
Active Systems Management

William Arbaugh
Virgil Gligor

University of Maryland
College Park

Future Environment

w Devices may require multiple management
sources
n A handset may need to receive updates from the

manufacturer,
n The developers of installed applications, and
n Receive user and/or organizational data

Future Environment

wManagement will become significantly more
difficult
n Separation of management instructions is a

MUST,
n Many organizations will want to be “in the loop”

on all management instructions,
n Devices are “always on”

The Future

STA

STA

STA

STA
Authentication Server

Authentication Server Captive Portal

What to do?

w Reevaluate the role of the firewall
w Obviously- need better management (easier

said than done)

Reevaluation of the firewall

w In the future ubiquitous “always on” world-
every device MUST be able to protect itself.

w Further- the mobility of many of the devices
will make centralized management difficult
if not impossible.

How do we improve
management?

w Unfortunately, too little research has been done on
systems management

w Our approach: Active Systems Management
n Formalize the problem

l Host state model
l Active systems management process

n Build and evaluate experimental systems
l Independent Audit
l Enforcement
l Communication

Active Systems Management

w Since most all devices will be highly mobile- configuration
and management instructions MUST be mobile as well so
that devices can receive instructions in a timely fashion.

w Every device MUST be able to protect and reconstitute itself
in an OS independent fashion.

w Investigate historical evidence to gain a broader
understanding of the threat.

Host States

w Hardened: The host/device is patched and configured against
all know vulnerabilities.

w Vulnerable: The host/device is vulnerable to at least one
known attack.

w Exploited: An attacker has successfully exploited a
vulnerability on the host/device.

Host State Model

Example

Research Questions

w Given any host, what is the current state of
the host? (Identification)

w Given that a host is either vulnerable or
exploited, what are the minimal steps
required to transition the host back to the
hardened state, and how do we execute
them? (Reconstitution)

Komoku: How do we identify
the current state?

w Impossible to determine state with only software because
attackers modify OS to report false information

w Komoku is an add-in co-processor that serves as an
independent auditor that is isolated from the host OS

w Goals were to make Komoku OS independent with
absolutely no OS modifications required

First Prototype

Bridge

CPU

PCI Bus

Hard disk
Komoku

Problems with PCI Bus

w Unfortunately, many implementations of the PCI
bus DO NOT support mutual exclusion
n Results in race condition when Komoku and OS try to

read the disk at the same time
w Solution was to implement a simple MUTEX using

PCI registers
n Requires host OS support, but does not introduce any

significant weakness.
n Required writing a polled IDE driver for Komoku

Results

w Komoku has been tested with both Windows
NT and Linux using AIDE (Tripwire like
application) to provide integrity protection.
w Throughput to Komoku is 1.4 Mbps when

Komoku has access to disk.

The Future of Komoku

w Implement Komoku as
an FPGA directly
along the IO path

w This permits Komoku
to be in smaller devices
and serve as a security
and management
enforcer.

Status

w Second generation prototype currently
supports limited IDE functionality.
n Used open source cores from

www.opencores.org
n Moving to commercial cores this fall since the

open source cores have not worked well.

Current and Future Work

w Identified a meta vulnerability class induced
by layering with three sub-classes: Session
hijacking, TOCTOU, man in the middle.
n Formalizing with BAN Logic (adding a temporal

element)
n Reducing the sub-classes to layering
n Proving a general mitigation strategy works for

all three sub-classes.

