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ABSTRACT

This paper presents an overview of our work on integrating lan-
guage with vision to endow robots with the ability of complex
scene understanding. We propose and motivate the Vision-Action-
Language loop as a form of cognitive dialogue that enables us to
integrate current tools in linguistics, vision and Al. We present sev-
eral experimental results of preliminary implementation and dis-
cuss future research directions that we view as crucial for develop-
ing the cognitive robots of the future.

Categories and Subject Descriptors

1.2.9 [Artificial Intelligence]: Robotics; 1.2.10 [Artificial Intelli-
gence]: Vision and Scene Understanding—perceptual reasoning

General Terms
Theory, Algorithms

Keywords

Cognitive Robotics, Computer Vision, Computational Linguistics

1. INTRODUCTION

A cognitive robot is a robot capable of simulating cognitive pro-
cesses that mimic human intelligent behavior requiring capabilities
such as visual perception, sensorimotor activation and high-level
reasoning. In this paper, we argue that Language is an important,
and till now an overlooked component that is crucial for develop-
ing cognitive robots. As we will show in sec. 3, language, when
processed appropriately, can be leveraged to bridge the so-called
semantic gap between low-level sensory signals (visual, auditory,
haptics etc.) and high-level concepts (words, ideas etc.). In this
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work, we focus on visual signals, and show how we can use the
Vision-Action-Language loop depicted by Fig. 1 as a form of cog-
nitive dialogue to facilitate several important vision tasks: 1) Object
recognition, 2) Action recognition and 3) Scene description. We
first motivate why language is useful for cognitive robots followed
by an overview of the cognitive dialogue framework.

1.1 Why Language for Robotics?

Let us examine in some more detail what is really going on when
a human (a cognitive system with vision and language) is interpret-
ing a visual scene. When we fixate at an object and recognize it,
then this means an immediate entry to the linguistic system. In-
deed, if we recognize a “street”, the word street lights up in the lin-
guistic system, with a number of consequences. The word “street”
has many “friends”. These are other words that tend to co-occur
with “street”, such as “human”, “car”, “house”, etc. Modern com-
putational linguistics has created, using a large corpus, resources
where this information can be obtained, e.g. probability distribu-
tions for the co-occurrence of any two words, lists of the friends
of any word, and so on. Thus, recognizing a noun in the scene cre-
ates expectations for the existence of other words in the scene that
vision can check for. In this case, language acts as a contextual
system hat aids perception. There is however much more than this.
Let’s say you are in a kitchen. Because you have prior knowledge
about kitchens, their structure and the actions taking place in them
and a large part of this knowledge is expressed in language, we
can utilize this information during visual inspection. A knife in the
kitchen will most probably be used for “cutting” a food item, so the
vision can look for it. In this case, language acts as a high level
prior knowledge system that aids perception. There is still more.
Let’s say you observe someone pick up an object, put it in the trunk
of a car, then get into the car and drive away. Given this, you know
that the object is gone, it is inside that car. In this case, language
acts as part of a reasoning process.

When we visually inspect a scene, it appears that our linguistic
system is working in the background together with visual percep-
tion to achieve meaning and understanding. This is an aspect of
perception that has not been studied systematically. There has been
a lot of work on what could be called “parallel vision”, i.e. given an
image or an image sequence, how do we find edges, contours, mo-
tions and other features, how do we segment the scene and group
the features into objects, etc. On the other hand, “sequential vi-



sion” has not received as much attention. As you interpret a visual
scene, you fixate at some location and you recognize nouns, verbs,
adjectives, adverbs and prepositions. Because the linguistic system
is highly structured, these recognitions produce a large number of
inferences about what could be happening in the scene. This leads
you to fixate at a new location, and the same process is repeated. In
this case, language acts as part of an attention mechanism.

Thus, language is beneficial not so much for communication, but
for facilitating the shaping of different cognitive spaces. Finally, it
should be clear that instead of language one could use a formal sys-
tem with properties like the ones of language. The symbols of the
system would be labels of the different concepts that the system
possesses and they would have to obey a number of constraints.
Language gives us this for free. In the next section, we describe
how the Vision-Action-Language loop integrates language to real-
ize some of the uses that was described here.

