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Abstract— For robots of the future to interact seamlessly with
humans, they must be able to reason about their surroundings
and take actions that are appropriate to the situation. Such
reasoning is only possible when the robot has knowledge of how
the World functions, which must either be learned or hard-
coded. In this paper, we propose an approach that exploits
language as an important resource of high-level knowledge
that a robot can use, akin to IBM’s Watson in Jeopardy!. In
particular, we show how language can be leveraged to reduce
the ambiguity that arises from recognizing actions involving
hand-tools from video data. Starting from the premise that
tools and actions are intrinsically linked, with one explaining
the existence of the other, we trained a language model over a
large corpus of English newswire text so that we can extract
this relationship directly. This model is then used as a prior
to select the best tool and action that explains the video. We
formalize the approach in the context of 1) an unsupervised
recognition and 2) a supervised classification scenario by an EM
formulation for the former and integrating language features
for the latter. Results are validated over a new hand-tool action
dataset, and comparisons with state of the art STIP features
showed significantly improved results when language is used. In
addition, we discuss the implications of these results and how
it provides a framework for integrating language into vision on
other robotic applications.

I. INTRODUCTION

Humans display an uncanny ability to perceive the world
that far surpasses current vision only based systems both
in terms of precision and accuracy. This is largely due to
the vast amount of high-level knowledge that humans have
acquired over their lives that enables humans to infer and
recognize complex visual inputs. In the same way, service
and personal robots of the future must be endowed with
such knowledge in order to interact and reason with humans
and their environments effectively. This knowledge can be
encoded in various forms, of which language is clearly the
most predominant. Language manifests itself in the form of
text which is also extremely accessible from various large
research corpora.

The ability to reason is an essential faculty for service
and personal robots. A typical scenario is when the robot
needs to understand an action or task which the human
performs for the purpose of learning. Such Learning from
Demonstration (LfD) [1] paradigm is gaining popularity in
robotics as shown by the recently concluded Learning by
Demonstration Challenge at AAAI 20111. There are two
interconnected components in LfD. The first component
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Fig. 1. (Top) Ambiguities in action recognition: similar trajectories for
different actions. Tools considered in isolation can only suggest possible
actions. (Below) Language can predict, given the tool and action trajectories,
the most likely action label.

recognizes what actions occurred and the second component
creates an internal representation so that the action can be
recreated by the robot. Unlike the LfD challenge where the
robot is supposed to recreate the one task it was taught (the
second component), we address a variant of the first compo-
nent where the robot labels the correct action associated with
a set of unlabeled action data (with repetitions) performed
by different human teachers (or actors). Posing our problem
in terms of unlabeled data over different actors is also closer
to reality as the robot needs to learn how to generalize the
action so that it can discover, in the second component, an
optimal representation to recreate this action on its own.

In this paper, we consider the task of recognizing human
activities from videos sequences – specifically, activities
that involve hand-tools. Action or activity recognition has
remained one of the most difficult problems in computer
vision. The main reason is that detections of key objects that
define the action in video – tools, objects, hands and humans
are still unreliable even using current state of the art object
detectors [10], [26]. Descriptions based on tracking trajecto-
ries of local features such as STIP [19] and modeling velocity
as suggested in [22], are strongly viewpoint dependent and
may be confused when similar movements are used for
different actions, e.g. drinking from a cup vs. peeling. Both
actions involve large up-down hand movements. The main
challenge of action recognition is the ambiguity when these
two components: objects and trajectories, are considered
in isolation. From Fig. 1(top), detecting a cup or action
trajectory in isolation can only suggest some likely actions. A
more reliable prediction can be achieved when we combine



both object detection and trajectories.
A missing component in the above approach is how we

can combine object detection with actions in a logical and
intuitive way. To do this, we propose to model language as
a resource of prior knowledge that essentially encodes how
actions and objects (tools) are related. This language model
allows us to weigh the video detections so that the objects
and action features that best explain the video are eventually
selected (Fig. 1(below)).

