
Wireless Networking Projects

Ashok K. Agrawala
Udaya Shankar

University of Maryland

Participants

• Ashok Agrawala
• Udaya Shankar
• Students

– Moustafa
– Jeowang
– Arun
– Andre
– Bao
– …

Activities

• WLAN Location Determination
• WLAN QoS Studies
• Characterization of User Behavior and Network

Performance
• Z-Iteration for WLAN/WAN
• 3G Networks and Convergent Solutions

Location Determination

• Triangulate user location
– Reference point: access point
– Measure quantity: signal strength, time delay, …

• Signal strength= f(x, y, xi, yi)
– Does not follow free space loss
– Complex function of distance

Solution

• Use a lookup table
– Radio map
– Radio Map: f(x, y, xi, yi) for all i

• at selected locations

• 2 phases
– Offline phase
– Location determination phase

(xi, yi)
(x, y)

(xi, yi)
(x, y)

Signal Strength Characteristics

• Temporal variations
– People movement, doors opening and closing, …

• Spatial variations
• Large scale

– Signal attenuates with distance
– Desired

• Small scale
– Multi-path effect
– Hard to capture by radio map (size/time)

Temporal Variations

Temporal Variations

0

50

100

150

200

250

300

-95 -85 -75 -65 -55

Average Signal Strength (dBm)

N
u

m
b

e
r

o
f

S
a

m
p

le
s

C

o
ll
e
c
te

d

Temporal Variations:Correlation

Spatial Variations: Large-Scale

-65

-60

-55

-50

-45

-40

-35

-30
0 5 10 15 20 25 30 35 40 45 50 55

Distance (feet)

S
ig

n
al

 S
tr

en
g

th
(d

b
m

)

Spatial Variations: Small-Scale

Approach

• To address noise characteristics
– Radio map stores signal-strength distributions from K strongest

access points
(instead of scalar mean/maximum)

• To address scalability and cost of estimation
– Clustering techniques for radio map locations

• incremental clustering
• joint clustering

Sampling Process

• Active scanning
• Send a probe request
• Receive a probe response

• Sample:
,...),(21 sss =

Mathematical Formulation

• x: Position vector
• s: Signal strength vector

– One entry for each access point

• s(x) is a stochastic process
• P[s(x), t]: probability of receiving s at x at time t
• s(x) is a stationary process

– P[s(x)] is the histogram of signal strength at x

Estimating Location

• Argmaxx[P(x/s)]
• Using Bayesian inversion

– Argmaxx[P(s/x).P(x)/P(s)]
– Argmaxx[P(s/x).P(x)]

• P(x): User history

Comparison With Other Systems:
RADAR

Comparison With Other Systems:
Ekahau

March 2002

Handling Correlation: Averaging

• s(t+1)=a.s(t)+(1-a).v(t)
• s ~ N(0, m)
• v ~ N(0, r)
• Y=1/n (s1+s2+...+sn)
• E[Y(t)]=E[s(t)]=0
• Var[Y(t)]= m2/n2 { [(1-an)/(1-a)]2 + n+ 1- a2* (1-a2(n-1))/(1-

a2) }

Handling Correlation

2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Alpha

A
ve

ra
g

e
E

rr
o

r

n=2

n=3

n=4

Characterization of Wireless Traffic

• Wireless traffic can not be characterized by monitoring the
wired network only
– Client to Client traffic
– Control traffic
– …

• Monitor the Wireless Medium
– Use Sniffer(s)
– Multiple Sniffers are required to assure full capture
– Merge the traces from multiple sniffers

• How??
– Sequence numbers?
– Time Stamp?

Synchronization of Multiple Sniffers
by Least Square Method

• Timestamp of one sniffer can be approximated as a linear function of
reference time.

• Reference time can be
– Timestamp of another sniffer
– Timestamp of beacon frames (from AP) that all sniffers commonly receive.

• LSM tool used
– robustfit() in Matlab

Experimental Setup

• Linux 2.4.19
• Orinoco_cs driver version 0.11b
• Libcap library version 0.7
• Ethereal network analyzer version 0.9.6
• Access Points monitored: 29 Cisco APs, 12 Lucent APs, 17

Prism2-based APs.
• Three sniffers: mclure (with Linksys card), kif (with

NoName) and zapp (with NoName).

Synchronization: Using Beacon Time
as Reference

• Beacon timestamps are
– more reliable than sniffer timestamps.
– available to all sniffers.

• Simple linear regression [REF_B method]
τbeacon = β Tsniffer + α, where
– Residue (error) = τbeacon – Tbeacon = (β Tsniffer+ α) – Tbeacon

• With our experimental data, REF_B method incurs many
discontinuities in τbeacon.
– No transit delay for beacon frame is considered in REF_B.

