
Yuening Hu, Jordan Boyd-Graber, Brianna Satinoff, and Alison Smith. Interactive Topic Modeling. Ma-
chine Learning, 2014, 56 pages.

@article{Hu:Boyd-Graber:Satinoff:Smith-2014,
Title = {Interactive Topic Modeling},
Author = {Yuening Hu and Jordan Boyd-Graber and Brianna Satinoff and Alison Smith},
Journal = {Machine Learning},
Url = {http://umiacs.umd.edu/~jbg//docs/2014_mlj_itm.pdf},
Year = {2014},
Volume = {95},
Pages = {423--469},
Publisher = {Springer},
}

Links:

• Journal [http://dx.doi.org/10.1007/s10994-013-5413-0]
• Frontend Code [http://www.cs.umd.edu/~ynhu/code/itm-release.zip]
• Backend Code [http://www.cs.umd.edu/~ynhu/code/tree-TM.zip]

Downloaded from http://umiacs.umd.edu/~jbg/docs/2014_mlj_itm.pdf

Contact Jordan Boyd-Graber (jbg@boydgraber.org) for questions about this paper.

1

https://scholar.google.com/citations?user=mO_62fQAAAAJ&hl=en
http://alisonmsmith.github.io/
http://umiacs.umd.edu/~jbg//docs/2014_mlj_itm.pdf
http://dx.doi.org/10.1007/s10994-013-5413-0
http://dx.doi.org/10.1007/s10994-013-5413-0
http://www.cs.umd.edu/~ynhu/code/itm-release.zip
http://www.cs.umd.edu/~ynhu/code/itm-release.zip
http://www.cs.umd.edu/~ynhu/code/tree-TM.zip
http://www.cs.umd.edu/~ynhu/code/tree-TM.zip
http://umiacs.umd.edu/~jbg/docs/2014_mlj_itm.pdf


Noname manuscript No.
(will be inserted by the editor)

Interactive Topic Modeling

Yuening Hu · Jordan Boyd-Graber ·
Brianna Satinoff · Alison Smith

Received: date / Accepted: date

Abstract Topic models are a useful and ubiquitous tool for understanding
large corpora. However, topic models are not perfect, and for many users in
computational social science, digital humanities, and information studies—who
are not machine learning experts—existing models and frameworks are often a
“take it or leave it” proposition. This paper presents a mechanism for giving users
a voice by encoding users’ feedback to topic models as correlations between
words into a topic model. This framework, interactive topic modeling (ITM),
allows untrained users to encode their feedback easily and iteratively into the
topic models. Because latency in interactive systems is crucial, we develop
more efficient inference algorithms for tree-based topic models. We validate
the framework both with simulated and real users.
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1 Introduction

Understanding large collections of unstructured text remains a persistent
problem.1 Unlike information retrieval, where users know what they are looking
for, sometimes users need to understand the high-level themes of a corpus and
explore documents of interest. Topic models offer a formalism for exposing
a collection’s themes and have been used to aid information retrieval (Wei
and Croft, 2006), understand scientific ideas (Hall et al, 2008), and discover
political perspectives (Paul and Girju, 2010). Topic models have also been
applied outside text to learn natural scene categories in computer vision (Li Fei-
Fei and Perona, 2005); discover patterns in population genetics (Shringarpure
and Xing, 2008); and understand the connection between Bayesian models and
cognition (Landauer et al, 2006; Griffiths et al, 2007).

Topic models, exemplified by latent Dirichlet allocation (Blei et al, 2003),
are attractive because they discover groups of words that often appear together
in documents. These are the namesake “topics” of topic models and are
multinomial distributions over the vocabulary words.2 The words which have
the highest probability in a topic evince what a topic is about. In addition, each
document can be represented as an admixture of these topics, a low-dimensional
shorthand for representing what a document is about.

The strength of topic models is that they are unsupervised. They do not
require any a priori annotations. The only input a topic model requires is the
text divided into documents and the number of topics you want it to discover,
and there are also models and heuristics for selecting the number of topics
automatically (Teh et al, 2006).

This is clearer with an example. A “technology”3 topic has high probability
for the words “computer, technology, system, service, site, phone, internet,
machine”; a topic about “arts” has high probability for the words “play, film,
movie, theater, production, star, director, stage”. These topics are “good” topics
since they have semantic coherence, which means the top words are meaningful
enough for users to understand the main theme of this topic. Judging “good”
topics is not entirely idiosyncratic; Chang et al (2009) showed that people
mostly agree on what makes a good topic.

However, despite what you see in topic modeling papers, the topics discov-
ered by topic modeling do not always make sense to end users. From the users’
perspective, there are often “bad” topics. These bad topics can confuse two or
more themes into one topic; two different topics can be (near) duplicates; and
some topics make no sense at all. This is a fundamental problem, as even if

1 This work significantly revises, extends, and synthesizes our previous work (Hu et al,
2011; Hu and Boyd-Graber, 2012a,b).

2 To avoid confusion, we distinguish Platonic exemplars between words themselves (“words”
or “word types”) and instances of those words used in context (“tokens”).

3 Topic models do not name the topics that they discover; for discussion, it’s convenient to
talk about topics as if they were named. Automatic techniques for labeling (Lau et al, 2011)
exist, however. In addition, we underline the topic names to distinguish these abstractions
from the actual words in a topic, which are in quotes.
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everything went perfectly, the objective function that topic models optimize
does not always correlate with human judgments of topic quality (Chang et al,
2009). A closely related issue is that topic models—with their bag-of-words
vision of the world—sometimes simply lack the information needed to create
the topics end-users expect.

There has been a thriving thread of research to make topic models better
fit users’ expectations by adding more and more information to topic models,
including modeling perspective (Paul and Girju, 2010; Lin et al, 2006), syn-
tax (Gruber et al, 2007; Wallach, 2006), authorship (Rosen-Zvi et al, 2004;
Dietz et al, 2007), etc. That there is such an effort also speaks to a weakness of
topic models. While topic models have captured the attention of researchers in
digital humanities (Nelson, 2010; Meeks, 2011; Drouin, 2011; Templeton, 2011)
and information retrieval (Wei and Croft, 2006), for users who are not machine
learning experts, topic models are often a “take it or leave it” proposition.
There is no understandable, efficient, and friendly mechanism for improving
topic models. This hampers adoption and prevents topic models from being
more widely used.

We believe that users should be able to give feedback and improve topic
models without being machine learning experts, and that this feedback should
be interactive and simple enough to allow these non-expert users to craft
models that make sense for them. This is especially important for users, such as
those in social science, who are interested in using topic models to understand
their data (Hopkins, 2012; Grimmer, 2010), and who have extensive domain
knowledge but lack the machine learning expertise to modify topic modeling
algorithms. In Section 2, we elaborate our user-centric manifesto for
interactive topic models (ITM) and give two examples of how users can use
topic models that adapt to meet their needs and desires.

For example, consider a political scientist who must quickly understand
a single US congress’s action on “immigration and refugee issues” over a two-
year congressional term. She does not have the time to read every debate
and every bill; she must rely on automated techniques to quickly understand
what is being discussed. Topic modeling can partially answer her questions,
but political scientists often want to make distinctions that are not easily
encoded in topic models. For instance, the Policy Agendas Codebook,4 a
common mechanism for analyzing the topical content of political discourse, sep-
arates “immigration” into “migrant and seasonal workers, farm labor issues”
and “immigration and refugee issues”. If our political scientist is faced with
a topic model that conflates “migrant and seasonal workers, farm labor issues”
and “immigration and refugee issues” into a single “immigration” topic, her
investigation using topic models ends there, and she must turn to—for example—
supervised techniques (Boydstun et al, 2013). Interactive topic modeling allows
her research with topic models to continue. We will return to this example
throughout the paper.

4 http://www.policyagendas.org/page/topic-codebook
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We address the political scientist’s dilemma through three major contri-
butions: proposing a mechanism for interactive refinement of topic models,
extending Yao et al (2009)’s SparseLDA to tree-based topic models, and
evaluating the efficacy of interactive topic modeling. In addition, we generalize
Andrzejewski et al (2009)’s tree-based topic model to encode more general
correlations and propose techniques to automatically suggest constraints for
interactive topic modeling. We summarize these contributions further in the
following paragraphs, which also outline the article’s contents.

First, we need a mechanism for encoding user feedback into interactive topic
modeling. We focus on one specific kind of knowledge—the correlations among
words within a topic (Petterson et al, 2010)—that can create topics that improve
topic coherence (Newman et al, 2009, 2010; Mimno et al, 2011). We focus
on tree-structured priors (Boyd-Graber et al, 2007; Andrzejewski et al, 2009;
Jagarlamudi and Daumé III, 2010; Ó Séaghdha and Korhonen, 2012), which
are appealing because tree-based priors preserve conjugacy, making inference
using Gibbs sampling (Heinrich, 2004) straightforward. In Section 3, we review
tree-structured priors for topic models, including the generative process,
how to model the correlations into the prior of topic models, and the inference
scheme with mathematical derivations and discussions.

Effectively incorporating feedback into models allows users to understand
the underlying modeling assumptions. In this influential treatise, The Design
of Everyday Things, Norman (2002) argues that systems must afford quick,
consistent feedback to user inputs for users to build mental models of how
complicated systems function. Because the efficiency of inference is so critical to
aiding user interactivity (Ceaparu et al, 2004), we propose an efficient tree-
based topic modeling framework, and show that it dramatically improves
the efficiency of inference (Section 4).

Once we have encoded the insights and needs from a user, the next step is
to support interactivity. In Section 5, we describe the mechanics underneath
our interactive topic modeling framework, which retains aspects of a topic
model that a user is satisfied with but relearns the aspects the user is not
satisfied with. We investigate several techniques for incorporating user feedback
that draw on techniques from online learning by treating user feedback as
additional data we must learn from.

We then examine how users can use these models to navigate and
understand datasets (Section 6). We show that our model can accommodate
diverse users in a crowdsourced evaluation on general-interest data and can also
help users in a task inspired by computational social science: quickly sifting
through political discourse—an attempt to recreate the situation of a political
scientist studying “immigration and refugee issues” in a laboratory setting.

We additionally propose techniques to suggest and guide users dur-
ing the interactive topic modeling process in Section 7. Section 8 concludes
with a discussion of how interactive topic modeling can be applied to social
science applications, data beyond text, and larger data.
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2 How Users Can Benefit from Interactive Topic Models

Users of topic models are the ultimate judge of whether a topic is “good” or
“bad”. In this section, we discuss what it means to have effective topic models,
effective topic modeling software, and how these technologies interact with
users. After identifying a set of goals that interactive topic models should fulfill,
we present two real scenarios where interactive topic models can help a user
cope with a surfeit of data.

Are you a good topic or a bad topic? A user might echo one of the many
complaints lodged against topic models: these documents should have similar
topics but do not (Daumé III, 2009); this topic should have syntactic coher-
ence (Gruber et al, 2007; Boyd-Graber and Blei, 2008); this topic makes no
sense at all (Newman et al, 2010); this topic shouldn’t be associated with this
document but is (Ramage et al, 2009); these words shouldn’t be the in same
topic but are (Andrzejewski et al, 2009); or these words should be in the same
topic but are not (Andrzejewski et al, 2009).

Many of these complaints can be corrected by encouraging topic models
through correlations. Good topics can be encouraged by having correlations
that link together words the model separated. A bad topic can be discouraged
by correlations that split topic words that should not have been together. This
is the approach of Andrzejewski et al (2009), who used tree-based priors (Boyd-
Graber et al, 2007) to encode expert correlations on topic models. A nice
property of these correlations is that they form “soft” constraints for the
model, which means the results will match users’ expectations if and only if
the correlations are supported by the underlying statistical model of the text
(For an example of when data override correlations, see the “Macintosh” vs.
“Windows” discussion in Section 6.2).

Moreover, Andrzejewski et al (2009)’s assumption of a priori correlations
is inefficient. Users attempting to curate coherent topics need to see where the
topic models go wrong before they can provide useful feedback. This suggests
that topic models should be interactive—users should be able to see the
output, give feedback, and continue refining the output.

Another reason to prefer an interactive process is that users invest effort in
understanding the output of a topic model. They might look at every topic
to determine which topics are good and which are bad. After a user gives
feedback, a model should not throw away the topics the user did not have a
problem with. This saves user cognitive load, will lead to a faster end-result by
not relearning acceptable topics, and can perhaps improve overall quality by
maintaining topics that are acceptable to users.

Additionally, any model involving interaction with users should be as
computationally efficient as possible to minimize users’ waiting time. In
particular, Thomas and Cook (2005), summarizing a decade of human-computer
interaction research, argue that a system should respond to a user on the order
of one second for a simple response, such as clicking a web link, and on the order
of ten seconds for a response from a complex user-initiated activity. For an



6 Hu, Boyd-Graber, Satinoff, and Smith

iterative model, this requirement demands that we make inference as efficient
as possible and to minimize the total number of iterations.

To summarize, we want a system that can help users who may or may not
have prior knowledge of topic modeling, such as a news reporter or political
analyst, to obtain or update topics easily, and this system should be:

– Simple enough to allow novices to encode feedback and update topics
– Fast enough to get the updates quickly
– Flexible enough to update the topics iteratively
– “Smart” enough to keep the “good” topics and improve the “bad” topics

We use Andrzejewski et al (2009)’s tree-structured correlations to meet
the first requirement and combine it with a framework called interactive topic
modeling (ITM) to satisfy the other three requirements.

