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Abstract

A method for efficient border ownership assignment in

2D images is proposed. Leveraging on recent advances us-

ing Structured Random Forests (SRF) for boundary detec-

tion [8], we impose a novel border ownership structure that

detects both boundaries and border ownership at the same

time. Key to this work are features that predict ownership

cues from 2D images. To this end, we use several different

local cues: shape, spectral properties of boundary patches,

and semi-global grouping cues that are indicative of per-

ceived depth. For shape, we use HoG-like descriptors that

encode local curvature (convexity and concavity). For spec-

tral properties, such as extremal edges [28], we first learn

an orthonormal basis spanned by the top K eigenvectors

via PCA over common types of contour tokens [23]. For

grouping, we introduce a novel mid-level descriptor that

captures patterns near edges and indicates ownership infor-

mation of the boundary. Experimental results over a subset

of the Berkeley Segmentation Dataset (BSDS) [24] and the

NYU Depth V2 [34] dataset show that our method’s per-

formance exceeds current state-of-the-art multi-stage ap-

proaches that use more complex features.

1. Introduction

Look at the two images in Fig. 1 with highlighted bound-

aries on the right. These are regions in the image where

objects meet with one another or with the background. Hu-

mans are able to interpret complex scenes such as these and

predict their approximate depth orderings with relative ease

by integrating both bottom-up and top-down cues. In recent

years, so-called boundary detectors have become very pop-

ular tools. These detectors use local cues, such as bright-

ness, color, texture, gradients and simple features [24] in

image patches to distinguish edge points likely at bound-

aries of surfaces from others. More recent approaches also

include globalization processes using long-range relations

of image points [2]. However, the image structure in the re-

gions next to an occlusion edge can be used for more than

Figure 1. Example results of predicted boundaries (blue) and their

ownership (red: foreground, yellow: background) from real-world

images: BSDS (above) and NYU Depth V2 (below). Best viewed

in digital copy.

boundary indication; it also encodes information about the

relative depth about the edge’s two adjacent regions, and to

which of the regions the edge belongs to. It has been shown

that image cues, such as the convexity of the edge [19], the

edge junctions, contrast, or the gradient in the intensity and

the texture carry this information [28]. In this paper, we

focus on detecting classes of bottom-up cues that indicate

border ownership, i.e. the information on which side of

a boundary belongs to the foreground/object or the back-

ground, from 2D images. Determining border ownership is

important from a computer vision perspective since it can be

regarded as a preprocessing step for foreground-background

segmentation [32], and is also closely related to selective

attention [4]. From a biological viewpoint, neurophysiolog-

ical findings from the visual cortex of macaque monkeys

together with psychophysical experiments also suggest that

the human visual cortex has specialized cells that perform

some form of ownership prediction [36]. These mecha-

nisms have been found in cortical areas V2 and V4 of mon-

keys [38], and they may be receiving feedback from higher

cortical regions [4].
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Fig. 1 shows example predictions using our proposed ap-

proach with their accuracy scores over two popular datasets:

the Berkeley Segmentation (BSDS) and the NYU Depth V2

(NYU-Depth) [24, 34]. The prediction accuracy not only

is state-of-the-art, but outperforms previous approaches

[30, 22]. Our method exploits two novel features derived

from findings in human psychophysics to determine the

ownership of a boundary. The first one, known as extremal

edges or image folds [20], captures how changes in the

shading of pixels near real boundaries differ between fore-

ground and background. It was shown in [29] that such

folds exist in a variety of environments. So far this cue

has not been exploited very efficiently for computer vision.

[22] proposed to compute a measure based on the change of

intensity perpendicular to previously detected edge points.

Here we obtain the extremal edge cue from the principal

components of grayscale image patches [18]. In order to

adapt these patches better to the local shape of the edge, we

adopt the framework of Sketch Tokens [23] and learn an or-

thonormal basis for each token class. As we show in §4.2,

the top principal components that we retain encode not only

extremal edges but also more complex structures such as

T-junctions and parallel lines which are equally important

cues for ownership assignment. We then derive spectral

features that capture these local grayscale variations from

the projections of these principle components. Intuitively

spectral features are more important for close-up scenes.

