Integrating Language into Computer Vision

Ching L. Teo

University of Maryland Institute for Advanced Computer Studies

09 Jan 2012

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Outline

- 1 Why Vision and Language
- 2 Scene Recognition
- 3 Action Recognition
- Generating Descriptions
- 5 Future Work

6 Conclusions

Scene Recognition

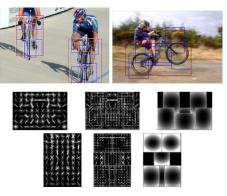
Action Recogniti

tion Generating Descriptions

Future Work Conclusions

Motivation

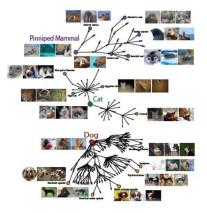
- Computer Vision seeks to achieve *perception* through visual signals.
- Current approaches to perception: extract edges, texture, motion, color, surfaces.
- What comes next?



Felzenszwalb, P. et al, *Object* detection with discriminatively trained part-based models, PAMI 2010

イロト 不得 トイヨト イヨト

- This is not enough: high-level knowledge is required.
- High-level knowledge: semantics, function, attributes, associations.
- Enables *reasoning* from perception.
- Approach: use *language* as a resource of high-level information to solve problems in Computer Vision.



Jia Deng et al, *ImageNet: A* Large-Scale Hierarchical Image Database, CVPR 2009

Why Language?

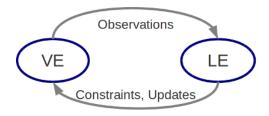
Language provides:

- A lexicon (dictionary) that encodes contextual relationship between entities: e.g. ladle → kitchen.
- Generalizes to beyond what is "seen" (non-visual): e.g. sun, beaches, people $\xrightarrow{\text{relates}}$ vacation.

Computational Linguistics have provided tools and relational databases that encodes relationships such as: is-a, cause-effect, performs-functions, motivated by etc.

Approach: The Cognitive Dialog

- A model of a reasoning process that involves the Visual Executive (VE) and Language Executive (LE).
- VE provides: observations, low-level feature extraction.
- LE provides: constraints, plausiblity of observations from VE.
- Each iteration of the "dialog" seeks to optimize a global function related to the task: e.g. scene/object/action recognition, object segmentation.



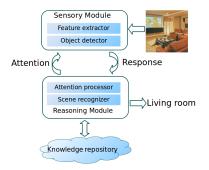
Implementing the Dialog

Three different works explored so far:

- Active scene recognition.
- Action-Tool Recognition.
- Generating descriptions of images/videos.

Active Scene Recognition

- Goal: Scene recognition guided by high-level knowledge.
- VE: Object Detection + Recognition.
- LE: Guides VE to select the type and position of the object detector to use in the *next* iteration.
- Determines the most likely scene category based on history of detection scores and object's location.



X. Yu et al, Active Scene Recognition with Vision and Language, ICCV 2011

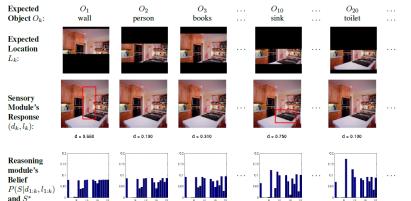
Information Gain Criterion

scene = office

scene = office

 Selection of the next object category to detect is based on computing the expected information gain across all objects and locations:

$$\{O_k^*, L_k^*\} = \arg\max_{O_k \in N_{k-1}, L_k \in \mathcal{L}_k} I(S; d_k, I_k | d_{k-1}, I_{k-1})$$



scene = dining room

scene = kitchen

< 17 ▶

scene = kitchen

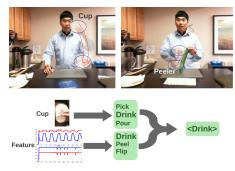
э

Generating Descriptions Future Work

k Conclusions

Action Recognition is Hard

- Goal: Recognizing various actions involving hand-tools.
- Challenge: ambiguity of actions simply from the trajectories of the hand alone.
- Key idea is to use language as source of prior knowledge that relates *tools* with the actions performed.

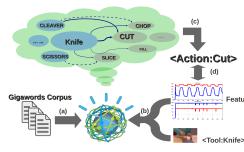


C. L. Teo et al, *The Watson That Sees:* Language-Guided Action Recognition for Robots, ICRA 2012

(日)、

Corpus-Guided Action Recognition

- Input: set of unlabeled videos.
 Goal is to estimate a model that assigns clusters of videos to the correct actions.
- VE: detects tools and action features (noisy).
- LE: provides a *language model* for computing likelihoods of tool-action co-occurance.
- Strategy: EM to update the action assignment model at each iteration.