Before discussing the details of how our interactive topic modeling (ITM)
works, we begin with two examples of a system that meets the above require-
ments. While we gloss over the details of our interactive topic modeling system
for now, these examples motivate why a user might want an interactive system.

2.1 Example A: Joining Two Topics Separated by a Näıve Topic Model

For the first task, we used a corpus of about 2000 New York Times editorials
from the years 1987 to 1996. We started by finding 20 initial topics using latent
Dirichlet allocation (Blei et al, 2003, LDA), as shown in Table 1 (left). In the
sequel, we will refer to this model as “vanilla LDA” as it lacks any correlations
and embellishments from users.

Topic 1 and Topic 20 both deal with “Russia” (broadly construed). Topic 20
is about the “Soviet Union”, but Topic 1 focuses on the development of the
democratic, capitalist “Russian Federation” after the collapse of the Soviet
Union. This might be acceptable for some users; other users, however, may
view both as part of a single historical narrative.

At this point, two things could happen. If the user was not a machine
learning expert, they would throw their hands up and assume that topic
modeling is not an appropriate solution. A machine learning expert would sit
down and come up with a new model that would capture these effects, such as
a model where topics change (Wang et al, 2008).

However, both of these outcomes are suboptimal for someone trying to
understand what’s going on in this corpus right now. Our system for creating
interactive topic models allows a user to create a positive correlation with all of
the clearly “Russian” or “Soviet” words ({“boris”, “communist”, “gorbachev”,
“mikhail”, “russia”, “russian”, “soviet”, “union”, “yeltsin”}, shown in red and
blue in Table 1). This yields the topics in Table 1 (right).5 The two “Russia”
topics were combined into Topic 20. This combination also pulled in other

5 Technical details for this experiment that will make sense later: this runs inference
forward 100 iterations with tree-based topic model (Section 3 and 4) and doc ablation
strategy discussed in Section 5.
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relevant words that are not near the top of either topic before: “moscow” and
“relations”(green in Topic 20, right). Topic 20 concerns the entire arc of the
transition from the “Soviet Union” to the “Russian Federation”, and Topic 1
is now more about “democratic movements” in countries other than Russia.
The other 18 topics stay almost the same, allowing our hypothetical user to
continue their research.

Topic Words

1

election, yeltsin, russian, politi-
cal, party, democratic, russia, pres-
ident, democracy, boris, country,
south, years, month, government,
vote, since, leader, presidential, mil-
itary

2

new, york, city, state, mayor, bud-
get, giuliani, council, cuomo, gov,
plan, year, rudolph, dinkins, lead,
need, governor, legislature, pataki,
david

3

nuclear, arms, weapon, defense,
treaty, missile, world, unite, yet,
soviet, lead, secretary, would, con-
trol, korea, intelligence, test, na-
tion, country, testing

4

president, bush, administration,
clinton, american, force, reagan,
war, unite, lead, economic, iraq,
congress, america, iraqi, policy,
aid, international, military, see

...

20

soviet, lead, gorbachev, union,
west, mikhail, reform, change,
europe, leaders, poland, commu-
nist, know, old, right, human,
washington, western, bring, party

Topic Words

1

election, democratic, south, coun-
try, president, party, africa, lead,
even, democracy, leader, presiden-
tial, week, politics, minister, per-
cent, voter, last, month, years

2

new, york, city, state, mayor, bud-
get, council, giuliani, gov, cuomo,
year, rudolph, dinkins, legislature,
plan, david, governor, pataki, need,
cut

3

nuclear, arms, weapon, treaty, de-
fense, war, missile, may, come, test,
american, world, would, need, lead,
get, join, yet, clinton, nation

4

president, administration, bush,
clinton, war, unite, force, reagan,
american, america, make, nation,
military, iraq, iraqi, troops, in-
ternational, country, yesterday,
plan

...

20

soviet, union, economic, reform,
yeltsin, russian, lead, russia, gor-
bachev, leaders, west, president,
boris, moscow, europe, poland,
mikhail, communist, power, rela-
tions

Table 1 Five topics from 20 topics extracted topic model on the editorials from the New
York times before adding a positive correlation (left) and after (right). After the correlation
(words in red and blue on left) was added, which encouraged Russian and Soviet terms to
be in the same topic (in red and blue), non-Russian terms gained increased prominence in
Topic 1 (in green), and “Moscow” (which was not part of the correlation) appeared in Topic
20 (in green).

2.2 Example B: Splitting a Topic with Mixed Content

The National Institutes of Health (NIH), America’s foremost health-research
funding agency, also has challenging information needs. They need to under-
stand the research that they are funding, and they use topic modeling as
one of their tools (Talley et al, 2011). After running a 700-topic topic model,
an informant from the NIH reported that Topic 318 conflated two distinct
concepts: the “urinary system” and the “nervous system”, shown on the left
of Table 2.
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This was unsatisfactory to the users, as these are discrete systems and
should not be combined. To address this error, we added a negative correlation
between “bladder” and “spinal cord” and applied our model to update their
results. Then, Topic 318 was changed to a topic about “motor nerves” only
(as shown on the right of Table 2): in addition to “bladder”, other words
associated with the urinary system disappeared; the original words related
with “spinal cord” all remained in the same topic; and more related words (in
green)—“injured”, “plasticity” and “locomotor”—appeared in this topic. The
updated topic matched with NIH experts’ needs.

These two real-world examples show what is possible with ITM. More
specifically, they show that topic models do not always satisfy users’ needs;
effective topic modeling requires us to provide frameworks to allow users to
improve the outputs of topic models.

Topic Words

318

bladder, sci, spinal cord,
spinal cord injury, spinal, urinary,
urinary tract, urothelial,injury,
motor, recovery, reflex, cervical,
urothelium, functional recovery

Topic Words

318

sci, spinal cord, spinal cord injury,
spinal, injury, recovery, motor,
reflex, urothelial, injured, func-
tional recovery, plasticity, locomo-
tor, cervical, locomotion

Table 2 One topic from 700 topics extracted by topic model on the NIH proposals before
(left) adding a negative correlation (between “bladder” and “spinal cord”) and after (right).
After the correlation was added to push urinary system terms (red) away from the motor
nerves terms (blue), most urinary terms went away (red), and some new terms related with
motor nerves appeared (green).

2.3 Improvement or Impatience?

The skeptical reader might wonder if the issues presented above are problems
that are being solved by interactive topic modeling. It could be merely that
users are impatient and are looking at topic models before they are fully
converged. If this is the case, then interactive topic modeling is only a placebo
that makes users feel better about their model. The result is that they run
inference longer, and end up at the same model. In fact, interactive topic
models can do more.

From users’ perspective, topic models are often used before the models
converge: not only because users despise waiting for the results of inference,
but also because normal users, non-machine learning experts, lack the intuition
and tools to determine whether a model has converged (Evans, 2013). Thus
interactive topic modeling might encourage them to more effectively “buy
in” to the resulting analysis, as users have more patience when they are
actively involved in the process (Bendapudi and Leone, 2003; Norman, 1993).
As machine learning algorithms enter mainstream use, it is important not to
overlook the human factors that connect to usage and adoption.
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From models’ perspective, interactive topic modeling allows models to
converge faster than they would otherwise. As we show in Section 7.2,
interactivity can improve ill-formed topics faster than through additional
rounds of inference alone.

In addition, interactive topic models can also allow users to escape from
local minima. For example, the example from Section 2.2 was obtained from
an inference run after tens of thousands of iterations that, by all traditional
measures of convergence, was the best answer that could be hoped for. By
adding correlations, however, we discover topics that are more coherent and
escape from local minima (Section 2.2).

3 Tree-based Topic Models

Latent Dirichlet Allocation (LDA) discovers topics—distributions over words—
that best reconstruct documents as an admixture of these topics. This section
begins by reviewing vanilla LDA. Starting with this simple model also has the
advantage of introducing terminology we’ll need for more complicated topic
models later.

Because vanilla LDA uses a symmetric Dirichlet prior for all words, it
ignores potential relations between words.6 This lacuna can be addressed
through tree-based topic models, which we review in this section. We describe
the generative process for tree-based topic models and show how that generative
process can, with appropriately constructed trees, encode feedback from users
for interactive topic modeling.

3.1 Background: Vanilla LDA

We first review the generative process of vanilla LDA with K topics of V
words (Blei et al (2003) and Griffiths and Steyvers (2004) offer more thorough
reviews):

– For each topic k = {1 . . .K}
– draw a V−dimensional multinomial distribution over all words: πk ∼

Dirichlet(β)
– For each document d

– draw a K−dimensional multinomial distribution that encodes the prob-
ability of each topic appearing in the document: θd ∼ Dirichlet(α)

– for nth token w of this document d
• draw a topic zd,n ∼ Mult(θd)
• draw a token wd,n|zd,n = k, π ∼ Mult(πk)

6 Strictly speaking, all pairs of words have a weak negative correlation when a Dirichlet
is a sparse prior. However, the semantics of the Dirichlet distribution preclude applying
negative correlation to specific words.
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where α and β are the hyperparameters of the Dirichlet distribution. Given
observed documents, posterior inference discovers the latent variables that best
explain an observed corpus.

However, the generative process makes it clear that LDA does not know what
individual words mean. Tokens are mere draws from a multinomial distribution.
LDA, by itself, has no way of knowing that a topic that gives high probability
to “dog” and “leash” should also, all else being equal, also give high probability
to “poodle”. That LDA discovers interesting patterns in its topic is possible
due to document co-occurrence. Any semantic or syntactic information not
captured in document co-occurrence patterns will be lost to LDA.

3.2 Tree-structured Prior Topic Models

To correct this issue, we turn to tree-structured distributions. Trees are a
natural formalism for encoding lexical information. WordNet (Miller, 1990),
a resource ubiquitous in natural language processing, is organized as a tree
based on psychological evidence that human lexical memory is also represented
as a tree. The structure of WordNet inspired Abney and Light (1999) to
use tree-structured distributions to model selectional restrictions. Later, Boyd-
Graber et al (2007) also used WordNet as a tree structure and put it into a
fully Bayesian model for word sense disambiguation. Andrzejewski et al (2009)
extended this statistical formalism to encode “must link” (positive correlations)
and “cannot link” (negative correlations) correlations from domain experts.

We adopt Andrzejewski et al (2009)’s formalism for these two correlations
to encode feedback to topic models. The first are positive correlations (PC),
which encourage words to appear in the same topic; the second are the negative
correlations (NC), which push words into different topics. In the generative
story, words in positive correlations have high probability to be selected in
the same topic. For example, in Figure 1, “drive” and “ride” are positively
correlated and they both have high probability to be selected in Topic 1, while
“drive” and “thrust” are both likely to be drawn in Topic 2. On the other hand,
if two words are negatively correlated, when one word has high probability to
appear in one topic (“space” in Topic 1 in Figure 1), the other word turns to
unlikely be selected in the same topic (“tea” in Topic 1 in Figure 1).

These tree-structured distributions replace multinomial distributions for
each of the K topics. Instead, we now have a set of multinomial distributions
arranged in a tree (we will go deeper and describe the complete generative
process that creates these distributions soon). Each leaf node is associated with
a word, and each of the V words must appear in at least (and possibly more
than) one leaf node.

One tree structure that satisfies this definition as a very flat tree with only
one internal node with V leaf nodes, a child for every word. This is identical
to vanilla LDA, as there is only a one V -dimensional multinomial distribution
for each topic. The generative process for a token is simple: generate a word
according to wd,n ∼ Mult(πzd,n,root).
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......

Doc1
Topic  
Path
Token

T1
n0    n2    n7
drive

T1
n0    n2    n8
ride

T2
n0    n3
movie

T1
n0    n1    n6
space

T1
n0    n2    n7
drive

...

......

...

β12β12β1 2β1

β2β3
1

0

β3 movie

tea   space  drive    ride        drive    thrust

β2 β2 β2
2 3

5

4

6 7 8 9 10

0.3 0.689 0.01 0.001

0.0003  0.2997 0.3445 0.3445         0.0004  0.0006

0.1 0.001 0.099 0.8

0.0999 0.0001  0.0006 0.0004   0.3920    0.4080

Topic 1 Topic 2

prior

draw multinomial distributions

Doc2
Topic  
Path
Token

T2
n0    n4    n9
drive

T2
n0    n4    n10
thrust

T1
n0    n3
movie

T2
n0    n1    n5
tea

T2
n0    n4    n10
thrust

...

......

tea   space  drive    ride movie  drive  thrust tea    space  drive  ride movie drive  thrust

Fig. 1 Example of the generative process for drawing topics (first row to second row) and
then drawing token observations from topics (second row to third row). In the second row,
the size of the children nodes represents the probability in a multinomial distribution drawn
from the parent node with the prior in the first row. Different hyperparameter settings shape
the topics in different ways. For example, the node with the children “drive” and “ride” has
a high transition prior β2, which means that a topic will always have nearly equal probability
for both (if the edge from the root to their internal node has high probability) or neither (if
the edge from the root to their internal node has low probability). However, the node for
“tea” and “space” has a small transition prior β3, which means that a topic can only have
either “tea” or “space”, but not both. To generate a token, for example the first token of
doc1 with topic indicator z0,0 = 1, we start at the root of topic 1: first draw a child of the
root n0, and assume we choose the child n2; then continue to draw a child of node n2, and
we reach n7, which is a leaf node and associated with word “drive”.

Now consider the non-degenerate case. To generate a token wd,n from topic
k, we traverse a tree path ld,n, which is a list of nodes starting at the root: we
start at the root ld,n[0], select a child ld,n[1] ∼ Mult(πk,ld,n[0]); if the child is
not a leaf node, select a child ld,n[2] ∼ Mult(πk,ld,n[1]); we keep selecting a child
ld,n[i] ∼ Mult(πk,ld,n[i−1]) until we reach a leaf node, and then emit the leaf’s
associated word. This walk along the tree, which we represent using the latent
variable ld,n, replaces the single draw from a topic’s multinomial distribution
over words. The rest of the generative process remains the same as vanilla LDA
with θd, the per-document topic multinomial, and zd,n, the topic assignment
for each token. The topic assignment zd,n selects which tree generates a token.

The multinomial distributions themselves are also random variables. Each
transition distribution πk,i is drawn from a Dirichlet distribution parameterized
by βi. Choosing these Dirichlet priors specifies the direction (i.e., positive or
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negative) and strength of correlations that appear. Dirichlet distributions
produce sparse multinomials when their parameters are small (less than one).
This encourages an internal node to prefer few children. When the Dirichlet’s
parameters are large (all greater than one), it favors more uniform distributions.

Take Figure 1 as an example. To generate a topic, we draw multinomial
distributions for each internal node. The whole tree gives a multinomial distri-
bution over all paths for each topic. For any single multinomial distribution,
the smaller the Dirichlet hyperparameter is, the more sparsity we get among
children. Thus, any paths that pass through such a node face a “bottleneck”,
and only one (or a few) child will be possible choices once a path touches a node.
For example, if we set β3 to be very small, “tea” and “space” will not appear
together in a topic. Conversely, for nodes with a large hyperparameter, the
path is selected almost as if it were chosen uniformly at random. For example,
“drive” and “thrust” are nearly equally likely once a path reaches Node 4.

In Figure 1, words like “movie” are connected to the root directly, while
words like “drive” and “thrust” are connected through an internal node, which
indicates the correlation between words. In the next subsection, we show how
these trees can be constructed to reflect the desires of users to make topic
modeling more interactive.

3.3 Encoding Correlations into a Tree

So how do we go from user feedback, encoded as correlations (an unordered
set of words with a direction of correlations) to a final tree? Any correlations
(either positive or negative) without overlapping words can easily be encoded
in a tree. Imagine the symmetric prior of the vanilla LDA as a very flat tree,
where all words are children of the root directly with the same prior, as shown
in Figure 2 (top). To encode one correlation, replace all correlated words with
a single new child node of the root, and then attach all the correlated words
children of this new node. Figure 2 (left middle) shows how to encode a positive
correlation between “constitution” and “president”.

When words overlap in different correlations, one option is to treat them
separately and create a new internal node for each correlation. This creates
multiple paths for each word. This is often useful, as it reflects that tokens of
the same word in different contexts can have different meanings. For example,
when “drive” means a journey in a vehicle, it is associated with “ride”, but
when “drive” refers to the act of applying force to propel something, it is more
connected with “thrust”. As in lexical resources like WordNet (Miller, 1990),
the path of a word in our tree represents its meaning; when a word appears in
multiple correlations, this implies that it has multiple meanings. Each token’s
path represents its meaning.

Another option is to merge correlations. For positive correlations, this means
that correlations are transitive. For negative correlations, it is a little more
complex. If we viewed negative correlations as completely transitive—placing
all words under a sparse internal node—that would mean that only one of the
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Fig. 2 Given a flat tree (Left top) as in vanilla LDA (with hyperparameter β = 0.01 for
the uncorrelated words), examples for adding single/multiple positive(in green)/negative(in
red) correlations into the tree: generate a graph; detect the connected components; flip
the negative edges of components; then detect the cliques; finally construct a prior tree.
Left middle: add one positive correlation, connect “constitution” and “president” to a new
internal node, and then link this new node to the root, set β2 = 100; Left bottom: add two
negative correlations, set β3 = 10−6 to push “tea” away from “nasa” and “space”, and use
β1 = 0.01 as the prior for the uncorrelated words “nasa” and “space”. Right: two positive
correlations and two negative correlations. A positive correlation between “shuttle” and
“space” while a negative correlation between “tea” and “space”, implies a negative correlation
between “shuttle” and “tea”, so “nasa”, “space”, “shuttle” will all be pushed away from
“tea”; {“space”, “shuttle”} and {“constitution”, president”} are pulled together by β2.

words could appear in a topic. Taken to the illogical extreme where every word
is involved in a negative correlation, each topic could only have one word.

Instead, for negative correlations, Andrzejewski et al (2009) view the nega-
tive correlations among words as a correlation graph; each word is a node
and an edge is a negative correlation a user wants represented by the final
tree structure. To create a tree from this graph, we find all the connected
components (Harary, 1969; Hopcroft and Tarjan, 1973) in the graph, and then
for each component, we run the Bron and Kerbosch (1973) algorithm to find
all the cliques (a clique is a subset of vertices where every two vertices are
connected by an edge) on the complement of the component (where nodes
without an edge in the primal graph are connected in the complement and
vice versa). To construct the tree, each component will be a child of the root
and each clique will be child of the component. This whole process is shown
with examples in Figure 2 (bottom left): if we want to split “tea” and “space”,
“tea” and “nasa” at the same time (Figure 2), one graph component has three
nodes for “tea”, “space” and “nasa” and two edges between “tea” and “space”,
“tea” and “nasa”. After flipping the edges, there is only one edge left, which
is between “space” and “nasa”. So there are two cliques in this component:
one includes “space” and “nasa”, and the other is “tea”, and the tree can be
constructed as Figure 2 (left bottom).
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Figure 2 (right) shows a more complex example when there are overlapping
words between positive and negative correlations. We first extract all the
connected components; for components with negative edges, we do a flip
(remove the negative edges, and add all possible normal edges); remove the
unnecessary edges: in Figure 2, there should be a normal edge between “tea”
and “shuttle”, but “tea” should be away from “space”, while “space” and
“shuttle” have a positive edge, so the edge between “tea” and “shuttle” is
removed; then we detect all the cliques, and construct the prior tree as shown
in Figure 2 (right).

3.4 Relationship to Other Topic Models

Similarly like Pachinko allocation (Li and Mccallum, 2006) and hierarchical
LDA (Blei et al, 2007), tree-structured topic models add additional structure
to topics’ distributions over words, allowing subsets of the vocabulary to cluster
together and expose recurring subtopics. However, tree-structured topic models
add structure on individual groups of words (not the entire vocabulary) and
are derived from an external knowledge source.

This same distinction separates tree-structured topic models from Polya
urn model (Mimno et al, 2011), although their goals are similar. While Polya
urn model does provide additional correlations, these correlations are learned
from data and are not restricted to sets of words. Another related model uses
Polya trees (Lavine, 1992). Like the tree-based topic models, Polya tree also
provides a prior tree structure, which imposes a Beta prior on the children and
generates binary trees. The tree-based topic models generalize the concept by
allowing a “bushier” tree structure.

Adding correlations to topic models can come to either the vocabulary
distribution (topics) or the document distribution over topics (allocation),
as in correlated topic models (Blei and Lafferty, 2005; Mimno et al, 2008)
and Markov random topic fields (Daumé III, 2009). While correlated topic
models add a richer correlation structure, they have been shown not to improve
perceived topic coherence (Chang et al, 2009).

3.5 Inference

We use Gibbs sampling for posterior inference (Neal, 1993; Resnik and Hardisty,
2010) to uncover the latent variables that best explain observed data. For vanilla
LDA, the latent variables of interest are the topics, a document’s distribution
over topics, and the assignment of each token to a topic.

Gibbs sampling works by fixing all but one latent variable assignment and
then sampling that latent variable assignment from the conditional distribution
of holding all other variables fixed. For vanilla LDA, a common practice
is to integrate out the per-document distribution over topics and the topic
distribution over words. Thus, the only latent variable left to sample is the
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per-token topic assignment (Griffiths and Steyvers, 2004),

p(zd,n = k|Z−, wd,n) ∝ (αk + nk|d)
β + nwd,n|k
βV + n·|k

(1)

where d is the document index, and n is the token index in that document,
nk|d is topic k’s count in the document d; αk is topic k’s prior; Z− are the
topic assignments excluding the current token wd,n; β is the prior for word
wd,n; nwd,n|k is the count of tokens with word wd,n assigned to topic k; V is
the vocabulary size, and n·|k is the count of all tokens assigned to topic k.

For inference in tree-based topic models, the joint probability is

p(Z,L,W, π, θ;α, β) = (2)
∏

k

∏

i

p(πk,i|βi)︸ ︷︷ ︸
transition

[∏

d

p(θd|α)
[∏

n

p(zd,n|θd)︸ ︷︷ ︸
assignment

p(ld,n|π, zd,n)︸ ︷︷ ︸
path

p(wd,n|ld,n)︸ ︷︷ ︸
token

]]
,

where i is an internal node in the tree. The probability of a path, p(ld,n|π, zd,n),
is the tree structured walk described in Section 3.2, and the probability of a
token being generated by a path, p(wd,n|ld,n) is one if the path ld,n terminates
at leaf node with word wd,n and zero otherwise.

Because the conjugate prior of the multinomial is the Dirichlet, we can
integrate out the transition distributions π and the per-document topic distri-
butions θ in the conditional distribution

p(zd,n = k, ld,n = λ|Z−,L−,W;α, β) (3)

=
p(zd,n = k, ld,n = λ,Z−,L−, wd,n;α, β)

p(Z−,L−;α, β)

= p(wd,n|λ)

∫
θ
p(zd,n = k,Z−|θ)p(θ;α)dθ∫

θ
p(Z−|θ)p(θ;α)dθ

︸ ︷︷ ︸
topic assignment

(4)

∏

(i→j)∈λ

∫
πk,i

p((i→ j) ∈ λ,L−|Z−, zd,n, πk,i)p(πk,i;βi)dπk,i∫
πk,i

p(L−|Z−, πk,i)p(πk,i;βi)dπk,i
︸ ︷︷ ︸

path

= I [Ω(λ) = wd,n] p(zd,n = k|Z−;α)︸ ︷︷ ︸
topic assignment

p(ld,n = λ|L−,Z−, zd,n;β)︸ ︷︷ ︸
path

where Z− are the topic assignments, L− are the path assignments excluding the
current token wd,n, and the indicator function ensures that the path λd,n ends
in a path consistent with the token wd,n. Using conjugacy, the two integrals—
canceling Gamma functions from the Dirichlet normalizer that appear in both
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numerator and denominator—are

p(ld,n = λ|L−, zd,n = k,wd,n;β) =

∏
(i,j)∈λ

Γ(ni→j|k + βi→j + 1)
Γ
(∑

j′(ni→j′|k + βi→j′) + 1
)

∏
(i,j)∈λ

Γ(ni→j|k + βi→j)
Γ
(∑

j′(ni→j′|k + βi→j′)
)

(5)

p(zd,n = k|Z−;α) =

Γ(nk|d + αk + 1)
Γ
(∑

k′(nk′|d + αk′) + 1
)

Γ(nk|d + αk)
Γ
(∑

k′(nk′|d + αk′)
)

(6)

where βi→j is the prior for edge i → j, ni→j|k is the count of the number of
paths that go from node i to node j in topic k. All the other terms are the
same as in vanilla LDA: nk|d is topic k’s count in the document d, and α is
the per-document Dirichlet parameter.

With additional cancellations, we can remove the remaining Gamma func-
tions to obtain the conditional distribution7

p(z = k, lw = λ|Z−,L−, w) ∝ (αk + nk|d)
∏

(i→j)∈λ

βi→j + ni→j|k∑
j′ (βi→j′ + ni→j′|k)

. (7)

The complexity of computing the sampling distribution is O(KLS) for models
with K topics, paths at most L nodes long, and at most S paths per word.
In contrast, computing the analogous conditional sampling distribution for
vanilla LDA has complexity O(K). As a result, tree-based topic models con-
sider correlations between words at the cost of more complex inference. We
describe techniques for reducing the overhead of these more expensive inference
techniques in the next section.

4 Efficient Inference for Tree-based Topic Models

Tree-based topic models consider correlations between words but result in
more complex inference. SparseLDA (Yao et al, 2009) is an efficient Gibbs
sampling algorithm for LDA based on a refactorization of the conditional topic
distribution. However, it is not directly applicable to tree-based topic models.
In this section, we first review SparseLDA (Yao et al, 2009) and provide
a factorization for tree-based models within a broadly applicable inference
framework that improves inference efficiency.

7 In this and future equations we will omit the indicator function that ensures paths end
in the required token wd,n by using lw instead of l. In addition, we omit the subscript d,n
from z and l, as all future appearances of these random variables will be associated with
single token.
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Fig. 3 Comparison of inference between vanilla LDA and sparse LDA: vanilla LDA computes
the probability for each topic (sums to 1) and sample a topic; sparse LDA computes the
probability for each topic in the three buckets separately (total still sums to 1), so it will
select a bucket proportional to its weight, and then sample a topic within the selected bucket.
Because sLDA is shared by all tokens and rLDA is shared by all tokens in a document, both
of them can be cached to save computation. qLDA only includes topics with nonzero count
(only the pink and green topics in this example), which is very sparse in practice, so it saves
computation greatly.