This is confirmed in our experiments, which show that

the extracted spectral features from the NYU-Depth indoor

dataset with structured lighting are more useful for assign-

ing border ownership than those from the BSDS dataset,

which consists of natural outdoor images.

The second feature detects Gestalt-like groupings of

mid-level cues. Specifically, we introduce a new multi-scale

grouping mechanism that implements the concept of con-

tour closure, and common patterns such as radial and spiral

textures. Since such patterns occur naturally in images, we

expect the differences in the distribution of these patterns to

be indicative of border ownership. Finally, by embedding

these features within a Structured Random Forest (SRF), we

are able to predict border ownership in real-time, ≈ 0.1s

for a 320×240 image. Notably, our method predicts both

boundary and ownership together in a single step. Com-

pared to previous works that considered border ownership

determination as a separate step independent of boundary

detection, our single-step approach is not only faster but

also more accurate.

2. Related Works

Determining border ownership accurately in images in-

volves several related works in computer vision which can

be classified into two different areas: 1) depth ordering pre-

diction and 2) object proposals. We briefly review each area

in relation to the current work.

Depth ordering prediction. Perceiving ordinal depth

from 2D images has been tackled as early as the classical

“Blocks World” of Roberts [31]. Hoeim et al. [16] revis-

ited the problem by combining numerous local and global

cues: color, gradients, junctions, textures, sky above ground

etc. into a large conditional random field (CRF) for recov-

ering occlusion boundaries and depth ordering in a 2D im-

age. The CRF weights were obtained from training data

to ensure consistency of depth across different segments,

which were merged in an iterative process from an initial

over-segmentation. Along similar lines, Saxena et al. [33]

imposed simple geometric constraints to estimate plane pa-

rameters related to the 3D location and orientation of each

image patch to create a 3D pop-out of the image. Ren et al.

[30] considered local convexity and junction cues and inte-

grated them into a CRF to predict border ownership on Pb

boundaries [24]. Leichter and Lindenbaum [22] followed

up by computing distributions of ownership cues in ordi-

nal depth: parallelity, image folds, lower-region etc. over

curves, T-junctions and image segments. Stein and Hebert

[35] further imposed motion constraints to detect occlusion

boundaries consistently across video frames.

Object proposals. A recent trend in computer vision is to

detect from an image, object-like regions in the foreground.

Early works [1, 10] combined several “objectness” cues to

train detectors. However, the applicability of such meth-

ods are limited as cue detection and integration is com-

putationally expensive. Recently, Cheng et al. [3] intro-

duced a surprisingly simple technique using binarized gra-

dient norms of images that is able to produce high quality

proposals at a fraction of the time of previous methods. The

Gestalt concept of closure has been exploited by Nishigaki

et al. [25, 37] in detecting object like regions via a mid-level

grouping operator termed “image torque”. Similarly, using

a SRF based structured edge (SE) detector [8], Zitnick et

al. [39] counts the number of contours that enter and exit a

bounding box region to determine if there is enough closure

within the proposed region.

Although many of these works have considered the bor-

der ownership problem implicitly in their problem formu-

lation, it is often considered as an independent pixel-wise

classification step over predicted input boundaries [30, 22]

or segmentations [16, 35]. In order to ensure prediction

consistency over larger scales, CRFs are often used at the

expense of computation time. Our approach, by contrast,

considers border ownership and boundary detection within

a single SRF where consistency over multiple scales are

enforced using structured output labels. Our approach is

therefore self-contained: we predict both boundaries and

border ownership in one single step unlike previous ap-

proaches that require further optimizations using a CRF.