1.2 The Vision-Action-Language Loop
The Vision-Action-Language loop is depicted in Fig. 1.

Possible Hypothesis Confirmatiorigf Alternative

Act and Affect Visual Sensors

Figure 1: The Vision-Action-Language Loop.

Each of the three nodes can be seen as a distinct process (an exec-
utive) in the Robot’s operating system . The Visual executive takes
care of low-level visual processing associated with the task at hand:
e.g, segmenting an object, or extracting certain visual features. The
output of the visual executive are a set of possible hypothesis on the
task which is then passed on to the Language executive. The Lan-
guage executive will then act as a reasoner, using high-level knowl-
edge embedded in language to decide which, if any, of the hypoth-
esis makes sense; and provide reasonable alternatives. The output
of the Language executive is therefore a set of potentially modified
hypothesis which can be acted upon by the Action executive. Based
on the set of modified hypothesis, the Action executive will then de-
cide the most appropriate next course of action that will affect the
visual sensor: e.g. to move to a new location or to change the sen-
sors’ pan-tilt-zoom (PTZ) unit. This Vision-Action-Language loop
continues until the Action executive decides that a certain end goal
or objective had been realized which is then relayed to the rest of
the robot’s operating system. We call it a cognitive “dialogue” as
the three executives are constantly working in a synergistic manner
to update each others prior beliefs, so as to achieve a shared goal or
objective together.

2. RELATED WORKS

The use of language in robotics has been pursued recently in the
fields of Computer Vision, Al and Robotics. We highlight a few
prominent related studies in these areas.

In the field of computer vision, the classical view of Marr and
others [17] considered language to be part of high-level vision, dia-

metrically opposed to the low-level visual processes that processes
the signals directly. As a result, language was only used “at the end”
of the visual processing pipeline. With advances on textual process-
ing and detection, several works recently focused on using sources
of data readily available “in the wild” to analyze static images. The
seminal work of [4] showed how nouns can provide constraints
that improve image segmentation. [9] (and references herein) added
prepositions to enforce spatial constraints in recognizing objects
from segmented images. [1] processed news captions to discover
names associated with faces in images, and [11] extended this work
to associate poses detected from images with the verbs in the cap-
tions. Some studies also considered dynamic scenes. [2] studied the
aligning of screen plays and videos, [15] learned and recognized
simple human movement actions in movies, and [10] studied how
to automatically label videos using a compositional model based on
AND-OR-graphs that was trained on the highly structured domain
of baseball videos The work of [5] attempts to “generate” sentences
by first learning from a set of human annotated examples, and pro-
ducing the same sentence if both images and sentence share com-
mon properties in terms of their triplets: (Nouns-Verbs-Scenes). No
attempt was made to generate novel sentences from images beyond
what has been annotated by humans.

In AL the use of language had been largely confined to classical
problems in computational linguistics: 1) speech recognition 2) lan-
guage modeling (e.g. machine translation) and 3) text generation.
In speech recognition, current approaches include automatic speech
recognition and understanding, both need language information as
prior knowledge. For language modeling, the work of IBM mod-
els uses large parallel text corpus to build HMM style language
models [12], and then apply it into several applications, such as
machine translation. In terms of text generation, classic approaches
[25] are based on three steps: selection, planning and realization. A
common challenge in generation problems is the question of: what
is the input? Recently, approaches for generation have focused on
formal specification inputs, such as the output of theorem provers
[20] or databases [6]. Most of the effort in those approaches has
focused on selection and realization.

State of the art robotics uses language as a communication sys-
tem; conversational robots of the new millennium have more or less
sophisticated mechanisms to map words to related sensorimotor ex-
periences so that they engage into more natural human robot inter-
action (e.g. [18], cf. also [22] for an extensive review). Language
has been used to trigger action-sensory state associations ([26]) or
predesigned control programs ([16]); mappings from natural lan-
guage to symbolic logic or temporal logic and then to basic control
primitives of the robot ([13]) have also been developed for control-
ling robots with high level task descriptions. The system of [19]
describes model that enables the agent to ground evidences from
multiple modalities: language, vision, etc. However, none of these
approaches takes advantage of language as a contextual system and
as part of a reasoning system. With the exception of a few notable
approaches on understanding of gestures by robot platforms (cf. for
example [14]) or using visual scenes to prime speech understand-
ing ([23]) there has not been much work on scene interpretation
by robotic agents. There are many reasons for this, but basically
computer vision solutions developed in the image/video databases
arena that use language as a contextual system do not transfer to
robots.