4.1 Sparse LDA

The SparseLDA (Yao et al, 2009) scheme for speeding inference begins by
rearranging vanilla LDA’s sampling equation (Equation 1) as

p(z = k|Z−, w) ∝ (αk + nk|d)
β + nw|k
βV + n·|k

(8)

=
αkβ

βV + n·|k︸ ︷︷ ︸
sLDA

+
nk|dβ

βV + n·|k︸ ︷︷ ︸
rLDA

+
(αk + nk|d)nw|k
βV + n·|k︸ ︷︷ ︸

qLDA

.

Following their lead, we call these three terms “buckets”. A bucket is the
total probability mass marginalizing over latent variable assignments (i.e.,
sLDA ≡

∑
k

αkβ
βV+n·|k

, similarly for the other buckets). The three buckets are: a

smoothing-only bucket sLDA with Dirichlet prior αk and β which contributes
to every topic in every document; a document-topic bucket rLDA, which is
only non-zero for topics that appear in a document (non-zero nk|d); and the
topic-word bucket qLDA, which is only non-zero for words that appear in a
topic (non-zero nw|k). The three buckets sum to one, so this is a “reshuffling”
of the original conditional probability distribution.

Then the inference is changed to a two-step process: instead of computing
the probability mass for each topic, we first compute the probability for each
topic in each of the three buckets; then we randomly sample which bucket we
need and then (and only then) select a topic within that bucket, as shown in
Figure 3. Because we are still sampling from the same conditional distribution,
this does not change the underlying sampling algorithm.
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At this point, it might seem counterintuitive that this scheme should
improve inference, as we sample from 3K (three buckets for each topic) possible
outcomes rather than K outcomes as before. However, the probability of a
topic within a bucket is often zero in the document-topic r and topic-word q
buckets. Only topics that appear in a document have non-zero contributions to
the document-topic bucket r, and only (topic, path) pairs assigned to a word
have non-zero contributions to the topic-word bucket q for the word. While all
topics have non-zero contribution to s, this smoothing-only bucket is typically
much smaller (i.e., have smaller probability mass) than the other buckets. We
can also efficiently update the bucket total probabilities through constant-time
updates (in contrast to O(K) construction of the conditional distribution in
traditional LDA sampling schemes). The topic-word bucket qLDA has to be
computed specifically for each token, but only for the (typically) few words
with non-zero counts in a topic, which is very sparse. Because qLDA often has
the largest mass and has few non-zero terms, this speeds inference.

Yao et al (2009) proposed further speedup by sampling topics within a bucket
in descending probability. The information needed to compute a probability
within a bucket is stored in an array in decreasing order of probability mass.
Thus, on average, after selecting one of the three buckets, only a handful of
topics need to be explicitly considered. To maintain (topic, count) tuples in
sorted order within a bucket more efficiently, the topic and the count are
packed into one integer (count in higher-order bits and topic in lower-order
bits). Because a count change is only a small shift in the overall ordering, a
bubble sort (Astrachan, 2003) returns the array to sorted order in O(n).

4.2 Efficient Sampling for Tree-based Topic Models

While tree-based topic models are more complicated than vanilla LDA, our
model enjoys much of the same sparsity: each topic has a limited number of
words seen in a corpus, and each document has only a handful topics. In this
section, we take advantage of that sparsity to extend the sampling techniques
for SparseLDA to the tree-based topic models. This is particularly important
for interactive topic models, as users can be annoyed by even the slightest
latency (Nah, 2004), and users faced with long wait times may perceive the
content to be of a lower quality, have trouble remembering what they were
doing or think that an error has occurred (Ceaparu et al, 2004).

In order to match the form of Equation 8, we first define

Nk,λ =
∏

(i→j)∈λ

∑

j′
(βi→j′ + ni→j′|k)

Sλ =
∏

(i→j)∈λ
βi→j (9)

Ok,λ =
∏

(i→j)∈λ
(βi→j + ni→j|k)−

∏

(i→j)∈λ
βi→j .
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We call Nk,λ the normalizer for path λ in topic k, Sλ the smoothing factor
for path λ, and Ok,λ the observation for path λ in topic k. Notice Nk,λ and
Ok,λ are path and topic specific, and Sλ is specified for each path. Then we
can refactor Equation 7 as in Equation 10, yielding buckets analogous to
SparseLDA’s,

p(z = k, l = λ|Z−, L−, w) ∝ (αk + nk|d)
∏

(i→j)∈λ

βi→j + ni→j|k∑
j′ (βi→j′ + ni→j′|k)

(10)

∝ (αk + nk|d)N
−1
k,λ[Sλ +Ok,λ]

∝ αkSλ
Nk,λ︸ ︷︷ ︸
s

+
nk|dSλ
Nk,λ︸ ︷︷ ︸
r

+
(αk + nk|d)Ok,λ

Nk,λ︸ ︷︷ ︸
q

.

s ≡
∑

k,λ

αkSλ
Nk,λ

r ≡
∑

k,λ

nk|dSλ
Nk,λ

q ≡
∑

k,λ

(αk + nk|d)Ok,λ
Nk,λ

(11)

We use the same bucket names without the subscript “LDA” from
SparseLDA. Unlike SparseLDA, each bucket sums over the probability
of not only the topics but also paths. However, the sampling process is much
the same as for SparseLDA: select which bucket and then select a topic and
path combination within the bucket. The resulting algorithm is Algorithm 1.
Figure 4 shows a specific example of this proposed inference. However, the
correlations introduced by the tree-based structure complicate inference.

One of the benefits of SparseLDA was that s is shared across tokens in
a document and thus need not be recomputed. This is no longer possible, as
Nk,λ is distinct for each path in tree-based LDA. This negates the benefit of
caching the smoothing-only bucket s, but we recover some of the benefits by
caching and updating the normalizer Nk,λ rather than the bucket s. We split
the normalizer to two parts: the “root” normalizer from the root node (shared
by all paths) and the “downstream” normalizer,

Nk,λ =
∑

j′
(βroot→j′ + nroot→j′|k)

︸ ︷︷ ︸
root normalizer

·
∏

(i→j)∈λ′

∑

j′
(βi→j′ + ni→j′|k)

︸ ︷︷ ︸
downstream normalizer

(12)

where λ′ denotes the path excluding the root. The root normalizer only considers
the children of root, and it is shared by all tokens. As a result, we can cache
it and update it in constant time. The downstream normalizer considers the
remaining part of the normalizer, and it is needed only for correlated words
(i.e., words that have been placed in correlations); in many situations it is
reasonable to assume that these are relatively few (compared to the overall
size of the vocabulary). This normalizer splitting saves memory and improves
computation efficiency.

A second problem is that the normalizer Nk,λ is coupled; changing transition
count ni→j|k in one path changes the normalizers of all cousin paths (paths that
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Fig. 4 An example of efficient inference for tree-based topic models: color denotes different
topics; and the shade denotes the paths; like SparseLDA, we need to compute the three
buckets, but instead of just considering all topics, we need to consider all topics and paths.
First select a bucket proportional to the probability mass, and then sample a topic and a
path within the selected bucket. The normalizer Nkλ changes for each path, as s and r are
not shared by multiple tokens. Because r only includes the terms where nk|d is non-zero, and
q only includes the terms where any of ni→j|k along path λ is non-zero, which implies the
part

∏
(i→j)∈λ(βi→j + ni→j|k)−∏

(i→j)∈λ βi→j is non-zero (only the red and blue topics

in this example). Both are sparse in practice, so it reduces computation time.

share at least one node i). Take Figure 2 (left middle) as an example: the paths
for “constitution” and “president” are coupled, because they share an edge.
When we change the count for each edge along the path of “constitution”, the
count of the shared edge is changed, so that both downstream normalizers will
be changed. For this problem, we precompute which paths share downstream
normalizers; all paths are partitioned into cousin sets, defined as sets for which
changing the count of one member of the set changes the downstream normalizer
of other paths in the set. Thus, when updating the counts for path λ, we only
recompute Nk,λ′ for all λ′ in the cousin set.

SparseLDA’s computation of q, the topic word bucket, benefits from topics
with unobserved (i.e., zero count) words. In our case, any non-zero path—a path
with any non-zero edge—contributes to the probability mass of bucket q (notice
a path might have zero path count but non-zero edges). To quickly determine
whether a path contributes, we introduce an edge-masked count (EMC) for
each path. Higher order bits encode whether edges have been observed and
lower order bits encode the number of times the path has been observed. For
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example, in Figure 2 (left bottom), if we use 8 bits for EMC and observed the
path ending in “space” seven times and “nasa” zero times, the EMC for “space”
is 11100111, and the EMC for “nasa” is 11000000, since the first two edges of
the path ending at “nasa” have been traversed.

4.3 Sorting Paths

Encoding the path in this way allows us to extend SparseLDA’s sorting strat-
egy to consider latent variable assignments in decreasing order of probability
mass. Unlike SparseLDA, our latent space is richer; we must sample both a
path l and a topic z. Considering fewer possible assignments can speed sampling
at the cost of the overhead of maintaining sorted data structures.

Sorting topic and path prominence for a word (sT) can improve our ability
to sample from q. If we rank the topic and path pairs for a word in the
decreasing order of edge-masked count (EMC), the order serves as a proxy
of ranking the topic and path pairs by their probability mass. That is, when
sampling a topic and path from q, we sample based on the decreasing EMC,
which roughly correlates with path probability. Thus, we will on average choose
our sample from the conditional distribution more quickly.

Recall that SparseLDA packed the topic and count into one integer to sort
more efficiently. We cannot directly extend this because we need to pack topic,
path, and EMC together, and EMC is already a packed integer. Instead, we
pack topic and path into one integer, and sort an integer pair (EMC, topic-path
integer) together according to the value of EMC.

Using Figure 2(left bottom) as example, if we use 8 bits for EMC and 8 bits
for packing topic and path, and assume we observe the path of “space” (path
index 3) seven times and “nasa” (path index 4) zero times in topic 5, the integer
pair for “space” is (11100111, 01010011) and for “nasa” is (11000000, 01010100).
Like SparseLDA, since we only need to update the count by either increasing
one or decreasing one, we can use bubble sort to maintain sorted order.

Sorting topics’ prominence within a document (sD) can improve sampling
from the document-topic bucket r; when we need to sample within a bucket,
we consider paths in decreasing order of the document-topic count nk|d, so we
can identify a topic and path more quickly if the bucket r is selected.

4.4 Efficient Sampling with Coarse-to-Refined Buckets

While refactoring and caching the normalizers as described in Section 4.2
improves efficiency, the gains are disappointing. This is because while the
smoothing only bucket s is small, recomputing it is expensive because it requires
us to consider all topics and paths (Equation 11). This is not a problem for
SparseLDA because s is shared across all tokens.



22 Hu, Boyd-Graber, Satinoff, and Smith

However, when the counts of each edge per topic are all zero, the prior on
bucket s gives an obvious upper bound,

s =
∑

k,λ

αk
∏

(i→j)∈λ βi→j∏
(i→j)∈λ

∑
j′ (βi→j′ + ni→j′|k)

≤
∑

k,λ

αk
∏

(i→j)∈λ βi→j∏
(i→j)∈λ

∑
j′ βi→j′

= s′.

(13)

A sampling algorithm can take advantage of this upper bound by not
explicitly calculating s, which we call sampling with Coarse-to-Refined Bucket
(CRB). Instead, we use a larger s′ as proxy, and only compute the smaller
refined bucket s if and only if we hit the coarse bucket s′ (Algorithm 2). No
accuracy is sacrificed for efficiency in this algorithm. As shown in Algorithm 2,
when we sample a bucket, if it is not the coarse bucket s′, we sample a topic and
a path based on the other two buckets (these are always explicitly computed,
but their sparsity helps); when we choose the coarse bucket s′, we will explicitly
compute the refined bucket s and sample based on the correct probabilities.
This approximation does not sacrifice accuracy, as we always sample from the
true distribution if our sample lands in the approximation gap s′ − s, but we
gain efficiency as samples often do not land in the smoothing bucket s or even
in its coarse approximation. This whole process is shown in Figure 5.

Algorithm 1 Efficient sampling

1: for token w in this document do
2: sample = rand() ∗(s+ r + q)
3: if sample < s then
4: return topic k, path λ sampled from

s
5: sample − = s
6: if sample < r then
7: return topic k, path λ sampled from

r
8: sample − = r
9: return topic k, path λ sampled from q

Algorithm 2 Efficient CRB sampling

1: for token w in this document do
2: sample = rand() ∗(s′ + r + q)
3: if sample < s′ then
4: compute s
5: sample ∗ = (s+ r + q)/(s′ + r + q)
6: if sample < s then
7: return topic k, path λ sampled

from s
8: sample − = s
9: sample − = s′

10: if sample < r then
11: return topic k, path λ sampled from

r
12: sample − = r
13: return topic k, path λ sampled from q

4.5 Measuring Inference Time Efficiency

In this section, we compare the running time8 of our proposed sampling
algorithms Fast and Fast-CRB against the unfactored Gibbs sampler (Näıve)
and in addition examine the effect of sorting.

8 Mean of five chains on a 6-Core 2.8-GHz CPU, 16GB RAM.
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Fig. 5 An example of sampling with coarse-to-refined buckets. Computing the exact
smoothing-only s bucket in Figure 4 needs to go over all topics and paths, which is time-
consuming. Instead, we use an upper bound of s initially. We call this the coarse bucket s′; if
the current token doesn’t land in this coarse bucket, we can just sample a topic and a path
in the other two buckets as before; only when the token lands in this coarse bucket do we
compute the actual bucket s. We compute the true normalized distribution then resample a
topic and a path.