II. RELATED WORK

Action recognition research spans a long history. Com-
prehensive reviews of recent state of the art can be found
in [28], [30], [21]. Most of the focus was on studying
human actions that were characterized by movement and
change of posture, such as walking, running, jumping etc.
Many studies represent actions by modeling body poses,
body joints and body parts [24]. Depending on the extent of
the features used, the literature distinguishes between local
and global action models. The former use spatio-temporal
interest points and descriptors based on intensity, gradients
and flow within spatio-temporal cuboids centered on these
interest points [19], [7]. The latter compute descriptors over
the whole video frame or an extracted human skeleton or
silhouette. For example, [9] used histograms of optical flow
and Gorelick et al. [11] and Yilmaz et al. [31] represented
human activities by 3-D space-time shapes. Another class
of approaches model the evolution of actions over time. For
example Bissacco et al. [3] used joint-angle as well as joint
trajectories from motion-capture data and features extracted
from silhouettes to represent action profiles. Chaudhry et al.
[5] employed non linear dynamical systems to model the
temporal evolution of optical flow histograms.

Our approach is more closely related to the use of language
for object detection and image annotation. With advances
on textual processing and detection, several works recently
focused on using sources of data readily available “in the
wild” to analyze static images. The seminal work of Duygulu
et al. [8] showed how nouns can provide constraints that im-
prove image segmentation. Gupta et al. [14] (and references
herein) added prepositions to enforce spatial constraints in
recognizing objects from segmented images. Berg et al.[2]
processed news captions to discover names associated with
faces in the images, and Jie et al.[17] extended this work to
associate poses detected from images with the verbs in the
captions. Some studies also considered dynamic scenes. [6]
studied the aligning of screen plays and videos, [20] learned
and recognized simple human movement actions in movies,
and [15] studied how to automatically label videos using
a compositional model based on AND-OR-graphs that was
trained on the highly structured domain of baseball videos .

These recent works had shown that exploiting co-occurring
text information from scripts and captions aids in the visual
labeling task. Our paper takes this further by using generic
text obtained from the English Gigaword corpus [12], which
is a large corpus of English newswire text from which we
learn a language model. As we will show, using general NLP

tools, we still can derive interesting relationships to guide the
visual task of action recognition.

III. OUR APPROACH

The input is a set of |M | videos, M = {md}, d ∈
{1, 2, · · · , |M |} containing some actions, with each video
containing exactly one unique action. The |V | actions are
drawn from the set V = {vj}, j ∈ {1, 2, · · · , |V |}. This
means that we have assumed that the task of segmenting
actions from a long video sequence has been done. In
addition, we assume that every action must have an actor
that uses a particular hand-tool. The same tool can be
used in multiple actions. The |N | tools comes from the set
N = {ni}, i ∈ {1, 2, · · · , |N |}. All labels (both actions and
tools) must be known in advance, which is a requirement for
learning the appropriate language model. A summary of the
approach is shown in Fig. 2.

Fig. 2. Key components of the approach.: (a) Training the language model
from a large text corpus. (b) Detected tools are queried into the language
model. (c) Language model returns prediction of action. (d) Action features
are compared and beliefs updated.

The high level overview of the approach is as follows (see
Fig. 2): 1) We first detect potential tools from the input video.
2) For each identified tool, we query a trained language
model to determine the most likely verbs (actions) associated
with the tool. 3) We then confirm the predicted action using
the action features obtained from the video to update our
confidence on the current action label of the video. This
process is repeated until our belief on the action labels is
maximized over all tools and action features. Note that our
approach is symmetric, that is, we could have started off with
action features and inquire the language model in exactly the
same way. Our choice of starting with objects is based on
the fact that object detectors are better researched and are
generally more accurate than action detectors.

For the purpose of this discussion, we shall assume the
most general case where we only have unlabeled video data.
This means that the best that we can do is to perform some
form of clustering to discover automatically what is the best
action label that describes the cluster. Intuitively, we want to
learn the “meaning” of actions by grounding them to visual
representations obtained from video data. Hence if we knew
this grounding, we can assign action labels to the videos. On
the other hand, if we know the action labels of the video data,
we can estimate this grounding. This leads naturally to an
iterative Expectation-Maximization (EM) formulation where



we attempt to determine the optimal grounding parameters
that will assign action labels to videos with the highest
probability.