Consequently, our approach affords us to predict border



Figure 2. Border ownership cues used. (Top) Input image and

annotations (red: foreground, blue: background) with example

patches boxed. (Below) (A) Local shape (HoG + gradient magni-

tude) showing four discrete orientations, (B) Spectral features de-

rived via PCA from 20 oriented token clusters (foreground at lower

half) and their principal components with extremal edge cues in

PC2 (boxed) and (C) Gestalt-like grouping target patterns: clo-

sure, radial, spiral and hyperbolic. (D) Corresponding responses

at one scale for each of the features. See text for details.

ownership in real-time.

3. Approach

Our approach of determining border ownership via SRFs

consists of two key components: 1) Features derived from

ownership cues and 2) Imposing border ownership structure

in the SRF. We describe these two components in the sec-

tions that follow.

3.1. Border ownership cues

We use some local cues reported in prior works [30, 22,

28, 26, 13, 9] that were shown to be important in determin-

ing border ownership and some new cues. Specifically, we

use: 1) shape (convexity/concavity), 2) image folds or ex-

tremal edges derived from spectral properties of boundary

patches and 3) Gestalt-like grouping features. In addition,

our choice of features was influenced by how efficient we

can extract them from local patches.

3.1.1 HoG-like descriptors

As reported in several previous works, shape cues such as

local convexity and concavity of contours are important fea-

tures that are indicative of foreground objects: the fore-

ground ownership of a boundary tends to be on the concave

side [26]. To capture this cue within a local patch, we con-

struct a HoG-like descriptor [6] of image gradients where

we quantize the gradient directions into 4 orientation bins.

In addition, we use the gradient magnitude as an indicator

for good boundary localization. The HoG-like descriptor

of gradient orientations captures roughly the local shape of

the patch, while its magnitude tells us how likely this patch

should contain a real boundary. Notably, as shown in Fig. 2

(A), we see that the histograms for typical convex and con-

cave patches are different. For efficiency, we compute these

features in terms of “channels” [7] per image patch. Given

a patch P of size N × N , this results in a N2 × 5 feature

vector per patch.

3.1.2 Extremal edges from PCA of contour tokens

Extermal edges, or image folds have been known for some

time as one of the strongest border ownership cues [13, 9].

Huggins et al. [17] have shown that extremal edges can be

reliably detected by computing the so-called shadow flow

field in controlled environments. Recently, [29] have shown

that extremal edges exists in natural images by perform-

ing a principal component analysis (PCA) of aligned ori-

ented boundary image patches. Their key insight is that

extremal edges account, after step edges, for most of the

gray-level illumination variance at such regions. Motivated

by this insight, we derived the basis functions using PCA

oriented along so called contour fragments or Sketch To-

kens [23] which are similar to shapemes [30] as shown

in Fig. 2 (B). Since each contour token has an orientation

determined by its foreground and background labels, we

first orientate all patches so that the background and fore-

ground occupy the top and bottom halves of the patch (us-

ing the center pixel as a reference) respectively. Clustering

these orientated tokens produces a set of C token centers to

which we then apply PCA over the S supporting patches,

Pc = {P1, . . . ,PS}, c ∈ {1 . . . C}. By applying PCA over

each Pc, we learn a separate orthonormal basis correspond-

ing to each token center. Specifically, given the N2×S data

matrix X that contains at each column a vectorized (and de-

meaned) Pc, we apply Singular Value Decomposition on its

covariance matrix ΣX to obtain a set of orthonormal basis

spanned by the eigenvectors (columns) of U:

ΣX = USU
−1 (1)

where we keep the top K eigenvectors, uk ∈ U, corre-

sponding to the top K eigenvalues in S to obtain the projec-

tion matrix Wc = [u1, . . . , uK ]. Wc represents a new basis

that accounts for most of the variance per contour token cen-

ter. As features, we reproject X to obtain YK×S = W
T
c X,

the coordinates of each patch Pc in the new basis. This

yields a feature vector of dimensions N2 ×K. We show in



Figure 3. Generalizing the image torque for different Gestalt groupings. (Top) By rewriting τ(x,y) in terms of a scalar product, we are able

to generalize the image torque so that it becomes sensitive to: A) radial, B) spiral and C) hyperbolic patterns. (Bottom) Test toy image with

different target patterns and their maximum responses over different scales. Notice the selective nature for each target pattern.

