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Where is the ‘bottle’ in the scene?




Where is the ‘bottle’ in the scene?




Our Contribution

* Propose a top-down mechanism for selecting
fixation points that corresponds to the target
via a mid-level contour grouping mechanism.
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Grouping contours via Image Torquel!]

* For every edge point g with center p:
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* For a patch P: ST > Tma
qEE(P)

— search over several scales for patch P.
[1] M. Nishigaki et al. The image torque operator: A new tool for mid-level vision. CVPR 2012



Properties of Image Torque

* Tp has the following properties

— Largest response for closed contours at a
particular scale.

— lgnores textured regions.

— Maximum torque values occurs at region
centroids

* |Indicative of potential object locations.
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Making 7, Object Specific: 75"

* By adjusting weights for each 7, :

— Conforms to shape of target object within a
predefined window size:
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* dg is the Euclidean distance between edge
point g to the target shape.



Why does this work for clutter?

* Tp gets confused by clutter:
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* Left: no clutter — works well 2 7,=0

e Right: clutter — similar torque values with
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Tp' is robust to clutter

m S>> ™ ™ ~ M
T P(4) 4 P(B) t P(C) T i

* Using T5' — edges that are non-conforming are
given less weights 2 15(4y>> 15(5y= Tp(y= Tpr 20



Example Results

Input RGB + Depth
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Implementation Details

RGB + Depth Input
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Model Poses

Pose selection Scale selection
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Experiments

* (a) Cluttered data collected at UMD — 3 sequences,
7 objects

e (b) U Washington Dataset of common objects — 8
sequences, 6 objects

> More
clutter
‘ 1 '8

* Evaluate by counting the rank of correct fixations
from total fixations returned. .



Results
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(L) CMC (Cumulative Match Curves) for Clutter sequences,
(R) CMC for U Washington sequences ;



On-going improvements

Searching over full shape model is not fast in
practice.

— Learn salient contours from annotated examples
— Match partial contour fragments to models
— Reweigh torque based on matching scores

Learned contours examples (ETHZ-Shapes):
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Matching: Torque Shape-Context

Matching Edge Weights

15



Edge Weights

Example results

RGB Input
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Outlook and Future Work

 Modify the image torque in other ways:

— Generic set of shape primitives common among a
set of objects.

* Linking torque to higher-level descriptions:
e.g. attributes.

* Extend approach with object segmentation for
recognition.



Thanks! Questions?

* Contacts:
— Ching L. Teo cteo@cs.umd.edu
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