More formally, our goal is to label each video with their
most likely action, along with the tool that is associated with
the action. That is, we want to maximize the likelihood:

L(D;A) = EP(A)[L(D|A)]
= EP(A)[logP(FM ,PI(·),PL(·)|A)] (1)

where A is the current (binary) action label assignments of
the videos (see eq. (3)). D is the data computed from the
video that consists of: 1) the language model PL(·) that
predicts an action given the detected tool (sec. III-A), 2)
the tool detection model PI(·) (sec. III-B) and 3) the action
features, FM , associated with the video (sec. III-C). We
describe how these 3 data components are computed in the
following paragraphs and detail how we optimize eq. (1)
using EM in sec. IV-A.

A. Language as a predictor of actions

The key component of our approach is the language model
that predicts the most likely verb (action) that is associated
with a noun (tool) trained from a large text corpus. We
view the Gigaword Corpus as a large text resource that
contains the information we need to make correct predictions
of actions given the detected tools from the video. We do
this by training a language model PL(vj , ni) that returns
the maximum likelihood estimates of an action vj given the
tool ni. This can be done by counting the number of times
vj co-occurs with ni in a sentence:

PL(vj |ni) =
#(vj , ni)

#(ni)
(2)

As many English words share common meanings, a simple
count of the action words (verbs) defined in V is likely
to grossly underestimate the relationship between the tool
and the action it is associated with. For example, in the
Gigaword Corpus, counting the number of times drink
co-occurs with cup where the actual words are used will
not be significantly larger than pick and cup. The reason
is that cup can mean a normal drinking cup or a trophy
cup. In order to ensure that PL captures the correct sense
of the word (nouns, verbs), we use WordNet to determine
the synonyms and hyponymns of the tools and actions
considered. As illustrated in Fig. 3, extending cup to in-
clude drinking_glass, wine_glass, mug captures
the expected action drink in a larger part of the corpus.

We then recompute PL using these enlarged word classes
to capture more meaningful relationships between the co-
occurring words. Fig. 4 shows the |N | × |V | co-occurrence
matrix of likelihood scores over all the tools and actions
considered in the experiments, denoted as PL(V |N).

For most of the tool classes, the predicted actions
are correct (large values along the diagonals): for e.g.
peeler predicts peeling with high probability (0.94)
and shaker predicts sprinkling at 0.66. This shows
that for tools that have a unique use, our approach can

Fig. 3. Enlarging the word class to contain synonyms yields more
reasonable counts: cup only connects weakly with drink. By clustering
other closely related words together, their combined counts increase the
desired association between cup and drink.

Fig. 4. Gigaword co-occurrence matrix of tools and predicted actions.

predict the expected action easily. However, there are
many co-occurrences which we could not anticipate. For
e.g, using synonyms of cup makes it more selective to
drinking (0.17) but it is sprinkling that has the
highest prediction score (0.29). Investigating further re-
veals that sprinkling has some synonyms such as
drizzle moisten splash splosh which have uses
that are also close to cup. Other mis-selected tools-action are
also due to the confusion at the synonyms/hyponymns levels.
We also notice that more general actions such as picking
have a more uniform distribution across the tools, which is
expected. In the same way, the tool mat is also very general
in its use such that it displays no significant selectivity to
any of the actions. Despite this simplistic model, most of
the entries in PL make sense – and it properly reflects the
innate complexity of language. As will be shown in sec. V,
although the priors from language are weak, they are still
helpful for the task of action recognition.

B. Active tool detection strategy

We pursue the following active strategy for detecting,
and subsequently recognizing, relevant tools in the video as
illustrated in Fig. 5. First, a trained person detector [10] is
used to determine the location of the human actor in the
video frame. The location of the face is also detected using
[29]. Optical flow is then computed [4] and we focus on
human regions which have the highest flow, indicating the



potential locations of the hands. We then apply a variant of
a CRF-based color segmentation [23] using a trained skin
color+flow model to segment the hand-like regions which
are moving. This is justified by the fact that the moving
hand is in contact with the tool that we want to identify.
In some cases, the face may be detected (since it may be
moving) but they are removed using the face detector results.
We then apply a trained Partial Least Squares (PLS) object
detector similar to [26] near the detected active hand region
that returns a detection score at each video frame. Averaging
out the detection yields PI(ni|md), the probability that a tool
ni ∈ N exists given the video md. We denote PI(N |M) as
the set of detection scores (essentially the likelihood) over
all tools in N and all videos in M .