The first corpus we use is the 20 Newsgroups corpus (20News), 9 which
contains 18770 documents (originally 18846 documents, short documents are
deleted) divided into 20 constituent newsgroups, 9743 words, and 632032 tokens.
In addition, we use editorials from the New York Times (NYT) from 1987 to
1996, including 13284 documents, 41554 words, and 2714634 tokens.

For both datasets, we rank words by average tf-idf and choose the top V
words as the vocabulary. Tokenization, lemmatization, and stopword removal
was performed using the Natural Language Toolkit (Loper and Bird, 2002).
WordNet 3.0 generates the correlations between words. We use WordNet

9 http://people.csail.mit.edu/jrennie/20Newsgroups/
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Fig. 7 New York Times’ average running time per iteration (Sec) over 100 iterations,
averaged over 5 seeds. Experiments begin with 100 topics, 100 correlations, vocab size 10000
and then vary one dimension: number of correlations (left), number of topics (middle), and
vocabulary size (right).

3.0 to generate correlations between words. WordNet organizes words into
sets of synonyms called synsets. For each synset, we generate a subtree with all
words in the synset—that are also in our vocabulary—as leaves connected to a
common parent. This subtree’s common parent is then attached to the root
node. The generated correlations include {“drive”, “ride”, “riding”}, {“drive”,
“repel”}, etc., which represents three senses of word “drive”.

The hyperparameters for all experiments are α = 0.1, β = 0.01 for uncor-
related words, β = 100 for positive correlations and β = 10−6 for negative
correlations. However, sampling hyperparameters often (but not always) undoes
the correlations (by making β for correlations comparable to β for uncorrelated
words), so we keep the hyperparameters fixed.
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C50 C100 C200 C500
correlated 1.306 1.494 1.904 1.735

uncorrelated 14.419 14.294 13.858 11.516

Table 3 The total number of non-zero paths for correlated words averaged over the number
of tokens with correlated words (first row), and the same value for uncorrelated words (second
row), as the number of correlations increases. When the number of correlations increases,
the averaged value for correlated words doesn’t change much while the averaged value for
uncorrelated words decreases. It is because the number of non-zero paths for uncorrelated
words decreases as more correlations are added to the model.

We compared the Fast and Fast-CRB against Näıve (Figure 6 and
Figure 7) on different numbers of topics, various vocabulary sizes and different
numbers of correlations. For both datasets, Fast is consistently faster than
Näıve and Fast-CRB is consistently faster than Fast. Their benefits are
clearer as distributions become sparse (e.g., the first iteration for Fast is slower
than later iterations). Gains grow as the topic number increases, but diminish
with larger vocabulary size. While both sorting strategies reduce time, sorting
topics and paths for a word (sT) helps more than sorting topics in a document
(sD), and combining the two is (with one exception) better than either alone.

Although 20News is smaller than NYT, inference on 20News is slower
than on NYT for different number of topics and correlations. It is because NYT
has a lot of words with high tf-idf score but low frequency. When we filter the
dataset using the vocabulary ranked by tf-idf, a lot of high frequency words
are filtered out, resulted in less remaining tokens in NYT than in 20News.
Also, 20News has much more words with multiple paths, and this sometimes
prevents the techniques of this section from speeding inference.

As more correlations are added, Näıve’s time increases while that of Fast-
CRB decreases in NYT dataset (Figure 7). This is because the number of
non-zero paths for uncorrelated words decreases as more correlations are added
to the model. Since our techniques save computation for every zero path, the
overall computation decreases as correlations push uncorrelated words to a
limited number of topics (Table 3).

5 Interactive Topic Modeling

In this section, we describe interactive topic modeling, which combines the
efficient tree-based topic model described in the previous section, with machine
learning techniques to incorporate user feedback in an interactive exploration of
a corpus. This framework will allow our hypothetical political scientist, attempt-
ing to understand “immigration and refugee issues”, to find the information
she needs in large corpora.
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5.1 Making Topic Models Interactive

As we argued in Section 2, there is a need for interactive topic models. Tradi-
tional topic models do not offer a way for non-experts to tweak the models,
and those that do are “one off” interactions that preclude fine-grained adjust-
ments and tweaks that solve users’ problems but leave the rest of the model
unmolested. This section proposes a framework for interactive topic refinement,
interactive topic modeling (ITM).

Figure 8 shows the process at a high level. Start with vanilla LDA (without
any correlations), show users topics, solicit feedback from users, encode the
feedback as correlations between words, and then do topic modeling with the
corresponding tree-based prior. This process can be repeated until users are
satisfied.

Topic Models with 
a prior structure

Topic 1

Start with
symmetric prior

Build tree 
prior structure

Incremental
topic learning

Get feedback from users

Fig. 8 Interactive topic modeling: start with a vanilla LDA with symmetric prior, get the
initial topics. Then repeat the following process till users are satisfied: show users topics, get
feedback from users, encode the feedback into a tree prior, update topics with tree-based
LDA.

Since it takes some effort for users to understand the topics and figure out
the “good” topics and “bad” topics, to save users’ effort and time, ITM should
be smart enough to remember the “good” topics while improving the “bad”
topics. In this section, we detail how interactively changing correlations can be
accommodated in ITM.

A central tool that we will use is the strategic unassignment of states, which
we call ablation (distinct from feature ablation in supervised learning). The
state of a Markov Chain in MCMC inference stores the topic assignment of
each token. In the implementation of a Gibbs sampler, unassignment is done
by setting a token’s topic assignment to an invalid topic (e.g., -1, as we use
here) and decrementing any counts associated with that token.
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The correlations created by users implicitly signal that the model put
certain words in the wrong place. In other models, this input is sometimes
used to “fix”, i.e., deterministically hold constant topic assignments (Ramage
et al, 2009). Instead, we change the underlying model, using the current topic
assignments as a starting position for a new Markov chain with some states
strategically unassigned. How much of the existing topic assignments we use
leads to four different options, which are illustrated in Figure 9.

An equivalent (and equally important) way to think about how ablation
works is as technique to handle the inertia of inference. Inference schemes
for topic models can become caught in local optima (Section 2.3); because of
the way topic models are used, users can often diagnose these local optima.
Ablation allows the errors that trap inference in local optima to be forgotten,
while retaining the unobjectionable parts of the model. Without ablation,
inertia would keep inference trapped in a local optimum.

Previous New

[bark:2, dog:3, leash:3 dog:2]
[bark:2, bark:2, plant:2, tree:3]
[tree:2,play:2,forest:1,leash:2]

[bark:2, dog:3, leash:3 dog:2]
[bark:2, bark:2, plant:2, tree:3]
[tree:2,play:2,forest:1,leash:2]

[bark:2, dog:3, leash:3 dog:2]
[bark:2, bark:2, plant:2, tree:3]
[tree:2,play:2,forest:1,leash:2]

[bark:-1, dog:-1, leash:-1 dog:-1]
[bark:-1, bark:-1, plant:-1, tree:-1]

[tree:2,play:2,forest:1,leash:2]

[bark:2, dog:3, leash:3 dog:3]
[bark:2, bark:2, plant:2, tree:3]
[tree:2,play:2,forest:1,leash:2]

[bark:-1, dog:-1, leash:3 dog:-1]
[bark:-1, bark:-1, plant:2, tree:3]

[tree:2,play:2,forest:1,leash:2]

[bark:2, dog:3, leash:3 dog:2]
[bark:2, bark:2, plant:2, tree:3]
[tree:2,play:2,forest:1,leash:2]

[bark:-1, dog:-1, leash:-1 dog:-1]
[bark:-1, bark:-1, plant:-1, tree:-1]
[tree:-1,play:-1,forest:-1,leash:-1]

None

Term

Doc

All

Fig. 9 Four different strategies for state ablation after the words “dog” and “bark” are
added to the correlation {“leash”, “puppy”} to make the correlation {“dog”, “bark”, “leash”,
“puppy”}. The state is represented by showing the current topic assignment after each word
(e.g. “leash” in the first document has topic 3, while “forest” in the third document has topic
1). On the left are the assignments before words were added to correlations, and on the right
are the ablated assignments. Unassigned tokens are given the new topic assignment -1 and
are highlighted in red.

All We could revoke all state assignments, essentially starting the sampler
from scratch. This does not allow interactive refinement, as there is nothing
to enforce that the new topics will be in any way consistent with the existing
topics. Once the topic assignments of all states are revoked, all counts will be
zero, retaining no information about the state the user observed.
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Doc Because topic models treat the document context as exchangeable, a
document is a natural context for partial state ablation. Thus if a user adds
a set of words S to correlations, then we have reason to suspect that all
documents containing any one of S may have incorrect topic assignments.
This is reflected in the state of the sampler by performing the Unassign
(Algorithm 3) operation for each token in any document containing a word
added to a correlation. This is equivalent to the Gibbs2 sampler of Yao et al
(2009) for incorporating new documents in a streaming context. Viewed in this
light, a user is using words to select documents that should be treated as “new”
for this refined model.

Algorithm 3 Unassign(doc d, token w)

1: Get the topic of token w: k
2: Decrement topic count: nk|d −−
3: for path λ of w in previous prior tree do
4: for edge e of path λ do
5: Decrement edge count: ne|k −−
6: Forget the topic of token w

Algorithm 4 Move(doc d, token w)

1: Get the topic of token w: k
2: for path λ′ of w in previous prior tree do
3: for edge e′ of path λ′ do
4: Decrement edge count: ne′|k −−
5: for path λ of w in current prior tree do
6: for edge e of path λ do
7: Increment edge count: ne|k + +

Term Another option is to perform ablation only on the topic assignments of
tokens which have been added to a correlation. This applies the unassignment
operation (Algorithm 3) only to tokens whose corresponding word appears in
added correlations (i.e. a subset of the Doc strategy). This makes it less likely
that other tokens in similar contexts will follow the words explicitly included
in the correlations to new topic assignments.

None The final option is to move words into correlations but keep the topic
assignments fixed, as described in Algorithm 4. This is arguably the simplest
option, and in principle is sufficient, as the Markov chain should find a stationary
distribution regardless of the starting position. However, when we “move”
a token’s count (Algorithm 4) for word that changes from uncorrelated to
correlated, it is possible that there is a new ambiguity in the latent state: we
might not know the path. We could either merge the correlations to avoid this
problem (as discussed in Section 3.3), restricting each token to a unique path,
or sample a new path. These issues make this ablation scheme undesirable.

The Doc and Term ablation schemes can be both viewed as online infer-
ence (Yao et al, 2009; Hoffman et al, 2010). Both of them view the correlated
words or some documents as unseen documents and then use the previously seen
documents (corresponding to the part of the model a user was satisfied with)
in conjunction with the modified model to infer the latent space on the “new”
data. Regardless of what ablation scheme is used, after the state of the Markov
chain is altered, the next step is to actually run inference forward, sampling
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assignments for the unassigned tokens for the “first” time and changing the
topic assignment of previously assigned tokens. How many additional iterations
are required after adding correlations is a delicate tradeoff between interactivity
and effectiveness, which we investigate further in Section 6.

The interactive topic modeling framework described here fulfills the require-
ments laid out in Section 2: it is simple enough that untrained users can provide
feedback and update topics; it is flexible enough to incorporate that feedback
into the resulting models; and it is “smart” enough—through ablation—to
retain the good topics while correcting the errors identified by users. Interactive
topic modeling could serve the goals of our hypothetical political scientist to
explore corpora to identify trends and topics of interest.

6 Experiments

In this section, we describe evaluations of our ITM system. First, we describe
fully automated experiments to help select how to build a system that can
learn and adapt from users’ input but also is responsive enough to be usable.
This requires selecting ablation strategies and determining how long to run
inference after ablation (Section 6.1).

Next, we perform an open-ended evaluation to explore what untrained users
do when presented with an ITM system. We expose our system to users on a
crowd-sourcing platform and explore users’ interactions, and investigate what
correlations users created and how these correlations were realized on a social
media corpus (Section 6.2).

Our final experiment simulates the running example of a political scientist
attempting to find and understand “immigration and refugee issues” in a large
legislative corpus. We compare how users—armed with either ITM or vanilla
topic models—use these to explore a legislative dataset to answer questions
about immigration and other political policies.

6.1 Simulated Users

In this section, we use the 20 Newsgroup corpus (20News) introduced in
Section 4.5. We use the default split for training and test set, and the top 5000
words are used in the vocabulary.

Refining the topics with ITM is a process where users try to map their
topics in mind with the topics from topic models. The topics in users’ mind, is
mostly related the category information. For the 20News corpus, users might
have some category information in mind, such as, “politics”, “economies”,
“energy”, “technologies”, “entertainments”, “sports”, “arts”, etc. They might
have some words associated with each category. For example, the words “gov-
ernment”, “president” for “politics”, and “gas”, “oil” for “energy”. Probably
at the beginning the word list associated with each category is not complete,
that is, they have limited number of words in mind, but they might come up
with more words for each category later.
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This whole process can be simulated by ranking words in each category
by their information gain (IG).10 We start with the words with high IG for
each category, and gradually consider more words according to the ranking to
simulate the whole process. We treat the words in each category as a positive
correlation and add one more word each round to refine the topics.

Sorting words by information gains discovers words that should be correlated
with a classification label. If we believe that vanilla LDA lacks these correlations
(because of a deficiency of the model), topics that have these correlations
should better represent the collection (as measured by classification accuracy).
Intuitively, these words represent a user thinking of a concept they believe is
in the collection (e.g., “Christianity”) and then attempting to think of words
they believe should be connected to that concept.