Fig. 2 (D-middle) the spectral features derived from the first

four principal components (PC). Of note are the responses

for PC2-PC4 which exhibit a large response only along real

boundaries with positive values encoding foreground own-

ership and negative values encoding background ownership.

In §4.2, we show further that PC2 exhibits the characteris-

tics of extremal edges.

3.1.3 Gestalt-like grouping features

Gestalt psychologists have developed a set of well-known

rules of “Gestalt” that suggests how humans perceive the

world from 2D images. Gestalt rules deal with groupings

of low-level features (e.g. edges), and can be regarded as

a form of mid-level cue that captures the holistic proper-

ties of individual visual parts. These properties can then

be used to organize these visual parts into more meaning-

ful entities that serve as input to higher level processes: e.g.

segmentation, recognition etc. In this work, we leverage

on specific grouping patterns: 1) closure, 2) radial, 3) spi-

ral and 4) hyperbolic (Fig. 2 (C)). Such patterns are useful

for border ownership determination because foreground ob-

jects tend to exhibit different grouping patterns compared to

the background [27], and such patterns have been observed

in area V4 of macaques [11]. Closure, one of the strongest

cues used in foreground object proposals tasks, is detected

in this work by computing the image “torque” [25], τP, as-

sociated at each patch (Fig. 3 (Top-left)). The image torque

is so-termed because it is analogous to the torque formula-

tion known in physics, which is the cross-product between a

tangential “force” vector ~Fq and its corresponding displace-

ment vector ~dpq where p denotes the center pixel in P and

q an edge pixel in P. The image torque for each edge point

q is thus defined as τpq = ~Fq × ~dpq . Summing up all q ∈ P

and normalizing with the patch size yields τP:

τP =
1

2|N |
∑

q∈P

τpq =
1

2|N |
∑

q∈P

(

~Fq × ~dpq

)

(2)

In practice, we search over several scales s ∈ {5, 6, · · · , N}
within P and retain the maximum torque response over all

scales. An alternative derivation for τP is to view the de-

tection of closure patterns as detecting iso-contours corre-

sponding to circles in the image. In general, we consider

the patterns we want to detect as the iso-contours of some

function f . For example circles are the iso-contours of the

function f(x, y) = x2+y2. We are interested in the tangent

lines of these iso-contours, g(x, y). Given the 2D gradient

field, ∇f(x, y) = (fx, fy), the corresponding tangent vec-

tors perpendicular to the gradient field are thus g(x, y) =
(−fy, fx). From the iso-contour equation of circles, it fol-

lows that the closure tangent vectors are g(x, y) = (−y, x).
Given an input test patch P, we first determine its gradi-

ent field, denoted as ∇P (x, y) = (Px, Py), (x, y) ∈ P,

and their edges (tangent vectors) as E(x, y) = (−Py, Px).
If a closure pattern exists in E(x, y), then the edges must

align well with tangent vectors g(x, y). A simple measure

of alignment for a point (x, y) ∈ P is thus the scalar prod-

uct between E(x, y) and g(x, y):

τ(x,y) = E(x, y) · g(x, y) = (−Py, Px) · (−y, x) (3)

which is equivalent to the definition of τpq for point q. Re-

placing τpq in eq. (2) with eq. (3) yields exactly the same

results. The key insight from eq. (3) is that we are now

able to modify g(x, y) so that eq. (3) is sensitive to differ-

ent patterns in the image. As we show in Appendix A, by

writing different target iso-contour equations, we are able to

detect different Gestalt patterns using the same formulation.



Figure 4. Training a SRF for border ownership assignment. (A) Example image with extracted features xf ∈ Xf and ground truth

annotations from the highlighted patch. We derive an orientation coding, Y , from the annotations. (B) By mapping Y to discrete labels, we

determine the optimal split parameters θ associated with each split function h(xf , θ) that send features xf either to the left or right child.