Fig. 5. (Best viewed in color) Overview of the tool detection strategy: (1)
Optical flow is first computed from the input video frames. (2) We train a
CRF segmentation model based on optical flow + skin color. (3) Guided
by the flow computations, we segment out hand-like regions (and removed
faces if necessary) to obtain the hand regions that are moving (the active
hand that is holding the tool). (4) The active hand region is where the tool
is localized. Using the PLS detector (5), we compute a detection score for
the presence of a tool.

This active approach has two important benefits. By fo-
cusing our processing only on the relevant regions of the
video frame, we dramatically reduce the chance that the tool
detector will misfire. At the same time, by detecting the hand
locations, we obtain immediately the action trajectory, which
is used to describe the action as shown in the next section.

C. Action features

Tracking the hand regions in the video provides us with
two sets of (left and right) hand trajectories as shown in
Fig. 6. We then construct for every video a feature vector Fd

that encodes the hand trajectories. Fd encodes the frequency
and velocity components. Frequency is encoded by using the
first 4 real coefficients of the Fourier transform in both the
x and y directions, fx, fy , which gives a 16-dim vector over
both hands. Velocity is encoded by averaging the difference
in hand positions between two adjacent frames 〈δx〉, 〈δy〉
which gives a 4-dim vector. These features are then combined
to yield a 20-dim vector Fd.

Fig. 6. Detected hand trajectories. x and y coordinates are denoted as red
and blue curves respectively.

We denote FM as the set of of action features Fd over all
videos in M .

IV. USING LANGUAGE TO GUIDE RECOGNITION

In this section, we formalize our EM approach to learn a
joint tool-action model that assigns the most likely action
label associated with a set of unlabeled video. We first
derive from eq. (1) an expression that allows EM to estimate
the parameters of this model, followed by details of the
Expectation and Maximization steps. We then show how to
use the learned model to perform testing. Finally, we consider
the case where we have labeled data in which we formulate
a simpler supervised approach.

A. Unsupervised learning of a joint tool-action model

We first define the latent assignment variable A. To
simplify our notations, we will use subscripts to denote tools
i = ni, actions j = vj and videos d = md. For each
i ∈ N , j ∈ V , d ∈ M , Aijd indicates whether an action
j is performed using tool i during video clip d.

Aijd =

{
1 j is performed using i during d
0 otherwise (3)

and A is a 3D indicator matrix (or a 3D array) over all tools,
actions and videos. Denoting the parameters of the model as
C = {Cj} which specifies the grounding of each action j,
we seek to determine from eq. (1) the maximum likelihood
parameter:

C∗ = argmax
C

∑
A

L(D, A|C) (4)

Where,

L(D, A|C) = logP (D, A|C)
= logP (A|D, C)P (D|C) (5)

with the data D comprised of the tool detection likelihoods
PI(N |M), the tool-action likelihoods PL(V |N) and action
features FM under the current model parameters C. Geomet-
rically, we can view C as the superset of the |V | action label
centers that defines our current grounding of each action j
in the action feature space.

Using these centers, we can write the assignment given
each video d, tool i and action j, P (Aijd|D, C) as:

P(Aijd = 1|D, C) = PI(i|d)PL(j|i)Pen(d|j) (6)



where Pen(d|j) is an exemplar-based likelihood function
defined between the associated action feature of video d, Fd

and the current model parameter for action j, Cj as:

Pen(d|j) = 1

Z
exp−||Fd−Cj ||2 (7)

where Z is a normalization factor. What eq. (7) encodes is
the penalty that we score against the assignment when there
is a large mismatch between Fd and Cj , the cluster center of
action j.

Rewriting eq. (6) over all videos M , tools N and actions
V we have:

P(A = 1|D, C) = PI(N |M)PL(V |N)Pen(FM |C) (8)

where we use the set variables to represent the full data
and assignment model parameters. In the derivation that
follows, we will simplify P(A = 1|D, C) as P(A = 1) and
P(A = 0) = 1 − P(A = 1). We detail the Expectation and
Maximization steps in the following sections.