For the 20News dataset, we rank the top 200 words for each class by IG,
and delete words associated with multiple labels to prevent correlations for
different labels from merging. The smallest class had 21 words remaining after
removing duplicates (due to high overlaps of 125 overlapping words between
“talk.religion.misc” and “soc.religion.christian”, and 110 overlapping words be-
tween “talk.religion.misc” and “alt.atheism”), so the top 21 words for each class
were the ingredients for our simulated correlations. For example, for the class
“soc.religion.christian,” the 21 correlated words include “catholic, scripture,
resurrection, pope, sabbath, spiritual, pray, divine, doctrine, orthodox.” We
simulate a user’s ITM session by adding a word to each of the 20 positive
correlations until each of the correlations has 21 words.

We evaluate the quality of the topic models through an extrinsic classifica-
tion task. Where we represent a document’s features as the topic vector (the
multinomial distribution θ in Section 3) and learn a mapping to one of the
twenty newsgroups using a supervised classifier (Hall et al, 2009). As the topics
form a better lower-dimensional representation of the corpus, the classification
accuracy improves.

Our goal is to understand the phenomena of ITM, not classification, so
the classification results are well below state of the art. However, adding
interactively selected topics to state of the art features (tf-idf unigrams) gives
a relative error reduction of 5.1%, while adding topics from vanilla LDA gives
a relative error reduction of 1.1%. Both measurements were obtained without
tuning or weighting features, so presumably better results are possible.

We set the number of topics to be the same as the number of categories
and hope the topics can capture the categories as well as additional related
information. While this is not a classification task, and it is not directly
comparable with state of the art classifiers like SVM, we expect it performs
better than the Null baseline, which is proved by Figure 10 and Figure 11.

This experiment is structured as a series of rounds. Each round adds
an additional correlation for each newsgroup (thus 20 per round). After a
correlation is added to the model, we ablate topic assignments according to
one of the strategies described in Section 5.1, run inference for some number

10 Computed by Rainbow toolbox, http://www.cs.umass.edu/∼mccallum/bow/rainbow/
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of iterations, extract the new estimate of the per-document topic distribution,
learn a classifier on the training data, and apply that classifier to the test data.
We do 21 rounds in total, and the following sections investigate the choice
of number of iterations and ablation strategy. The number of LDA topics is
set to 20 to match the number of newsgroups. The hyperparameters for all
experiments are α = 0.1, β = 0.01 for uncorrelated words, β = 100 for positive
correlations and β = 10−6 for negative correlations.

We start the process after only 100 iterations of inference using a vanilla LDA
model. At 100 iterations, the chain has not converged, but such small numbers
of iterations is a common practice for impatient users initially investigating a
dataset (Evans, 2013; Carbone, 2012).11 After observing initial topics, the user
then gradually updates the topics, allowing inference to continue.

Moreover, while the patterns shown in Figure 11 were broadly consistent
with larger numbers of iterations, such configurations sometimes had too much
inertia to escape from local extrema. More iterations make it harder for the
correlations to influence the topic assignment, another reason to start with
smaller numbers of initial iterations.

Investigating Ablation Strategies

First, we investigate which ablation strategy best incorporates correlations.
Figure 10 shows the classification accuracy of six different ablation strategies
for each of 21 rounds. Each result is averaged over five different chains using 10
additional iterations of Gibbs sampling per round (other numbers of iterations
are discussed in Section 6.1). As the number of words per correlation increases,
the accuracy increases as models gain more information about the classes.

To evaluate whether our model works better, we first compare our model
against a baseline without any correlations. This is to test whether the cor-
relations help or not. This baseline is called Null, and it runs inference for
a comparable number of iterations for fair comparison. While Null sees no
correlations, it serves as a lower baseline for the accuracy but shows the effect
of additional inference. Figure 10 shows that the Null strategy has a lower
accuracy than interactive versions, especially with more correlations.

We also compare our model with non-interactive baselines, which are All
Initial and All Full with all correlations known a priori. All Initial runs
the model for the only the initial number of iterations (100 iterations in
this experiment), while All Full runs the model for the total number of
iterations added for the interactive version. (That is, if there were 21 rounds
and each round of interactive modeling added 10 iterations, All Full would
have 210 iterations more than All Initial). All Full is an upper baseline for
the accuracy since it both sees the correlations at the beginning and also runs
for the maximum number of total iterations. All Initial sees the correlations
before the other ablation techniques but it has fewer total iterations.

11 A machine learning purist would argue that such usage is incorrect, as you only want
samples from a converged Markov chain. Without commenting on this debate, this experiment
reflects the reality of how topic models are used for analyzing text.
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Fig. 10 Accuracy (y-axis) using different ablation strategies as additional correlations are
added (x-axis). We start with 100 iterations, then for each round, add one more word for each
of the 20 positive correlations, and run 10 additional iterations. Null represents standard
LDA, as the lower baseline. All Initial and All Full are non-interactive baselines, and All
Full is the upper baseline. The results of None, Term, Doc are more stable (as denoted
by the bars), and the accuracy is increased gradually as more correlated words are added.

In Figure 10, both All Initial and All Full show a larger variance (as
denoted by bands around the average trends) than the interactive schemes.
This can be viewed as akin to simulated annealing, as the interactive settings
have more freedom to explore in early rounds. For topic models with Doc
or Term ablation, this freedom is limited to only correlated words or words
related with correlated words. Since the model is less free to explore the entire
space, these ablation strategies result in much lower variance.

All Full has the highest accuracy; this is equivalent to where users know all
correlations a priori. This strategy corresponds to an omniscient and infinitely
patient user. Neither of these properties are realistic. First, it is hard for users
to identify and fix all problems at once. Often smaller problems are not visible
until larger problems have been corrected. This requires multiple iterations of
inspection and correction. Second, this process requires a much longer waiting
time, as all inference must be rerun from scratch after every iteration.

The accuracy of each interactive ablation strategy is (as expected) between
the lower and upper baselines. Generally, the correlations will influence not
only the topics of the correlated words, but also the topics of the correlated
words’ context in the same document. Doc ablation gives more freedom for
the correlations to overcome the inertia of the old topic distribution and move
towards a new one influenced by the correlations.

How Many Iterations do Users Have to Wait?

For a fixed corpus and computational environment, the number of iterations
is the primary factor that determines how long a user has to wait. While more
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Fig. 11 Classification accuracy by strategy and number of iterations between rounds. We
start with 100 iterations, then for each round, add one more word for each of the 20 positive
correlations, and run additional 10 iterations. The Doc ablation strategy performs best,
suggesting that the document context is important for ablation correlations. While more
iterations are better, there is a tradeoff with interactivity.

iterations can get closer to convergence, it also implies longer waiting time. So
we need to balance convergence and waiting time.

Figure 11 shows the effect of using different numbers of Gibbs sampling iter-
ations between rounds. For each of the ablation strategies, we run 10, 20, 30, 50,
100 additional Gibbs sampling iterations. As expected, more iterations increase
accuracy, although improvements diminish beyond 100 iterations. With more
correlations, additional iterations help less, as the model has more a priori
knowledge to draw upon.

For all numbers of additional iterations, while the Null serves as the lower
baseline for accuracy in all cases, the Doc ablation clearly outperforms the
other ablation schemes, consistently yielding a higher accuracy. Thus, there is
a benefit when the model has a chance to relearn the document context when
correlations are added, and Doc provides the flexibility for topic models to
overcome the inertia of the old topic distribution but does not throw away
the old distribution entirely. The difference is greater with more iterations,
suggesting Doc needs more iterations to “recover” from unassignment.

The number of additional iterations per round is directly related to users’
waiting time. According to Figure 11, more iterations for each round achieves
higher accuracy, while increasing wait time. This is a tradeoff between latency
and model quality, and may vary based on users, applications, and data.

However, the luxury of having hundreds or thousands of additional iterations
for each correlation would be impractical. For even moderately sized datasets,
even one iteration per second can tax the patience of individuals who want
to use the system interactively. Studies have shown that a long waiting time
may affect cognitive load, making it harder for a user to recall what they were
doing or the context of the initial task (Ceaparu et al, 2004). Based on these
results and an ad hoc qualitative examination of the resulting topics, we found
that 30 additional iterations of inference was acceptable; this is used in later
experiments, though this number can vary in different settings.
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Fig. 12 Interface for Mechanical Turk experiments. Users see the topics discovered by the
model and select words (by clicking on them) to build correlations to be added to the model.

6.2 Users in Loop

To move beyond using simulated users adding the same words regardless of
what topics were discovered by the model, we needed to expose the model to
human users. We solicited approximately 200 judgments from Mechanical Turk,
a popular crowd-sourcing platform that has been used to gather linguistic
annotations (Snow et al, 2008), measure topic quality (Chang et al, 2009;
Stevens et al, 2012), and supplement traditional inference techniques for topic
models (Chang, 2010). After presenting our interface for collecting judgments,
we examine the results from these ITM sessions both quantitatively and
qualitatively.

Figure 12 shows the interface used in the Mechanical Turk tests. The left
side of the screen shows the current topics in a scrollable list, with the top 30
words displayed for each topic.

Users create correlations by clicking on words from the topic word lists.
The word lists use a color-coding scheme to help the users keep track of which
words they are already in correlations. The right side of the screen displays
the existing correlations. Users can click on icons to edit or delete each one.
The correlation being built is also shown in its own panel. Clicking on a word
will remove that word from the current correlation.
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Fig. 13 The relative accuracy improvement (using round 0 as a baseline) of the best
Mechanical Turk user session for each of the four numbers of topics, with the actual accuracy
marked for the last round. While the 10-topic model does not provide enough flexibility to
create good correlations, the best users could clearly improve classification with more topics.

Users were not given a specific goal; instead, they were instructed to add
correlations between words so that the topics (we called them “word groups”
in the instructions) made more sense. This was intentionally underspecified, as
we wanted to see what would happen when ITM was placed in the hands of
untrained users.

As in Section 6.1, we can compute the classification accuracy for users as
they add words to correlations. The best users, who seemed to understand the
task well, were able to increase the classification accuracy (Figure 13). The
median user, however, had an accuracy improvement indistinguishable from
zero. Despite this, we can examine the users’ behavior to better understand
their goals and how they interact with the system.

The correlation sizes ranged from one word to over forty. The more words in
the correlation, the more likely it was to noticeably affect the topic distribution.
This observation makes sense given our updating method. A correlation with
more words will probably cause the topic assignments to be reset for more
documents.

Most of the large correlations (more than ten words) corresponded to
the themes of the individual newsgroups. Some common themes for large
correlations were:

– Themes that matched a single newsgroup: religion, space exploration, health,
foreign countries, cars, motorcycles, graphics, encryption

– Themes that spanned multiple related newsgroups: sports, government,
computers, cars/motorcycles

– Themes that probably matched a sub-topic of a single newsgroup: homo-
sexuality, Israel, computer programming

Some users created correlations with both “baseball” and “hockey” words,
while others separated them. (“baseball” and “hockey” are in separate news-
groups.) The separate correlations often contained overlapping words. Even
so, the choice of combined vs. separate correlations almost always determined



36 Hu, Boyd-Graber, Satinoff, and Smith

whether baseball and hockey would be in the same topic in the model. A
similar situation occurred with “cars” and “motorcycles”, which are discussed
in separate newsgroups.

Some users created inscrutable correlations, like {“better”, “people”, “right”,
“take”, “things”} and {“fbi”, “let”, “says”}. They may have just clicked random
words to finish the task quickly. While subsequent users could delete poor
correlations, most chose not to. Because we wanted to understand broader
behavior we made no effort to squelch such responses.

The two-word correlations illustrate an interesting contrast. Some pairs are
linked together in the corpus, like {“jesus”, “christ”, “solar”, “sun”}. With
others, like {“even”, “number”} and {“book”, “list”}, the users seem to be
encouraging collocations to be in the same topic. However, the collocations
may not be present in any document in this corpus.

Not all sensible correlations led to successful topic changes. Many users
grouped “mac” and “windows” together, but they were almost never placed in
the same topic. The corpus includes separate newsgroups for Macintosh and
Windows hardware, and divergent contexts of “mac” and “windows” overpow-
ered the prior distribution.

Other correlations led to topic changes that were not necessarily meaningful.
For example, one user created a correlation consisting of male first names. A
topic did emerge with these words, but the rest of the words in that topic
seemed random. This suggests that the set of male first names aren’t associated
with each other in the corpus. Preliminary experiments on newspaper articles
had similar correlations that created a more meaningful topic associated with
obituaries and social announcements.

Finally, many correlations depend on a user’s background and perspective,
showing the flexibility of this approach. Some users grouped “israeli”, “jewish”,
“arab”, and “muslim” with international politics words, and others with religion
words. On the other hand, “christian” was always grouped with religion words.
The word “msg” appears to have two different interpretations. Some users
grouped it with computer words (reading it as a message), while others grouped
it with health words (reading it as a food additive).

As mentioned in Section 3, topic models with a tree-based prior can represent
situations where words have multiple meanings. In previous work, the paths in
the tree—provided by WordNet—correspond to the distinct meanings of a
word (Boyd-Graber et al, 2007). Users found the formalism intuitive enough
to build their own small WordNets to distinguish the different meanings of
“msg”.

6.3 User Study

New systems for information access are typically investigated through task-
based user studies to determine whether the new approach allows users to
complete specific tasks as well as with current systems. Wacholder and Liu
(2008), for example, compared traditional paper-based book indices with full-
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text search for answering questions in large text collections. Following their
lead, we compare the information-seeking effectiveness using both interactive
and non-interactive topic modeling.