The leaf nodes store a distribution of border ownership structured labels. (C) During inference, a test patch is assigned to a leaf node within

a tree that contains a prediction of the border ownership. Averaging the prediction over all t trees yields the final ownership prediction. We

then convert the orientation code into an oriented boundary (blue) that encodes the foreground (red) and background (yellow) predictions.

We show some sample responses using different g(x, y) in

Fig. 3 (Bottom) for four patterns: closure, radial, spiral and

hyperbolic. For efficiency, we have implemented eq. (2) as

a convolution operation so that their responses can be used

directly as features of size N2 × 4 for training the SRF.

Additionally, the responses of the Gestalt features for an

example input image are shown in Fig. 2 (D-below). We

note that because the background (e.g. sky) tends to be tex-

tureless, all the features have a small response. Notably, we

observe that the strongest response occurs for the spiral pat-

tern, which is localized in the forested foreground region.

3.2. Border ownership assignment via SRF

We use an extension of the Random Forest (RF) classi-

fier [15], termed the Structured Random Forest (SRF). Sim-

ilar to the RF, a SRF is an ensemble learning technique that

combines t decision trees, (T1, · · · , Tt), trained over ran-

dom permutations of the data to prevent overfitting. The key

difference is that in general, SRFs are able to learn a map-

ping between inputs of arbitrary complexity (e.g. strings,

segmentations, relationships etc.) and similarly complex

outputs. Due to their flexibility in representation, SRFs have

been used successfully in a variety of computer vision tasks

such as boundary detection [8] and semantic scene segmen-

tation [21]. See [5] for a comprehensive review of RFs and

their applications. In this work, we show that a SRF can

be used as a border ownership classifier by imposing a spa-

tial border ownership structure in the output labels (Fig. 4).

Similar to [8], we assume that only the target output labels

are structured (borders with ownership labels) while the in-

puts are non-structured (feature vectors derived from image

patches).

Let us denote the input as Xf composed of features

xf ∈ Xf derived from a training patch P. The target output

is a structured label Y = Z
N×N that contains the orien-

tation coded annotation of the border ownership. Using a

8 way local neighborhood system, this amounts to 8 dif-

ferent possible orientations of border ownership (Fig. 4 (A-

bottom)) that each decision tree will predict. The goal of

training a SRF (or a RF in general) is to determine, for

the ith split (internal) node, the parameters θi associated

with a binary split function h(xf , θi) ∈ {0, 1} so that if

h(·) = 1 we send xf to the left child or to the right child

otherwise. We define h(xf , θi) to be an indicator function

with θi = (k, ρ) and h(xf , θi) = 1[xf (k) < ρ], where k is

the feature dimension corresponding to one of the features

described in §3.1. Following [12], we select at most
√
k

feature elements for evaluation. ρ is the learned decision

threshold that splits the data Di ⊂ Xf × Y at node i into

DL
i and DR

i for the left and right child nodes respectively.

ρ is based on maximizing a standard information gain crite-

rion Mi:

Mi = H(Di)−
∑

o∈{L,R}

|Do
i |

|Di|
H(Do

i ) (4)

We use the Gini impurity measure: H(Di) =
∑

y cy(1 −
cy) with cy denoting the proportion of features in Di with

ownership label y ∈ Y . For non-structured Y , computing

eq. (4) is straightforward. In the case of structured labels,

we first compute an intermediate mapping Π : Y 7→ L of

structured labels into discrete labels l ∈ L following [8]

that allows us to compute eq. (4) directly. L is a set of labels

that corresponds to different types of possible contour token

centers (see §3.1.2), and this means that we can reuse the

results from the feature extraction step during training for

added efficiency.