1) Expectation step: We compute the expectation of the
latent variable A, denoted byW , according to the probability
distribution of A given our current model parameters C and
data (PI , PL, and FM ):

W = EP(A)[A]

= P(A = 1)× 1 + (1− P(A = 1))× 0

= P(A = 1) (9)

According to Eq. 6, the expectation of A is:

W = P(A = 1) ∝ PI(N |M)PL(V |N)Pen(FM |C) (10)

Specifically, for each i ∈ N, j ∈ V, d ∈M :

Wijd ∝ PI(i)PL(j|i)Pen(d|j) (11)

Here,W is a |N |×|V |×|M | matrix. Note that the constant
of proportionality does not matter because it cancels out in
the Maximization step.

2) Maximization step: The maximization step seeks to
find the updated parameters Ĉ that maximize eq. (5) with
respect to P(A):

Ĉ = argmax
C

EP(A)[logP(A|D, C)P(D|C)] (12)

Where D = PI ,PL, FM . EM replaces P(A) with its
expectation W . As A,PI ,PL are independent of the model
parameters C, we can simplify eq. (12) to:

Ĉ = argmax
C

P(FM |C)

= argmax
C

−∑
i,j,d

Wijd||Fd − Cj ||2
 (13)

where we had replaced P(FM |C) with eq. (7) since the
relationship between FM and C is the penalty function
Pen(FM |C). This enables us to define a target maximization
function as F(C) =

∑
i,j,dWijd||Fd − Cj ||2.

According to the Karush-Kuhn-Tucker conditions, we can
solve the maximization problem by the following constraint:

∂F
∂C

= −2
∑
i,j,d

(Wijd(Fd − Cj)) = 0 (14)

Thus, for each j ∈ V , we have:

Ĉj =
∑

i∈N,j∈V,d∈MWijdFd∑
i∈N,j∈V,d∈MWijd

(15)

We then update C = Ĉ within each iteration until conver-
gence.

3) Testing the learned model: The learned model C∗ can
be used to classify new videos from a held-out testing set.
Denoting the input test video as mt, we predict the most
likely action label, v∗t by:

v∗t = argmax
j∈V

∑
i∈N

(
PI(i|mt)PL(j|i)Pen(Ft|C∗j )

)
(16)

where Ft is the action features extracted from mt and C∗j is
the j action center from the learned model.

B. Supervised action classification

If we have labeled video data of actions, a supervised
approach will be the most straightforward. Every video, md,
is represented by a set of features Fd that combines Fd

(action features), PI (tool detection) and PL together in the
following manner:

Fd = [Fd;PI(N |md);PI(N |md)× PL(V |N)]

= [Fd;PI(N |md);PL(V |md)] (17)

where ; means a concatenation of the features vectors.
This yields a 20 + |N | + |V |-dim vector. What eq. (17)
means is that for every video md, we concatenate its Fd

together with PI(N |md), the distribution over all |N | tools,
and together with the verb prediction: PL(V |md), obtained
from the text corpus. Given labeled training videos from all
possible actions in V , we can proceed to train discriminative
classifiers (SVM, Bayes Net and Naive Bayes) to predict the
action in the testing video.

V. EXPERIMENTS

We performed a series of experiments using a new dataset
of human actions performed with hand-tools to show quan-
titatively how language aids in action recognition. We first
describe the dataset, and report recognition results on both
the unsupervised and supervised scenarios.

A. The UMD Sushi-Making Dataset

The UMD Sushi-Making Dataset2 consists of 12 actions,
performed by 4 actors using 10 different kitchen tools, for
the purpose of preparing sushi. This results in 48 video
sequences each of around 1000 frames (30 seconds long).
Other well known datasets such as the KTH, Weizmann or

2http://www.umiacs.umd.edu/research/POETICON/umd_
sushi/



Human-EVA datasets [25], [11], [27] do not involve hand-
tools. The human-object interaction dataset by Gupta et al.
[13] has only 4 objects. The dataset by Messing et al. [22]
has only 4 actions with tool use. The CMU Kitchen Dataset
[18] has many tool interactions for 18 subjects making 5
recipes, but many of the actions are blocked from view
due to the placements of the 4 static cameras. The head
mounted camera gives a limited and shaky top-down view
which cannot be processed easily.