3. INTEGRATING LANGUAGE

In this section we present preliminary implementations of the
Vision-Action-Language cognitive dialogue on three tasks: 1) Ob-
ject recognition, 2) Action recognition and 3) Scene description.



For each task, we highlight how each implementation is related
to the cognitive dialogue and summarize the results from exper-
iments performed on a robot that is endowed with the presented
algorithms.

3.1 Attributes-Based Object Recognition

The key goal of any object recognition task is to provide distinct
labels to objects within the image. For language to be integrated
into this task, we propose to use attributes that link visually ex-
tracted information to textual descriptions that humans would use
to describe these objects. An attribute can be defined as a property
that is innate to the object, and as a result is invariant under most
circumstances. In addition, the use of attributes has strong links to
human perception [3]. Such properties makes attribute detection an
important capability for cognitive robots. Our approach first seg-
ments the image into foreground regions and background, and then
computes on the foreground object attribute properties. In this study
we focused on shape properties. Since our application was the de-
scription of kitchen tools (3.4 we have identified the following five
computable attributes:

Is elongated: An ellipse was fitted to the mask provided by seg-
mentation, and the ratio of major to minor axis was used to set a
threshold (Fig. 2a).

Is round: 1f the ratio of major to minor axis is about the same,
the object was considered round.

Has a handle: If the error from fitting two separate ellipses was
lower than from fitting a single ellipse, the object was considered
having a handle (Fig. 2b).

Is a container: Depth discontinuities were found in the depth
mask. If the object could be segmented into parts, with one part of
a mostly concave depth map and the other part of a mostly convex
depth map, the object was considered a container (Fig. 2c).

Has a flat part: If an object was classified as consisting of two
parts by the 2D shape attribute method, a plane was fitted to the
larger part.

()

Figure 2: Examples of shape attributes (a) Elongated (b) Has
handle (c) Is a container.

The Language Executive is a simple language model that uses
the attributes extracted by the Visual executive to perform a classi-
fication of the object’s identity as shown in Fig. 3 using a decision
tree based classifier.

3.2 Action Recognition

For this task, we are interested in recognizing actions associated
with certain hand-tools. The basic intuition is to exploit the close
semantic relationship between actions and tools in a large text cor-
pus to improve the recognition of actions and tools in the visual
space. The basic framework is summarized in Fig. 4

The Visual Executive extracts visual features related to the action
(trajectories of hand) and tools. It then performs a classification of
these features to produce initial hypothesis of their labels, which is

START

expected to be noisy. The Language Executive first creates a lan-
guage model that gives the conditional probability of how likely an
action has occurred given the tool. This was done by mining a large
text corpus [8] for correlated tools and actions. We then combined
the probabilities to determine the final labels of tool and associated
action. This step can be repeated in a few iterations, where at each
iteration, we retain only the top N hypothesis of actions and tools
until we do not see any significant updates or only a single pair of
tool and action exists.

3.3 Scene Description

The goal of this task is to produce a textual description of an
image or video sequence based on a triplet 7 of objects, actions and
environments (locations) that co-occur in the scene. The full details
of the implementation are described in [27], and we link it to the
Vision-Action-Language loop described here. The key component
of the approach in [27] is the dynamic programming optimization
of an HMM that integrates language and visual input as shown in
Fig. 5.
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Figure 5: The HMM used to predict the optimal triplet 7:
N1, N2 corresponds to objects and tools, and V' corresponds
to verbs (actions). The relevant transition and emission proba-
bilities are also shown. See text for more details.

The key idea to this approach is to model the detection scores
from visual object and scene detections as emissions (observations)
in the HMM. This is the Visual Executive in the framework. The
transition probabilities, learned from the same large text corpus [8],
describe how the different components of 7 relate to each other.
This forms the Language Executive. Optimizing over the HMM
essentially finds the most likely 7 that supports both visual ob-
servations and linguistic correctness, which simulates the cognitive
dialogue between the processes. A template based method of gen-
erating sentences is then used to generate a descriptive sentence
from 7.