The process is repeated with the remaining data Do, o ∈
{L,R} at both child nodes until a terminating criterion is

satisfied. Common terminating criteria are: 1) maximum

depth of tree dt is reached, 2) a minimum input |D| is

achieved or 3) the gain in Mi is too small. The leaf nodes

of each tree after training thus contain the predicted local

ownership orientation decision y (Fig. 4 (B)). Note that un-

like the RF, where a prediction is performed independently

per pixel, the SRF enforces spatial consistency in the struc-

tured labels at the leaf nodes so that the final predictions do

not change too much along boundaries. In order to account

for scale variations, we further sample patches from three

(original, half and double) different resolutions of the input

image. During inference, we sample test patches densely

(at the original resolution) over the entire image and clas-

sify them using all t decision trees in the SRF. The final

ownership label at each pixel is determined by averaging

the predicted orientation labels across all t trees, producing

an orientation code that we convert directly into an oriented

boundary representation (Fig. 4 (C)).

4. Experiments

4.1. Datasets, baselines and evaluation procedure

We evaluate the performance of border ownership as-

signment over two publicly available datasets containing

real world images: 1) The Berkeley Segmentation Dataset

(BSDS) [24] and 2) The NYU Depth V2 (NYU-Depth)

dataset [34]. For BSDS, we use a separate subset of 200

labeled images (obtained from the training subset of BSDS-

300) that contains ownership annotations. As this dataset

was used by the two baseline approaches: 1) Global-CRF

of Ren et al. [30] and 2) 2.1D-CRF of Leichter and Lin-

denbaum [22], the results we report in §4.3 are directly

comparable. We use the same test/train split as both base-

lines, with 100 images for training and 100 images for test-

ing. The NYU-depth dataset consists of 1449 RGB-Depth

images taken from a variety of indoor environments. The

training set consists of 795 images while the remaining 654

images are used for testing. All images in the dataset are

hand annotated with 1000+ object class labels. Following

[14], we select the top 35 most frequent object labels (ex-

cluding flat surfaces such as walls, floors and ceilings) in

order to automatically generate a large number of owner-

ship labels along the boundaries of these objects, using the

depth information to produce the ground truth labels for the

entire dataset. Compared to BSDS, where only 36.1% of

boundary pixels have ownership annotations, we increase

the annotation density to nearly 50% in NYU-Depth. Sev-

eral examples of the input data, ground truths and results

are shown in Fig. 5. Full results and videos that show real-

time ownership assignment in cluttered kitchen scenes are

available in the supplementary material.

Notation Description Value

N patch size 16

C number of contour token clusters 20

K principal components used 5

t number of trees 16

dt maximum tree depth 64

Table 1. Parameters used for training the SRF.

We report the same accuracy evaluation metric used in

[30] and [22], where we count the number of correctly clas-

sified border ownership pixels against the ground truth. This

is computed via a bipartite graph matching to determine the

closest correspondences between the predicted border own-

ership pixels and the ground truth. Predictions that were

not matched are not considered. Following [22], we set this

threshold to 0.75% of the image diagonal. The parameters

used for training the SRF are the same for both datasets and

we summarize them in Table 1.

4.2. Comparing spectral components

Figure 6. Top 20 principal components for BSDS (left) and NYU-

Depth (right) for a particular token cluster center. (Bottom row)

Components derived from random patches in each dataset.

Before we present evaluation results of the approach, we

first perform an analysis of the spectral components pro-

duced by applying PCA over clustered token patches in both

the indoor (NYU-Depth) and outdoor (BSDS) datasets. We

show in Fig. 6 a visual comparison of the top 20 principal

components (PC) obtained from one token cluster center:

horizontal with the background at the top half and the fore-

ground at the lower half of each patch, baselined against

components derived from random patches (bottom row).

In both datasets, we sampled 500,000 patches. We make

four observations. First, the top component (PC1) is the

same for both BSDS and NYU-Depth, which is a step edge.

The second component (PC2, boxed in Fig. 6) exhibits the

distinctive signature of extremal edges: with a shading on

the lower-half (foreground) and no shading in the top-half



Figure 5. Example results from both BSDS (left panel) and NYU-Depth (right panel) datasets. Eight results per dataset: (Top-left coun-

terclockwise): images, ground truth labels (red: foreground, blue: background) and ownership prediction (red: foreground, yellow: back-

ground, blue: boundaries). Best viewed in digital copy.