We asked users to fill the role of the running example a political scien-
tist attempting to find legislation relevant to “immigration and refugee issues”
(among other topics). Using full-text search aided by either vanilla topic models
or interactive topic models (ITM), users were asked to answer questions based
content in a collection of legislative debates.

We found that users were able to answer the questions equally well in both
group with ITM (experimental group) and group without ITM (control group).
However, users in the group using ITM had radically different strategies for
how they found information in the corpus. Rather than relying on full-text
search, users used topic models to find relevant information.

6.3.1 Legislative Corpus

In the process of becoming a law, potential US legislation is sponsored by a
congressperson and introduced for debate by a committee in either the US
House of Representatives (lower chamber) or the US Senate (upper chamber).
Once introduced, the bill is debated within the chamber it was introduced.
Our corpus contains transcripts of these debates for the 109th congress, which
served during the 2005 and 2006 calendar years.

The corpus is available online from GovTrack.12 Each page is associated
with a bill and a vote. Uninteresting procedural bills, with less than 20% “Yea”
votes or less than 20% “Nay” votes, are removed. We selected a subset of
this congressional debate dataset that includes ten bills and their associated
debates. Each debate has multiple turns (a single uninterrupted speech by a
unique congressperson), and we use each turn as a document for topic modeling.
This yields 2,550 documents in total; we ignore all temporal, speaker-related,
or legislative organization. While this is somewhat unrealistic for a real-world
study of legislative information, we will use some of this discarded information
to aid evaluation. The subset includes bills on immigration, the estate (death)
tax, stem cell research, and others. Detailed information can be found in
Appendix A.

6.3.2 Introduction of ITM Interface

The ITM interface is a web-based application.13 It provides a workflow for
users to select model parameters (corpus and number of topics), create an
initial topic model, name the topics, and refine the topics using ITM. The
interface also provides multiple ways for a user to explore the corpus: a full-text
search over all documents, a full-text search within a single topic, a listing of

12 http://www.govtrack.us/data/us/109/
13 This ITM interface is with a HTML and jQuery ( http://jquery.com/ ) front end,

connected via Ajax and JSON
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Fig. 14 The start page of ITM interface: users specify the user name, session name, corpus,
number of topics, and experimental group (Group A: control group (LDA only); Group B:
experimental group (ITM). )

documents associated with each topic, and links to access specific documents.
We walk through this workflow in detail below.

From the initial screen (Figure 14), users specify the session information,
such as user name, corpus, number of topics, etc. Once users click “start”,
the interface loads the initial set of topics, including the top topic words and
related documents, as shown in Figure 15. The top topic words are displayed
such that the size of a word is proportional to the probability of this word
appearing in the topic.

After clicking on the topic, users can view additional information and, most
importantly, edit the topic (editing is disabled for the control group). After
clicking on a topic, three “bins” are visible: all, ignore, important. Initially, all
of the topic words are in the “all” bin. As shown in Figure 16, users can drag
words to different bins based on their importance to the topic: words that are
important to the topic to the“important” bin, words that should be ignored
in this topic to the “ignored” bin, and words that should be stopwords in the
whole corpus to “trash”. Users can also add new words to this topic by typing
the word and clicking “add”.14

Once the user has finished editing a topic, changes are committed by
pressing the “Save” button. The backend then receives the users’ feedback. The
model adds a positive correlation between all words in the “important” bin, a
negative correlation between words in “ignored” bin and words in “important”
bin, and removes words in the “trash” from the model. With these changes
to the model, the ITM relearns the topics and updates the topics. While in
principle users may update the topics as many times as they wish, our study

14 Only words present in the model’s vocabulary can be added; this constraint is enforced
via an autocomplete function.
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Fig. 15 Two topics displayed in the ITM interface. The most probable words in each topic
are displayed with the size proportional to the probability of a word appearing in this topic.
The documents most associated with each topic are shown in each topic’s panel. The user
can view all documents by selecting “view all documents”.

Rename your topic here

Type new words here

Limited by vocabulary

Display document 
(drag up and down to the context)

Fig. 16 ITM interface for refining a topic. Users can put words into different “bins”, name
topics, and add new words to the topic.

limited a user’s exploration and modification of topics to fifteen minutes. Then,
the users entered the next phase of the study, answering questions about the
corpus.

In the question answering phase (Figure 17), users have three options to
explore the data to answer the questions: by reading through related documents
associated with a topic, searching through all of the documents through full-
text search, or via a text search restricted to a single topic. The full-text
search is important because it is a commonly used means of finding data
within large corpora (Shneiderman et al, 1997) and because it has been used
in previous previous information-seeking studies (Wacholder and Liu, 2008).
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Fig. 17 Test page of the ITM interface. Users will see one question each time, and they
can answer the question by, searching keywords globally, checking the related topics or topic
documents, or narrowing query results down by topics, that is, after a global query, click a
topic, and the query results will be filtered by the relevance to this topic, displayed below
the topic you clicked. Click “Next question” to proceed, and users are not allowed to go back
to previous questions.

15 Initial studies, where access to the data was restricted to only topic model
information, were too difficult. We expect users to use topics when they are
useful and use full-text search when topics are less useful in answering a
question. After each question, users click “Next question” to proceed; users
cannot return to previous questions.

6.3.3 User Population

To evaluate the effectiveness of ITM for information-seeking tasks, we compare
the performance of users in two groups: and experimental group (ITM) and a
control group (vanilla LDA).

For the experimental group, users start with an initial set of topics and
can refine the topics using ITM for up to fifteen minutes. They then start the
test phase for thirty minutes. They are provided with the refined topics for use
during the test.

The control group also has access to the initial topics, but they cannot
refine the topics. They are given up to fifteen minutes to check the topics,
rename the topics, and review documents associated with the topics. This is
to avoid experimental differences caused by the experimental group benefiting
from exploring the corpus rather than from interactive topic modeling. After

15 Some examples where the websites for accessing the legislative data have full-text search:
http://thomas.loc.gov/home/LegislativeData.php?n=BillText; http://www.senate.gov/ page-
layout/legislative/g three sections with teasers/legislative home.htm.
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spending up to fifteen minutes exploring the corpus, the control group also has
thirty minutes to answer the test questions.

The study participants are randomly assigned to a group. Each participant
views a video explaining how to use the interface and do the test. During the
study, the system logs the related information of each user. After the study,
participants complete a survey on their educational/technical background and
familiarity with legislation or topic models.

The study had twenty participants (ten for each group). All of the users
are fluent in English. Participants are either students pursuing a degree in
Computer Science, Information Science, Linguistics, or working in a related field.
A post-test user survey revealed that most users have little or no knowledge
about congressional debates and that users have varied experience with topic
models.

We designed ten free response questions by exploring this legislation corpus,
including questions regarding legislation which deals with taxes, the US-Mexico
border, and other issues. The full text of the questions appears in Appendix B.

6.3.4 User Study Analysis

We examined two aspects of the experiment: how well the experimental group’s
final topics replicated ground-truth annotations (below, we refer to this metric
as refine) and how well both the groups answered the questions (test).

Our experiment views the corpus as an unstructured text collection (a typical
use case of topic models); however, each turn in the dataset is associated with
a single bill. We can view this association as the true clustering of the dataset.
We compare this clustering against the clustering produced by assigning each
document to a cluster corresponding to its highest-probability topic.

We compare these reference clusters to the clusters produced by ITM using
variation of information (Meilă, 2007). This score has a range from zero
to infinity and represents the information-theoretic “distance” between two
partitions (lower is better). Using this information, we compute the variation
of information (Meilă, 2007) between the true labels and the topic modeling
clusters. While we have a good initial set of topics (the initial variation of
information score is low), users in the experimental group—who claimed to
have little knowledge about the legislative process—still can reduce this score
by refining the topics. To avoid bias from users, users do not know that their
topics will be evaluated by variation of information.

As shown in Figure 18, ten users in the experimental group started with
the same initial topics and refined refine the topics for multiple rounds. In
the given fifteen minutes, some users played with ITM for up to eight rounds
while one user only tried two rounds. Although users occasionally increased
the variation of information, by the end of the refinement phase a majority of
users successfully reduced the variation of information of the topics.

User “x2” provides an example of a successful ITM round. ’The user saw
a topic mixing “energy”-related words with other words. To make a coherent
topic about “energy”, they put “oil”, “natural gas”, “gas”, “production” and
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Fig. 18 Variation of information of users in experimental group at each round. Users are
labeled from x0 to x19. Ten of them are randomly assigned to experimental group. All ten
users start with the same initial topics and are able to refine the topics for the extent of the
refinement phase. Most users in the experimental group successfully reduced the variation of
information (where lower is better).

“resources” in the important bin, and put “patriot act”, “federal government”,
“tex cuts”, “stem cell” into the ignored bin. After updating, this topic be-
came a coherent topic about “energy”. After refining topics for eight rounds,
they successfully made other topics more coherent; he named these topics
“homeland security”, “immigration”, “abortion”, “energy”, “flag burning”, etc.,
which match well with the corpus’s true clusters. Thus this user successfully
reduced the variation of information as shown in Figure 18.

In addition to evaluating the variation of information for the experimental
group, we also evaluated the users’ answers to content-specific questions. While
the difference between the groups’ performance was not statistically significant,
ITM changed the usage pattern to favor topic models over full text search.

To evaluate the test, we graded the answers and compared the scores of
users in two groups. Of the 20 participants, two didn’t use their session name
correctly, meaning the interface didn’t store their answers properly, and one
user encountered an issue and wasn’t able to finish the questions. Thus we
have complete answers for 17 participants. Each question was graded by two
graders with Scott’s π agreement 0.839 (Artstein and Poesio, 2005). While
there is no significant difference between the two groups’ test scores, the scores
for experimental group had a much smaller variance compared to the control
group.

To better understand how users answer the questions, the ITM system logs
the number of full-text searches that include words from any of the topics
(queried-topic-words) and the number of times that users used topics to filter
query results (query-in-topic).

The process of modifying topics inspired users in the experimental group
to use queries that included words from the topics (Figure 19); this may be
because users learned more key terms while exploring and refining the topics.
These topic words are helpful to answer questions: users in experimental group
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Fig. 19 Statistics show that users’ search strategies during the user study used topics more
than the control group.

queried topic words an average of 27.8 times, while the control group queried
topic words 18.2 times on average. Users in the experimental group also used
“query-in-topic” (restricting a full text search within a topic) more than the users
in control group. This is probably because those users working with refined
topics that are better aligned with the underlying bills (several questions were
about specific bills).

We also found that users in both groups click topics much more when
the question is about the general understanding of the data set, for example,
“Name 5 of the debated legislation in this data set.”. For more detailed questions
like “The Gulf of Energy Security act will provide revenue streams for which
fund?”, users in both groups prefer to use text query directly.

However, Figure 19 shows a large variance, so we should not overstate these
results. In the conclusion, we discuss additional studies that can untangle the
usefulness of topic models for evaluating information-seeking from other effects
such as how familiar users are to topic models, whether they understand the
task clearly, and whether they are effective consumers of information.

Some users in the control group also performed very well. For example,
user “x5” in the control group obtained a high score. During the initial fifteen
minute exploration phase, this user clicked on topics to review documents 71
times, substantially more than any user in either the control group or the
experimental group. Users such as “x5”, who are topic model-savvy have better
intuitions about how topic models work and how they can be used to help
explore a corpus. In the post-session survey, the user reported that the interface,
designed to facilitate ITM (but disabled for the control group) helped them
understand the corpus and answer the questions.

Not all users in the experimental group performed well on the task. One user
only refined two topics, and some users failed to improve the topics (failed to
reduce the variation of information). Some users complained that they weren’t
given enough time to update the topics.

In general, most reported liking the interface. Users from both the experi-
mental group and the control group commented that the topics helped them
answer some of the questions. Some users also commented that some of the
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questions were too detailed, suggesting that perhaps additional methods to
search the corpus may be helpful.

This study provides evidence that the ITM interface assists users in exploring
a large corpus and that topic modeling is helpful for users attempting to
understand legislative documents. Users used ITM to improve the initial
clusters; this is especially promising, as these users had little background
knowledge of congressional debates and few had familiarity with topic models.

7 Automatically Suggesting Correlations

While we have demonstrated that ITM can encode correlations into topic models
interactively, our pilot with users showed that it is often difficult, particularly
for untrained users, to decide how to guide interactive topic models. This is
because there are many possible choices: if the vocabulary size is V , there are
about V 2 possible pair correlations (let alone higher order correlations). In
this section, we build on heuristics proposed for topic coherence to suggest
correlations automatically.

7.1 Generating New Correlations

Newman et al (2010) argues that topics whose words often appear close together
in a reference corpus make more sense to users. They measure this through
pointwise mutual information (PMI) averaged over all word pairs present in
the top words of a topic (sorted in order of decreasing probability, as is usually
done to show topics to a user). Thus, for a topic’s top words T ,

PMIC(T ) ≡
∑

(wi,wj):wi 6=wj PMIC(wi, wj)

|T |(|T | − 1)
, (14)

where C is the corpus to compute PMI, and PMI is computed within a small
local window. Topics that have a high score tend to be judged as “making
sense” to users, and those that have lower scores tend to be judged as not
making sense to users.

