representation

= Central problem in NLP is how to store / represent / query text
= This is almost certainly wrong model . .. hopefully useful

= Modern NLP typically uses vector representations

o What'’s the theory
o How do we build them
o How do they connect to other tasks?
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Representing documents
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Each document is vector d; = <w,-,1 yeee w,-,v> (each word is dimension)
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High-Dimensional Space (Heaps’ Law)
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High-Dimensional Space (Heaps’ Law)

. k=44
' b = 0.49

H
g
= First 1,000,020 terms:
Predicted = 38,323
= Actual = 38,365
|IJ 2 4 6 8
og10 T

V = kD (1) Constants (per-language, type of document)
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Intuitions

= Term weights consist of two components

o Local: how important is the term in this document?
o Global: how important is the term in the collection?

= Here’s the intuition:

o Terms that appear often in a document should get high weights
o Terms that appear in many documents should get low weights

= How do we capture this mathematically?

o Term frequency (local)
o Inverse document frequency (global)
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tf-idf Term Weighting

D
w;; = f; jlog 7 @)
1

Word i’s weight in document j
= Frequency of word i in document j

Total number of documents

Number of documents i appears in
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Frequency of Terms (Zipf’s Law)

The most frequent words (“the”) are everywhere but useless for queries.
The most useful words are relatively rare .. . but there are lots of them.

c
=2
Ri
= The frequency of a word i is inversly proportional to

= The rank (in frequency) of word
= Scaled by a constant

Can't just throw out useless words
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Zipf’s Law

Zipf's Law in the Universal Declaration of Human Rights

Languages (word count)
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Similarity Metric

= “Angle” between vectors
d-d,

= @)
|cjl|akl

= More generally, dot (inner) product ... normalized vectors

cos(60)

n
sim(d), di) = dj dfe = D wy Wi 6)

=1
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Not just for documents ...

= Representations central to modern NLP
= Everything’s a vector ...
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Not just for documents ...

= Representations central to modern NLP
= Everything’s a vector ...
= compare everything with cosine / dot products
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