(background). This confirms the observations made by Ra-

menahalli et al. [29] on the basis of a much smaller num-

ber of images (585), and confirm that extremal edges are

present across different scenes and environments. Second,

we note that the intensity variation in PC2 from NYU-Depth

appears “smoother” across the foreground region compared

to BSDS. This seems to indicate that extremal edges are

more stable in the indoor NYU-Depth dataset. One possi-

ble explanation would be that the structured lighting in in-

door environments supports the existence of extremal edges

better than the diffused lighting common in outdoor situ-

ations. Third, we note that other ownership cues such as

T-junctions and parallel structures are also captured within

the top PCs of both datasets (e.g. PC6 and PC9). Finally, as

none of the PCs from random patches exhibit the signature

of extremal edges (or other ownership cues), this further

confirms that the spectral features we use are unique along

true object boundaries.

4.3. Results

We perform a series of quantitative ablation studies over

different features sets in both datasets and compared their

performance with the baselines Global-CRF and 2.1D-CRF

in the BSDS dataset. In a second experiment, we also

applied the basis functions learned from NYU-Depth (in-

door) over the BSDS dataset in order to validate our obser-

vations in §4.2 that the spectral components from the in-

door NYU-Depth scenes are more informative than those

obtained from BSDS (outdoor). The full results are sum-

marized in Table 2. We show the contribution for individual

features, as well as the improvements when the feature is

Feature set BSDS NYU-Depth

HoG 72.0% 66.0%

+ Spectral (no contour tokens) 73.1% (72.0%) 67.0% (65.6%)

+ Spectral (contour tokens) 74.0% (72.3%) 68.1% (66.7%)

+ Gestalt patterns 74.4% (72.7%) 68.4% (66.7%)

All features + Spectral (NYU) 74.7% (72.8%) -

Global-CRF [30] 68.9% -

2.1D-CRF [22] 69.1% -

Table 2. Border ownership prediction accuracy for various abla-

tions compared with the baselines (last two rows). ‘+’ denotes the

addition of new features to those above the current row. Numbers

in parenthesis denote the use of the single feature for prediction.

Method BSDS-500 NYU-Depth

Our approach 0.73,0.74,0.76 0.63,0.64,0.60

gPb-owt-ucm [2] 0.73,0.76,0.73 0.63,0.66,0.56

SE [8] 0.73,0.75,0.77 (SE-SS) 0.65,0.67,0.65 (SE-RGB)

Table 3. Boundary prediction accuracy. The numbers reported in

each cell are [ODS, OIS, AP] following [2]. Results for gPb-owt-

ucm and SE are reproduced from [8].

used with other cues. As a point of reference, we note that

for BSDS, we are classifying over 18,000 pixels, while we

are approaching 2,500,000 pixels for NYU-Depth. Finally,

since our approach predicts boundaries in addition to own-

ership, we evaluate its boundary prediction accuracy in a

third experiment (Table 3).

Ablation studies of different features. The first four rows

in Table 2 summarize the mean accuracy of border owner-

ship assignment when different combinations of feature sets

are used. The general trend is that with more cues used,

the ownership prediction improves for both datasets. We

note that the results confirm the usefulness of learning sep-



arate basis functions corresponding to different contour to-

ken centers (third row), where there is around 1% improve-

ment in accuracy over the case where no contour tokens are

used (second row). For the latter, we simply learned a basis

over 8 ownership orientations. We also show the contribu-

tion of individual features in parenthesis. Of interest is that

Gestalt-like features perform on par with spectral features in

the NYU-Depth dataset while they have a larger individual

influence in BSDS. A likely explanation is that most indoor

man-made objects are textureless compared to outdoor en-

vironments. Additional experiments with more controlled

environments have to be done to confirm this hypothesis.