Synchronization with Beacon
Timestamps (REF_B)

Effect of Change in Data Rate and
Traffics

Synchronization: Adjustment by
Beacon Transit Delay

• Adjustment by transit delay [ADJ_B method]
τbeacon = β (Tsniffer - Tdelay)+ α (1)
τbeacon - Tdelay = β Tsniffer + α (2)

• Which is correct, (1) or (2)?
– Depends on the exact timing when Tbeacon and Tsniffer are generated.

• If sniffer’s timestamp is generated after the last bit of a frame being
received and the beacon timestamp exactly reflects the time when it
was generated, then (1) is correct.

• If sniffer’s timestamp is generated as soon as it received the first bit of
the beacon frame and the beacon timestamp equals to the current time
plus the transit delay, then (2) is correct.

• Experimental result: (2) is correct in our setup.

Synchronization with Beacon
Timestamps (ADJ_B)

Synchronization: Using Sniffer Time
as Reference

• Simple linear regression [REF_sniffer_r method]
τsniffer_r= β Tsniffer + α, where
– τsniffer_r : Predicted reference timestamp
– Tsniffer : Timestamp of target sniffer
– Residue (error) = τsniffer_r– Tsniffer_r = (β Tsniffer+ α) – Tsniffer_r

• Synchronization performance depends on
– clock difference between sniffer and sniffer_r.
– Reliability of Tsniffer_r (e.g. what if Tsniffer_r is corrupted)

• Our setup: three sniffers (mclure, kif and zapp)

Synchronization with Sniffer
Timestamps (REF_mclure)

Synchronization Performance
Comparison

• Synchronization methods
– REF_B: reference beacon timestamps
– ADJ_B: reference (Tbeacon – Tdelay)
– REF_sniffer: reference sniffer’s timestamps (sniffer can be m=mclure,

k=kif, z=zapp)
• Performance metrics

– Fitting performance by residue (= predicted – Tbeacon)
– Pairwise performance - difference between two sniffer timestamps (e.g.

|Tkif_predicted – Tzapp_predicted|)

Fitting Performance for Big Dataset
(size = 5658, one set)

67-26488-22272-266

0059-3324-25REF_Z

33-590039-36REF_K

25-2436-3900REF_M

56-19469-12167-189ADJ_B

67-26488-22272-266REF_B

MaxMinMaxMinMaxMin

Residue on zappResidue on kifResidue on mclure

Pairwise Performance for Big
Dataset (size = 5680, one set)

Total

REF_Z

REF_K

REF_M

ADJ_B

REF_B

388274

255952

385939

254439

268274

264948

zapp-mclurekif-zappmclure-kif

Max Difference bet’n two sniffer timestamps

Fitting Performance for Small
Dataset (size = 200, 28 sets)

54-7661-7761-79Total

0017-2013-28REF_Z

20-170019-10REF_K

28-1313-1900REF_M

13-1619-2218-22ADJ_B

54-7661-7761-79REF_B

MaxMinMaxMinMaxMin

Residue on zappResidue on kifResidue on mclure

Pairwise Performance for Small
Dataset (size = 196~202, 28 sets)

Total

REF_Z

REF_K

REF_M

ADJ_B

REF_B

432325

262015

232019

262319

151717

432025

zapp-mclurekif-zappmclure-kif

Max Difference bet’n two sniffer timestamps

Conclusion

• In fitting performance, ADJ_B and REF_sniffer perform better than
REF_B.

• In matching performance, REF_sniffer performs better than REF_B
and ADJ_B.

• Referencing beacon timestamps is more reliable than reference of
sniffer timestamp.

• For small data size (e.g. 200), matching error is smaller than 50 µs,
which is equal to DIFS (Distributed Inter-Frame Space) therefore,
small enough to distinguish duplicates.

WLAN QoS Studies

The Impact of Physical-Layer Capture on Higher-
Layer Performance in 802.11b WLANs

Throughput fairness in 802.11b
WLANs

• Throughput fairness in 802.11 depends on
– TCP/Application congestion control
– MAC access mechanism
– Physical-layer characteristics

• Most studies downplay physical-layer effect and focus on
the MAC CSMA/CA/BEB and on the TCP/Application
control

• We discovered that physical-layer capture is the dominant
factor in throughput fairness

Physical-layer capture effect

• Physical-layer capture effect:
– When two frames collide at a receiver, the receiver can extract

the stronger frame

• Capture occurs consistently for even a few dBm
difference in frame signal strengths

• Capture occurs frequently in WLANs (due to multipath
and fading).

How do we decide collisions?