3.4 The Telluride Experiments

The algorithms described in the preceding sections are imple-
mented on a mobile robot whose goal is to observe a human per-
form certain actions with kitchen tools and to ultimately generate a
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Figure 3: Example of using attributes for object recognition.
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Figure 4: Key components of the approach.: (a) Training the language model from a large text corpus. (b) Detected tools are queried
into the language model. (c) Language model returns prediction of action. (d) Action features are compared and beliefs updated.



sentence that describes the actions. All the experiments were con-
ducted during the 2011 Telluride Neuromorphic Workshop', and
we first describe the experimental setup and procedure and report
accuracy results.

3.4.1 Experimental Setup

The robot (Fig. 6), is looking at the table where humans perform
tasks using a number of tools and objects. The session begins with
a number of objects, o € O and tools ¢ € T on the table which
the robot observes. Then a person approaches and begins an action
a € A, out of set of |A| actions.

Kinect

Figure 6: The Telluride Robot used in the experiments with its
sensory hardware.

The robot first extracts visual features of objects and tools from
the table and attempts to label them using attributes as described in
sec. 3.1. This yields a set of scores over all objects o and tools ¢.
When the action starts, it tracks the hand and elbow locations of the
human (using the on-board kinect sensor) to extract action features
(velocity and Fourier coefficients). Together with the labels of the
tools, we use the approach described in sec. 3.2 to compute a detec-
tion score for each action a. With these initial detection scores, we
use the algorithm described in sec. 3.3 to generate the final triplet
T of object, tools and actions in order to generate a reasonable
sentence that describes the scene. The overview of the processing
pipeline is shown in Fig. 7.

The experimental test dataset consists of 9 actions: A={slice,
mash, peel, chop, pour, stir, toss, sprinkle, pour} performed by 2
different human actors using 9 common tools: T'={knife, masher,
peeler, pitcher, ladle, fork/spoon, shaker, mug, bowl} and 7 other
objects: O={bowl, mug, tomato, cucumber, coffee, soup, salt}. In
total, there are 18 video clips, each with 9 actions performed by the
2 actors.

3.4.2 Results

The output of the initial visual processes is the triplet of 7 =

{a, o0, t} of action, objects, tools associated with the video observed.

The initial output triplet 71, 72 (one for each actor) is then passed
on to scene description algorithm (sec. 3.3) which then modifies
the triplet if necessary to form the final output triplet 7;*, 75". We
evaluate the effectiveness of our approach by comparing the over-
all recognition accuracy Acc, computed as the weighted average
from the recognition of the three components in 71,2 and 775 with
the ground truth. The results over the 18 videos are summarized in
Table 1.

These results show that on average, we are able to improve upon
the recognition accuracies of objects, tools and actions from pure
visual processes with the help of the Language Executive. Mistakes

1http ://ine-web.org/telluride-conference-2011/

telluride—-2011/index.html

Test Video (Truth) Ti, T2(Acc) T, Ts (Acc)

{slice,tomato,knife }
{slice,tomato,knife}(1.0)

{slice,tomato,knife }

{slice,tomatoknife} {slice,tomato knife}(1.0)

{mash,bowl,masher}
{sprinkle,bowl,mug}(0.5) {sprinkle,bowl,shaker} (0.67)

{mash,bowl,masher} {mash,bowl,mug}

{toss,cucumber,peeler} {peel,cucumber,peeler }

{peel.cucumberpecler} { peel,cucumber,peeler} (0.83) | {peel,cucumber,peeler}(1.0)

{chop,cucumber,knife } {chop,cucumber,knife }

{chop,cucumber knife} {mash,cucumberknife}(0.83) | {chop,cucumber.knife}(1.0)

{toss,bowl,fork } {toss,bowl,fork }

{toss,bowl fork/spoon} {toss,bowl,spoon}(1.0) {toss,bowl,spoon}(1.0)

{sprinkle,cucumber,bowl} {sprinkle,bowl,shaker}

{sprinkle,bowl,shaker} {sprinkle,bowl,shaker} (0.83) | {sprinkle,bowl,shaker}(1.0)

{pour,bowl,spoon } {pour,bowl,spoon }

{stir.bowl fork/spoon} {pour,bowl,spoon} (0.67) {pour,bowl,spoon} (0.67)