Based on this strategy, ITM could seek to improve this score by suggesting
positive correlations for pairs with high PMI score and negative correlations
for pairs with low PMI score. To ensure that we only suggest meaningful
correlations, we weight suggestions by the tf-idf (Salton, 1968) for each word
(by taking the max over all documents). This focuses correlations toward pairs
that are highly relevant to at least some subset of the documents (this prevents
correlations capturing syntactic or other dependencies). Combining the PMI
and tf-idf score, we rank word pairs by

PC(X,Y ) = max
d

(tf-idf(X, d)) ·max
d

(tf-idf(Y, d)) · PMIC(X,Y ) (15)
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Fig. 20 The total number of votes across rounds for each topic by users on Mechanical
Turk (16 votes for each topic). x-axis is in a decreasing order of the number of votes for ITM.
The red colored topics are significantly different from a uniform vote distribution, while
the others are not (tested by χ2-test). In general, there is no clear preference from users
between models with correlations (ITM) and models without (LDA), which is the result in
imbalanced attention being focused on some topics more than others.

for positive correlations and by

NC(X,Y ) =
maxd(tf-idf(X, d)) ·maxd(tf-idf(Y, d))

PMIC(X,Y )
(16)

for negative correlations (NC). The pairs with the highest scores for these
metrics become the suggestions. Since the number of word pairs is very large,
we only consider the word pairs from different topics for PC and the word pairs
from the same topic for NC.

Although we have an automatic technique for selecting correlations, this
does not replace a fully interactive system. This is because PMI ignores words
with multiple meanings (e.g., “msg” in Section 6.2) and user-specific information
needs (e.g., the examples in Section 2).

7.2 Human Evaluation over Automatically Generated Correlations

We use the 20 Newsgroups corpus (20News, described in Section 4.5) in this
experiment. The topic number is set to be 20, and 100 iterations produce initial
topics. Four rounds of interaction are performed with 50 iterations each round.

In this experiment, we have two different topic models: one uses automati-
cally generated correlations based on PMI20news (five positive and five negative
correlations each round) and the other group runs for same number of iterations
without any correlations. We name the two models as correlation group (ITM)
and non-correlation group (LDA), respectively.

For evaluation, we showed the resulting topics to users on Mechanical Turk
and asked whether they preferred the correlated topics (ITM), the control
topics (LDA), or they looked equally coherent (Equal). Four users compared
each pair. The positioning (i.e., left vs. right) and order of words within a topic
were shuffled to avoid bias.
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We first compared the votes for each group in each topic, as shown in
Figure 20, in decreasing order of the number of votes for the correlated group
(ITM). Users show significant preference in five of the total 20 topics (colored
in red, by χ2-test). Users did not have a clear preference overall; this was
counter-intuitive, as the correlations were changing the topics dramatically.
There were three reasons that the correlations did not always favor the ITM
group:

– first, topics that are most confusing (as measured by Equation 15 and 16)
get the correlations to improve coherence; thus the correlations affect some
topics more than others

– second, because some topics have more correlations, other topics have fewer
correlations; thus those topics are similar to the uncorrelated case

– finally, some topics are ignored by correlations and have side-effects of
correlations in the other topics; these are not always good for the coherence
of the ignored topics

We describe each of these scenarios with examples, below.

Confusing Topic Gets the Correlations Some topics did show substantial
improvement, however. For example, Figure 21 shows how Topic 7 changes as
correlations are added (we only show the correlations related with Topic 7).
Initially, the topic mixes “transportation” and “health”, in the first round, a
negative correlation between “car” and “cancer” pushed “car” away. Though
“cars” remained, additional relevant terms—“medicine”, “pain”, “aids” and
“effects” appeared. In the second round, when a negative correlation between
“cancer” and “msg” was added, “cars” disappeared and most words in correlated
group (ITM) were related with “health”. The non-correlated group (LDA) also
stabilizes but much more slowly than the correlated group (ITM); after the
fourth round, however, users do not have a clear preference.

Ignored Topics Stay the Same While Topic 7 was improved, Topic 5, initially
including words “software, data, set, graphics, code, used, sun, user, following,
text” etc., seemed the same for users’ observing the LDA and ITM versions of
the topic, as shown in Table 4. In the second round of Topic 5, one positive
correlation {“window”, “widget”} was added in ITM, but LDA already had
these two correlated words in its topic, so the correlation had little effect on
the topic. In next round, two related negative correlations {“max”, “font”}
and {“max”, “window”} were added to ITM, which improved the topic, so
users prefer the ITM. In first and last round, users have no preference between
the two groups.

Ignored Topics Suffer Side-effects Another case is that users sometimes deci-
sively prefer the non-correlated group (LDA). For example, Topic 19, started
with words “system, good, power, much, research, first, large, data, systems,
work” etc., only had one relevant correlation, a negative correlation {“max”,
“model”} added in the last round. However, the result of correlations in previous
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Fig. 21 Compare the “evolution” of Topic 7 between LDA and ITM for four rounds: the
correlations related with this topic is shown and we compared the topic words between LDA
and ITM. At the beginning, Topic 7 is a mixed topic between “transportation” (blue) and
“health” (red). While adding more correlations and running for additional iterations, this
topic becomes a pure “health” topic. While after four rounds, LDA and ITM got similar
result, ITM successfully made it the topic converge to a good coherent topic much faster.

rounds negatively impacted Topic 19, which had words “stolen” from it by
other topics. This shows that improving some topics (e.g., Topic 7) sometimes
comes at the expense of others; Table 4 shows that users preferred the version
of the topic left untouched by correlations.

Round
Topic 5 Topic 19

ITM Equal LDA ITM Equal LDA
R1 2 1 1 0 2 2
R2 0 0 4 0 0 4
R3 3 0 1 1 0 3
R4 0 4 0 1 0 3

Table 4 The round votes for Topic 5 and Topic 19. For Topic 5, while users have no
preference in R1 and R4, they prefer LDA in R2: one correlation “MERGE {window, widget}”
was added in ITM, but LDA also had the two correlated words in its topic, so there was no
clear improvement; in R3, two related correlations (“SPLIT {max, font}” and “SPLIT {max,
window}”) were added to ITM, and users prefer the improved topic in ITM. For Topic 19, no
related correlations were added to ITM in the first three rounds; there was one unimportant
correlation “SPLIT {max, model}” added in R4, which resulted in no clear improvement. So
users clearly prefer LDA for Topic 19.

Figure 21 shows that for LDA and ITM, Topic 7 converged to the same
topic clear “health” topic, but ITM helped it converge the faster. We discuss
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the distinction between improvements and impatience in Section 2.3, which also
gives an example of a topic that remains problematic even in a fully converged
topic model.

8 Conclusion

Interactive topic modeling is a new framework for using and understanding
statistical models that empowers users of topic models to evaluate and refine
topics based on their unique expertise and perspective. These models offer new
opportunities for wider and richer use of topic models, suggest new probabilistic
models and methods for machine learning, and can serve as an exemplar for
allowing users to improve statistical models.

Wider and Richer Uses of Topic Models

Topic models have attracted interest from not only the machine learning
experts, but also non-machine-learning experts in various fields including
computational social science (Lazer et al, 2009; Grimmer, 2010; Yang et al,
2011), history (Hall et al, 2008; Mimno et al, 2012), psychology (Landauer et al,
2006; Griffiths et al, 2007), biology (Ahmed et al, 2009; Ye et al, 2011), and
music (Hu and Saul, 2009). These researchers have been able to understand,
explain, and illustrate data that were, by virtue of their size, inaccessible for a
“deep reading”. Study of these data are only possible using technology such as
topic models.

But these investigations could be so much richer if this process were not
a one-way experience. The adoption of topic models by broader communities
represents an exciting opportunity for topic models to learn from researchers
(usually, it’s the other way around). This would have manifold benefits: models
would reflect expert knowledge, models would be less frustrating and more mal-
leable, and different models could reflect disagreements or different perspectives
of model curators.

In addition to facilitating a richer experience for experts, interactive topic
models offer an opportunity to better engage novices. Even though topic models
have generated substantial interest from researchers outside machine learning,
they remain less than user-friendly. Interactive models do not require users to
be machine learning experts to improve and adjust models; this can help users
slowly build statistical insights and facilitate greater uptake of computational
methods in the social sciences.

Our future goal is to turn our running hypothetical political scientist
interested in understanding “immigration” into a reality. We are currently
working with political scientists to enable them to use topic models to discover
interesting instances of where politicians have used loss or gain framing Tversky
and Kahneman (1992) to “spin” a topic to appeal to their core constituencies.
Our user study showed that even novice users can use ITM to effectively explore
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political corpora, and we expect better results from motivated researchers
willing to invest time understanding the ITM system.

However, the question of whether topic models assist users in information
seeking requires more experimentation. We showed that ITM encouraged users
to use topics to help them find information, but our population was too diverse
and too small to be able to demonstrate that these techniques helped them to
better or more quickly access the information.

Broadening the number of users for the user study would allow us to draw
stronger conclusions about how interactive topic modeling changes or helps
the way users seek out information from large corpora. In addition, with larger
populations, a mixed-effects model could potentially untangle the effects of
how familiar that users are to topic models, whether they understand the
task clearly, their background knowledge of the subject, and whether they
understand how to use the interface. Explicitly modeling and measuring these
effects would effectively reduce the variance and help explain the interaction
between these nuanced facets of user behavior.

New Probabilistic Models and Inference Techniques

In our attempt to minimize the latency a user could experience during the
process of interactive topic modeling, we developed new techniques for proba-
bilistic inference that take advantage of sparsity in probabilistic models. While
our approach was more complicated than first method designed specifically for
latent Dirichlet allocation (Yao et al, 2009), it still offered substantial compu-
tational speedup. This suggests that taking advantage of sparsity could also
be used in other probabilistic models such as context-free grammars (Johnson
et al, 2007; Johnson, 2010) and feature-based models (Monroe et al, 2008; Wu
et al, 2010).

While this work focused on text in a single language, tree based topic
models have been used to explore multilingual corpora (Boyd-Graber and
Resnik, 2010; Jagarlamudi and Daumé III, 2010), and from there it is a small
leap to multimodal data. Interactivity could be even more helpful in such
scenarios, as interaction in a user’s native language or in the most natural
modality could help shape topics in the other language or modality. For
example, an analyst trying to understand newspapers written in English and
Arabic might be more comfortable massaging the topics in English, but those
correlations would also improve the clustering for Arabic documents. Similarly,
a topic-model clustering of image data with captions (Li Fei-Fei and Perona,
2005) might be difficult to interact with visually, but suggesting correlations
based on captions might lead to useful image clustering.

Toward More Interactive Statistical Models

While interactive topic modeling can obviate or replace some of the newer
topic models, some models seem apt for interactive topic modeling. For example,
combining interactivity with dynamic topic modeling (Blei and Lafferty, 2006;
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Wang et al, 2008) could help to improve historians or social scientists working
with datasets over long time periods; supervised topic models could help
researchers understand how documents interact with external socioeconomic
indicators such as the sentiment (Pang and Lee, 2008; Sayeed et al, 2012),
consumer price index (Shoemaker, 2011), stock price (Bollen et al, 2010; Kogan
et al, 2009), or geography (Eisenstein et al, 2010); and topic models that go
beyond the bag of words (Wallach, 2006; Boyd-Graber and Blei, 2008) could
help understand syntactic patterns and linguistic structure.

Finally, the interactions that we observe from users could help us understand
how humans organize their mental vocabulary (Feldman et al, 2009). Instead
of just accepting user feedback as a given, we can explicitly model it using
techniques such as Bayesian coalescents (Teh et al, 2008; Görür and Teh, 2009).
A joint model of both the tree structure and the topic model could learn users’
desires and preferences from text; this would be a more statistically-driven
alternative to our approach of suggesting correlations and could help us learn
more from our users.

Learning from users is not just a benefit, but it is an essential goal for
machine learning algorithms to be accepted by researchers who are not computer
scientists and eventually the broader public. Interactive topic models are an
example of tools that can learn from and help users interact with large datasets,
an essential tool for modern text-based research.
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Appendix

Appendix A: Titles of the ten bills used in the user study (Section 6.3)

– H.R. 6061: Secure Fence Act of 2006
– H.R. 8: Death Tax Repeal Permanency Act of 2005
– S. 2271: USA PATRIOT Act Additional Reauthorizing Amendments Act

of 2006
– S. 3711: Gulf of Mexico Energy Security Act of 2006
– S. 3711: Gulf of Mexico Energy Security Act of 2006
– S. 403: Child Custody Protection Act
– H.R. 4297: Tax Increase Prevention and Reconciliation Act of 2005
– S.J.Res. 12: Flag Desecration resolution
– H.R. 810: Stem Cell Research Enhancement Act of 2005
– H.R. 810: Stem Cell Research Enhancement Act of 2005

Appendix B: Questions list in the user study (Section 6.3)

– The flag desecration act gives power to what body to prohibit physical
desecration of the flag of the United States?

– The child custody protection act makes it what type of crime to take minors
across state lines to circumvent laws requiring involvement of parents in
abortion decisions?

– According to the debate for the secure fence act, what is the length (in
miles) of the border that the U.S. shares with Mexico?

– The Gulf of Energy Security act will provide revenue streams for which
fund?

– A senator compares the immigration debate to the release of what film?
– Name 5 of the debated legislation in this data set. Give either the full name

or the number assigned to the debate.
– Name 2 of the debated legislation in this data set deals with taxes or the

budget?
– What is the name of the debated legislation which proposes an amendment

to the constitution?
– Name the 2 debated legislation in this data set that discusses illegal immi-

grants?