• A sniffer X’ “tracks” each source X
– Max strength signal at X’ is from X

• In a collision involving a frame of X, sniffer X’ records the
frame of X
– Because of capture at X’

Inferring Collisions (contd.)

• Construct global timeline
– Using reception firmware time stamps at sniffers
– Synchronizing using beacons
– Accuracy of 5 microseconds

• Two events on timeline are collisions if transmission time
intervals overlap

UDP/Ad-hoc Mode Experiments

source 1 source 2 sniffer (sink)
sniffer 1 sniffer 2

• Sources broadcasting in ad-hoc mode
– no beacons, ACKs, and retransmissions
– MAC-layer effect minimized
– UDP workload, so no TCP/application congestion control

• Results
– 8% of frames collided
– 90% of collisions had capture
– 8% higher throughput for stronger station

UDP/Ad-hoc Mode Experiments
Signal strengths Throughputs

UDP/Infrastructure Mode without
RTS/CTS

source 1 source 2 AP
sniffer sniffer sink

• Results
– Weaker station retransmitted 5% of frames
– Stronger station retransmitted 0.5% of frames
– Stronger station had 8% higher throughput

UDP/Infrastructure Mode without
RTS/CTS

Signal strengths Throughputs

UDP/Infrastructure Mode with
RTS/CTS

source 1 source 2 AP
sniffer sniffer sink

• Results
– Each station retransmitted under 0.1% data frames
– Weaker station retransmitted 5% of RTS frames
– Stronger station retransmitted 0.1% of RTS frames
– Stronger station had 12% higher throughput

Multiple UDP Sources:
Infrastructure mode without RTS/CTS

Multiple UDP Sources Throughput:
Infrastructure mode with RTS/CTS

TCP/Infrastructure Mode

• Two sources, one AP, one sink
• Used netperf

– Both sources were started at same time using a broadcast UDP
signal

• Results
– Throughput difference as high as 50%
– Throughput depends on Signal Strength

TCP/Infrastructure Mode:
Typical Performance

4 feet2.92 Mbps Signal: -55 dBm
Noise: -88 dBm

7 feet 2.1 MbpsSignal: -67 dBm
Noise: -87 dBm

Distance from
AP

Throughput Signal Strength

TCP/Infrastructure Mode:
Typical Performance (contd.)

• TCP Tput = function(loss, RTT)
• Typical zero TCP level loss for two stations

– Because of link-level ARQ in 802.11

• RTT varies significantly between stations
– Related to signal strength
– In presence of collision, retransmissions occur for one station
– Other station’s frame is captured at AP

• Therefore, unfairness in TCP tput for station with weaker
signal strength

Multiple TCP Sources Throughputs:
Infrastructure without RTS/CTS

Multiple TCP Sources Throughputs:
Infrastructure with RTS/CTS

QoS: MAC layer conclusions

• Physical-layer capture is a major cause of MAC
throughput unfairness.

• Resulting unfairness as high as 12% in favor of station
with stronger signal (50% with TCP).

• Any QoS scheme must account for differing signal
strengths of sources.

Link Layer Control for QoS MAC

• Random MAC (DCF) good at low load
– Degrades at high load

• Scheduled MAC (PCF) good at high load
– Not available yet

• Our Approach
– Best of two worlds
– Have Random MAC as base
– Do Link Layer Control for improved performance at high load

Link Layer Control: The Big Picture

• Time is roughly divided into cycles
• Clients periodically inform AP of estimated load for next

cycle
• AP computes fair shares of each client and broadcasts it
• Clients shape their outgoing traffic for next cycle at link

layer

Link Layer Control: Specifics

• 802.11 allows 2304 bytes MTU
– Our measurements show only 1500 bytes used
– Because WLAN drivers emulate Ethernet interface to the kernel

• So piggyback load information at end of frame
– Load information = size of firmware queue
– DD write extra bytes to firmware buffer at EOFrame

• Doesn’t affect FCS

– The receiving driver (at AP) strips it off and uses it for computation
• Doesn’t affect IP checksum

Link Layer Control: Specifics
(contd.)

• Policing at client
– Window based rate control at link layer
– Use the Interface Queue (IFQ) as window

• IFQ = Layer between device driver and kernel networking stack

• At AP
– Collect estimated load
– Compute fair share
– Broadcast information

Link Layer Control: Implementation

• Linux OS Client with orinoco_cs driver
– New queuing discipline (crmac) to implement our policy in IFQ as

a kernel module
– Patched the tc (transmission control) program to tell kernel to use

crmac for an interface.

• Linux OS AP with hostap_cs driver
– Added ability to strip off load information and compute fair share

• Current Work
– Testing of different policies at AP and clients