{stir,mug,pitcher} {pour,mug,pitcher}

{pour,mug,pitcher} { stir,mug,pitcher} (0.67) { pour,mug,pitcher} (1.0)
{pour,bowl,ladle } {pour,bowl,ladle}
{pourbowlladle} {pour,bowl.ladle} (1.0) {pour,bowl.ladle} (1.0)
[ Overall 081 [0.93

Table 1: Triplet accuracy: Initial predictions and final predic-
tions

still occur and this is because we have not exploited the “Action”
Executive of the cognitive dialogue. We address this issue (along
with others) in the next section.

4. FUTURE WORK

In this section, we discuss possible future research directions that
we believe are important for integrating language into vision and Al
for solving problems of scene recognition.

4.1 Adding Action

As we have noted in sec. 3.4.2, the mistakes observed in the Tel-
luride Experiments are due to the fact that the robot is stationary
and is passively observing the scene. If the robot becomes an active
mobile agent, endowed with an Action Executive, problems that
had limited the visual processing performance could be mitigated
via several strategies:

e Fixation based tracking: As the scene is dynamically chang-
ing, with the human actor moving from one part of the scene
to another, tracking where the humans are moving the PTZ
unit to focus on them will improve the recognition accuracy
of the visual processing by reducing false alarms (limited
search space)

e Moving to a new location: Objects and tools that are manip-
ulated will change position throughout the process, and may
become occluded from time to time. By moving closer or
changing its location, the robot could actively aid the recog-
nition by re-tracking the occluded objects or bringing them
closer, aiding visual processing.

e Reacting in a reasonable manner: Adding a robotic arm would
allow the robot to directly manipulate objects, which would
bring the Vision-Action-Language loop to a deeper level. For
example, if an object is determined to be occluded by another
in front of it, the language reasoner will hint at the robot to
attempt to move the occluder so that recognition can be en-
hanced, by an action called “move”, which is then mapped to
the robot’s motor system to perform the required action.

4.2 Multi-level recognition of actions

Actions are compositional in nature. Starting from simple ac-
tions occurring on a part of the body, we can compose actions from
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several limbs to create more complex actions, and we can further
combine a sequence of simple actions with tools together to form
an activity. Language can be used to enhance the action recognition
at the higher levels and its composition from lower-levels onwards.
The key idea is that Language provides a structure that enforces
certain constraints on how actions can be composed. For example,
focusing on hand-tools alone, there are sets of reasonable actions
associated with tools (sec. 3.2). Yet, these actions together are often
used to accomplish a global purpose, such as baking a cake. We are
in the process of creating several datasets based on cooking recipes
so that Language can be used to enforce temporal and logical con-
straints on how actions can be chained together. The Language ex-
ecutive will work across all levels, from bi-grams of actions to in-
ferring the most likely activity from the sequence of such bi-grams,
with a corpus learned from digital cooking recipes.

4.3 Mining from Text and Corpus

We have till now considered the Language Executive to be de-
rived from static sources of corpora. However, for an active agent
to be able to accommodate to changes in its surroundings, it is more
practical to construct such models “on the fly”. Methods such as
[7] that perform approximate search through large databases are
most promising. In addition, more sophisticated methods that uti-
lize algorithms for relational database mining can be used to extract
indirect correlations between objects and their attributes. One in-
teresting way is to exploit relevant questions that humans pose for
such objects, and use them to infer possible attributes: e.g. “Is X
round? Is Y sharp?”. Additionally, one can use various bootstrap-
ping algorithm e.g. [24] using seeds derived from various semantic
databases: ImageNet, WordNet etc [21] to extract adjectives where
such objects occur.

5. CONCLUSIONS

In this paper, we have argued for the importance of exploiting
language in the context of endowing artificial agents with cogni-

tive capabilities. We have demonstrated how the Vision-Action-
Language loop can be viewed as a cognitive dialogue between var-
ious processes, and we have implemented this dialogue on three
tasks, namely object action, and scene recognition. Experiments on
our data collected at Telluride confirm that language is a powerful
tool which improved object, tool and action recognition. We also
discussed potential directions for future work needed to complete
the Vision-Action-Language framework in more general settings
and for active mobile agents.
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