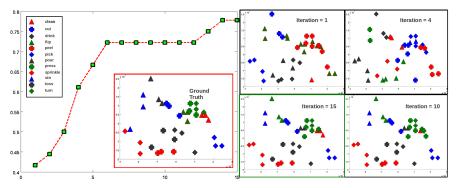


(a) Training the language model from a large text corpus.
(b) Detected tools are queried into the language model.
(c) Language model returns prediction of action.
(d) Action features are compared and beliefs updated.

EM steps

- E step: compute the expectation of the assignment variable for action j, tool i, video d: W_{ijd} ∝ P_I(i)P_L(j|i)Pen(d|j)
- M step: update the model parameter $\hat{\mathcal{C}}$ via:

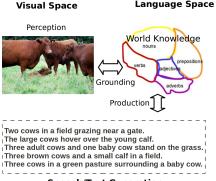
$$\arg \max_{\mathcal{C}} \left(-\sum_{i,j,d} \mathcal{W}_{ijd} ||F_d - \mathcal{C}_j||^2 \right)$$



◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへ⊙

Generating Descriptions of Images

- Goal: Automatic generation of a sentence that *describes* an image.
- Three processes: visual perception, grounding via language and sentence production.
- Key hypothesis: natural images describe common everyday scenarios which are captured in language.
- Assumption: images are described by T = n, v, s, p (nouns, verb, scene, preposition).

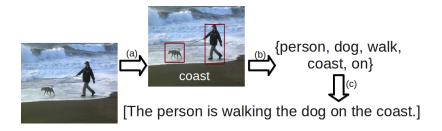


Speech/Text Generation

Y. Yang et al, Corpus-Guided Sentence Generation of Natural Images, EMNLP 2011

Approach

- Input: static image of a natural scene.
- VE: object and scene detection.
- LE: predicts the verb that co-occurs with detected objects and scene to determine \mathcal{T}^* .
- A plausible sentence is then generated from \mathcal{T}^* .

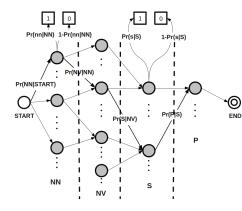


Predicting \mathcal{T}^*

- A dynamic programming approach using HMM.
- Observations: Detections from VE, *P_r(n|1)* and *P_r(s|1)* (nouns and scenes).
- Transition probabilities: statistics from large text corpus (NYT), $P_r(v|n_1, n_2), P_r(s|n, v), P_r(p|s).$

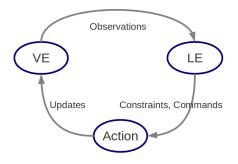
• Optimize:

 $\mathcal{T}^* = \operatorname{arg\,max}_{n,v,s,p} P_r(\mathcal{T}|n,v,s,p)$



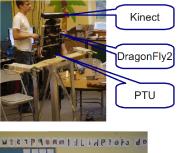
Completing the Cognitive Dialog

- A missing component of the dialog is *action*, implemented on a mobile robot.
- The action component acts upon results from the LE, which in turn affects the VE.
- Applications: navigation (where to go next), attention (where to look next), scene understanding.



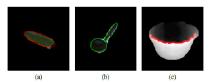
Robotic platform

- Telluride Workshop 2011: integrated components onto a mobile robot.
- Task: recognize kitchen activites performed by a human actor.



VE modules

- Object/tools segmentation.
- Skeletal tracking of human actor, extract trajectories.
- Extracting basic 3D shape description of objects:
 - a) elongated
 - b) has_handle
 - c) container.
- Output: a triplet of {tool, object, action}.



(日)、

э

LE modules

- Uses a language reasoner to determine if the triplet from VE makes sense:
- E.g. {knife, tomato, slice} \rightarrow ACCEPT
- E.g. {bowl, mug, mash} \rightarrow ALTERNATIVE: {bowl, masher, mug}

Language reasoner is based on a respository of semantic concepts built from a variety of resources: WordNet, FrameNet, etc...

Conclusions

- When used properly, language can be exploited to solve important problems in vision.
- For this talk, used a Cognitive Dialog framework:
 - 1) scene recognition,
 - 2) action recognition,
 - 3) image description.
- Full potential of this integration will be realized on an active agent.

Acknowledgements

• Advisors: Prof. Yiannis Aloimonos, Dr. Cornelia Fermüller, A/Prof. Hal Daumé III.

- Collaborators: Xiaodong Yu, Yezhou Yang.
- Contact information: cteo@cs.umd.edu