Applying NYU-depth (indoor) spectral features to BSDS

dataset. In the second experiment, we applied the basis

functions obtained from NYU-Depth to the BSDS dataset.

This results in a slight improvement to 72.8% of its individ-

ual contribution. Due to this small degree of improvement,

more experiments with a more careful selection of indoor

patches should be performed to confirm our hypothesis in

§4.2. Nonetheless, we note that combining NYU-Depth

spectral features with other features yield the best overall

prediction accuracy for BSDS (74.7%) in all experiments.

Comparison with state-of-the-art. The prediction accu-

racy of the proposed SRF border ownership assignment out-

performs previous state-of-the-art results: 1) Global-CRF

and 2) 2.1D-CRF by at least 2% even using simple HoG-

like (shape) features in the BSDS dataset. The performance

when all features are combined is even more significant:

> 5% or around 900 pixels that were reclassified correctly.

Compared to 2.1D-CRF with a reported mean run-time of

15s, inference using the SRF is ≈100 times faster (0.1s).

Boundary prediction accuracy. Our approach (using

all features) produces reasonable boundary (not ownership)

predictions that are comparable with state-of-the-art bound-

ary detectors: gPb-owt-ucm [2] and structured edges (SE)

[8] when evaluated over the larger BSDS-500 [2] and NYU-

Depth datasets (Table 3). Since our approach evaluates test

patches at the original resolution without any depth infor-

mation, we compared the closest variants of SE: SE-SS

(single scale) and SE-RGB (no depth) in BSDS-500 and

NYU-Depth respectively. Ablations of features produce in-

significant deviations from these results, which shows that

the proposed features are more suitable for ownership than

boundary prediction. Furthermore, these results are even

more significant since our approach is trained on a smaller

subset of ownership labels in both datasets.

5. Conclusions

We have presented a fast approach for border ownership

assignment that outperforms two current state-of-the-art ap-

proaches using CRFs. The approach exploits the speed

and flexibility in the representation of Structured Random

Forests so that ownership structure is imposed in the final

output labels of each decision tree. We have also devel-

oped novel feature representations that capture perceptually

salient ownership cues: 1) extremal edges and 2) Gestalt-

like groupings. For extremal edges, we first learn separate

basis functions clustered at contour token centers to capture

local shape better. Re-projecting the input image into the

new basis produces a set of spectral features in which the

top components capture a variety of ownership cues includ-

ing extremal edges. For detecting Gestalt-like groupings,

we reformulated a recently introduced closure operator (the

image torque) so that it generalizes to a variety of grouping

patterns in the image.

As border ownership assignment is one of the key steps

for depth perception, we plan to extend this work by adding

in more cues: motion, focus, other Gestalt-like groupings

(e.g. symmetry) and higher-level cues for scene understand-

ing (e.g. semantic labels). By making this efficient border

ownership assignment code available1, we also provide a

tool to the community that others can explore in tasks such

as segmentation and recognition.

A. Generalizing the image torque to other pat-

terns

Following the notations used in §3.1.3, we write down

the following iso-contour functions for: 1) radial fr(x, y),
2) spiral fs(x, y) and 3) hyperbolic fh(x, y):

fr(x, y) = atan
(y

x

)

⇒ ∇fr(x, y) =





y√
x2+y2

−x√
x2+y2





fs(x, y) = x2 − ay2 ⇒ ∇fs(x, y) =

(

x

−ay

)

fh(x, y) = ln(
√

x2 + y2)− a atan
(y

x

)

⇒

∇fh(x, y) =
1

x2 + y2

(

ax− y

x+ ay

)

(5)

which leads to the following expressions for the tangent

vectors g(x, y):

gr(x, y) = (x, y)

gs(x, y) = (ax− y, x+ ay)

gh(x, y) = (ay, x)

(6)

for some values of a = { 1
3 , 1, 3}. Substituting the corre-

sponding g(x, y) from eq. (6) in eq. (3) enables us to com-

pute the alignment of the target pattern in the image.
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