Our Sushi-Making dataset provides a clear view of the
action in use with the tools and it simulates an active robotic
agent observing the human actor performing the action in a
realistic environment: a kitchen, with a real task: making
sushi, that is made up of several actions that the robot
must identify. See Fig. 5 for an example. The 12 actions
are: cleaning, cutting, drinking, flipping, peeling, picking
(up), pouring, pressing, sprinkling, stirring, tossing, turning.
The tools used are: tissue, knife, cup, rolling-mat, fruit-
peeler, water-pitcher, spoon, shaker, spatula, mixing-bowl.
As was discussed in sec. III-A, some of the actions such
as picking or flipping are extremely general and are
easily confused. We made this choice to ensure that the
language prediction PL is not perfect and to show that our
approach works even under noisy data.

B. Baseline: Vision-only Recognition

As a baseline, we perform experiments without the lan-
guage component, that is PL in eq. (17) is not considered as
part of Fd. Two experiments: 1) clustering using K-means
and 2) supervised classification are performed.

K-means clustering results: For the case of unlabeled
videos, we performed K-means clustering with k = 12. We
used 36 videos in this experiment. As labels, we took the
majority ground truth labels from each cluster to be the
predicted labels of the cluster. We then counted the number
of videos that are correctly placed in the right cluster to
derive a measure of accuracy, which is reported in Fig. 8(a).

Supervised classification results: From the 48 videos
from the UMD Sushi-Making dataset, we used 36 videos
from 3 actors to train a degree 3 polynomial SVM classifier
for the 12 actions. We set the cost parameter to 1.0 with
a tolerance termination value at 0.001. These parameters
were chosen from a separate development set of 8 videos.
The remaining 12 videos were then used for testing. 4-
fold cross validation was performed and the classification
accuracy is reported. In addition, we trained a Naive Bayes
(NB) classifier and a Bayes Net (BN) classifier over the
training data. The BN is initialized as a NB with at most
1 parent. We then apply a simple estimator to estimate the
conditional probability tables. All classifiers are tested using
WEKA [16]. We summarize the results in Fig. 8(b).

C. Adding Language

In this section, we performed experiments with the aid of
the language component PL. Three separate experiments are
performed: 1) Unsupervised EM, 2) Semi-Supervised EM
where we initialized the model parameters C with 12 known

labels and 3) Supervised classification using trained SVM,
Bayes Net and Naive Bayes classifiers. 36 videos were used
for training the joint tool-action model using EM and 12
videos were held out for testing. For the supervised part,
the same parameters as the baseline were used. We report
our unsupervised and supervised results in Figs. 8(a) and
8(b) respectively. More detailed results (confusion matrices
for each action) can be found online3. In addition, we show
in Fig. 7 the improving recognition accuracy of the trained
model at each iteration. The evolution of the action labels
versus the ground truth is also presented. Testing on the held
out video set using the trained model yields a recognition
accuracy of 83.33%.

D. Comparison with state of art action features

We compared our approach with a bag-of-words (BoW)
representation built upon state of the art STIP [19] features
clustered using K-means with k = 50. We trained three
classifiers: SVM, Naive Bayes and Bayesian Net using the
same procedure and parameters as the baseline and we sum-
marize the results in Table I. The BoW representation using

Feature Method Accuracy

STIP+Bag of Words
Naive Bayes 56.25%
Bayes Net 75%
SVM 77.08%

Action Features+Language
Naive Bayes 66.67%
Bayes Net 85.41%
SVM 91.67%

Action Features+Language Unsupervised EM 77.78%
Semi-supervised EM 91.67%

TABLE I
CLASSIFICATION ACCURACY: STIP VERSUS OUR APPROACH.

STIP achieves a maximum classification rate of 77.08% with
trained SVM classifiers. Our approach which uses compara-
tively simpler video features: Fourier coefficients + velocity
eq. (17) outperforms the state of the art significantly. This
gain is possible due to the addition of language prediction
in the action feature.

