Efficient Object Search in Clutter via Image Torque

Ching L. Teo*, Austin Myers,

Cornelia Fermüller and Yiannis Aloimonos

University of Maryland

ICRA 2013

Sponsors:

Where is the 'bottle' in the scene?

Where is the 'bottle' in the scene?

Our Contribution

 Propose a top-down mechanism for selecting fixation points that corresponds to the target via a mid-level contour grouping mechanism.

Ranked Fixations

Input RGB + Depth ab clefghijk immop grstu **Find Bowl Find Spoon**

Grouping contours via Image Torque^[1]

For every edge point q with center p:

For a patch P:

$$\tau_P = \frac{1}{2|P|} \sum_{q \in E(P)} \tau_{pq}$$

search over several scales for patch P.

[1] M. Nishigaki et al. The image torque operator: A new tool for mid-level vision. CVPR 2012

Properties of Image Torque

- τ_P has the following properties
 - Largest response for closed contours at a particular scale.
 - Ignores textured regions.
 - Maximum torque values occurs at region centroids
- Indicative of potential object locations.

Making τ_P Object Specific: τ_P^m

- By adjusting weights for each au_{pq} :
 - Conforms to shape of target object within a predefined window size:

$$\tau_P^m = \frac{1}{2|P|} \sum_{q \in E(P)} m_{\mathcal{O}}(\tau_{pq})$$

• with

$$m_{\mathcal{O}}(\tau_{pq}) = \frac{\tau_{pq}}{d_{qs}}$$

• d_{qs} is the Euclidean distance between edge point q to the target shape.

Why does this work for clutter?

• τ_P gets confused by clutter:

- Left: no clutter works well $\rightarrow \tau_{P'}=0$
- Right: clutter similar torque values with objects $\rightarrow \tau_{P(A)} \approx \tau_{P(B)} \approx \tau_{P(C)} \approx \tau_{P'} \neq 0$

τ_P^m is robust to clutter

E.g. Looking for shape A:

$$au^{m}_{P(A)} >> au^{m}_{P(B)} \sim au^{m}_{P(C)} \sim au^{m}_{P'}$$

• Using τ_P^m – edges that are non-conforming are given less weights $\rightarrow \tau_{P(A)}^m >> \tau_{P(B)}^m \approx \tau_{P(C)}^m \approx \tau_{P'}^m \neq 0$

Example Results

Implementation Details

Experiments

- (a) Cluttered data collected at UMD 3 sequences,
 7 objects
- (b) U Washington Dataset of common objects 8 sequences, 6 objects

 Evaluate by counting the rank of correct fixations from total fixations returned.

Results

(L) CMC (Cumulative Match Curves) for Clutter sequences,(R) CMC for U Washington sequences

On-going improvements

- Searching over full shape model is not fast in practice.
 - Learn salient contours from annotated examples
 - Match partial contour fragments to models
 - Reweigh torque based on matching scores
- Learned contours examples (ETHZ-Shapes):

Matching: Torque Shape-Context

Example results

Outlook and Future Work

- Modify the image torque in other ways:
 - Generic set of shape primitives common among a set of objects.
- Linking torque to higher-level descriptions:
 e.g. attributes.
- Extend approach with object segmentation for recognition.

Thanks! Questions?

Contacts:

Ching L. Teo

cteo@cs.umd.edu

Acknowledgements:

