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Abstract Fast Curved Symmetry Detection via SRF “Ballooning” Expansion Term
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our method handles 1) multiple branched symmetries and produces 2)
guasi-symmetric regions in one single optimization step.
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Given a set of axes A, we construct a 5-way MRF with an additional
cross-symmetry connection between symmetric neighbors (p, p’):
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_ The final segmentation is obtained by minimizing the energy function:
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