E. Discussion: the effects of adding language

Comparing the unsupervised recognition results, K-means
clustering on the action features alone (with PL) achieves
only 69.44% recognition rate. The clustering accuracy, with
the addition of PL and using the EM formulation described
in sec. IV-A achieves 77.78% with random initialization of
the model C. We show further that with correctly initialized
parameters from 12 labeled videos, is enough to increase
the accuracy to 91.67%, which is just as good as the SVM
classifier (which is supervised). This result shows that once
again, even with no or limited labeled data, our proposed EM
formulation is able to leverage the predictive power of PL to
find the optimal action and its corresponding tool that best
explains the video. Fig. 9 shows some video frames with the
predicted action and corresponding tool using EM.

3http://www.umiacs.umd.edu/research/POETICON/umd_
sushi/res_ICRA2012



Fig. 7. (Best viewed in color) (Left) Unsupervised EM: accuracy at each iteration. (Right) Scatterplots of action label assignments at selected iterations.
We see that with each iteration, the assignment label clusters approaches the ground truth label (boxed in red). Note that we used PCA to reduce the action
feature dimensions to 2 for visualization.

For the classification results in Fig. 8(b) using the three
classifiers, we clearly see that the addition of PL increases
the classification accuracy, with the most dramatic increase
when SVM or Naive Bayes are used: from 87.5% to 91.67%
(SVM) and 62.5% to 66.67% when language is added.
This shows that even with a simple model, PL is able to
provide additional discriminatory features which improve the
classification. The most important result is that these features
are estimated directly from a generic text corpus and the
method is not limited to a particular domain such as cooking.
This fact alone highlights the strength of language in aiding
action classification.

Besides improving action recognition accuracy in both
supervised and unsupervised scenarios, another key obser-
vation from our results is that language is complementary in
aiding many vision related tasks where the use of high-level
knowledge is required. Previous works described in sec. II
have shown that language (in a restricted sense) can be used
to simplify ill-posed image problems like segmentation and
annotation. We showed here that the difficult problem of
recognizing actions involves high-level knowledge as well.
This is because of the strong relationship between the actions
and the tools that were used to perform these actions. Instead
of learning from a huge amount of training image data on
how tools correlate with actions, we showed that it is possible
to obtain such information directly from a text corpus. Such
a text corpus, although noisy, is much easier to obtain than
annotated image data; and we showed that with the right
EM formulation, the noisy predictions from PL provides us
appreciable gains in recognition rates on unlabeled video.

VI. SUMMARY AND FUTURE WORK

This paper has shown a principled approach of integrating
large scale language corpora for the purpose of action
recognition in videos involving hand-tools. We validated
our approach in both supervised and unsupervised scenarios
and out-performed the current state-of-the-art STIP+BoW
features significantly. These results demonstrate the strength

Fig. 9. Some predicted action and tools using EM. The wrong prediction (in
red and italicized) of the sprinkle action is due to a high co-occurrence
with bowl in PL(V |N).

of using language which encodes the intrinsic relationships
between tools and actions, leveraging it to aid in the action
recognition task. As was advocated in the introduction, our
approach has important implications for robots that acquire
new skills via LfD, and we are currently evaluating the pro-
posed approach on a mobile robotic agent over an even larger
set of actions V and tools N , and developing strategies to
detect the tools and actions better across differing viewpoints
as the robot moves. We are also investigating the utility of
tracking the hand and detecting the tools better by exploiting
depth information captured using a Kinect camera.

Our approach, however, goes beyond action recognition
and can be extended to other vision problems faced in
robotics with a more careful treatment of language. Progress
in the areas of object recognition, image segmentation and
general scene understanding have been slow as these prob-
lems require semantic grounding. Language, when exploited
properly, provides for this. For e.g. using shallow-parsing
or Named-Entity Recognition to improve PL predictions
and subsequently Fd; or performing a dependency parse to
reduce the need to use synonyms to extract the tool and
related verb from a sentence more accurately. An important
limitation of our current approach is that we need to know
in advance the action labels and tools of the video. We are
currently working on approaches to discover, using attributes
of the potential tool and action features obtained from the
video, a prediction of the tool and action labels directly from
language. The potential world-knowledge embedded in lan-



Fig. 8. (a) Unsupervised recognition accuracy: no language (K-Means) versus language (EM). (b) Classification accuracy: no language versus language.
All reported results have variances within ±0.5%.

guage, along with its complexities, was clearly demonstrated
with Watson in Jeopardy! which set a milestone in AI. We
believe it will do the same for vision and robotics in the near
future.
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