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Super-resolution imaging
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How to reconstruct a high-resolution image /
from a sequence of low-resolution images ...\ | ___________ / Alignment

High-resolution image

*Two key components

*Accurate image alignment

Homography-based image alignment with high accuracy

*Robust low-to-high resolution signal reconstruction scheme

Wavelet-based reconstruction with de-noising operator



Modeling image formation
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Modeling relationship between LR signal y and HR

signal x

*New model of the relation between low and high resolution images using filter bank theory

1D case;:

Taylor expansion:

H + X(F(t))]
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H x X ()] + e[H' x X (t)].
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Limit on Super-resolution imaging

« Examples: Box-type PSF

a %(1,2,1], a(z) = 1z (1 +2)?
b=1(1,0,—1), b(z)= 5:(1—2%)

» Observation: a(z) and b(z) have a common factor c(z)=(1+z)

 Limitation: At most, a blurred version of x can be recovered for any PSF

" = cx

» 2D case for the example:



Basic idea

« Goal: reconstruct " — ¢ x 7

 Wavelet filter bank
Analysis

Synthesis

» Recall the relationship between low and high resolution signal



Reconstruction scheme

(Subtraction
A

m-0O-0O

* Hybrid shrinkage operator in Denoising

* Robust median regression



Flow estimation

Observation: the shape changes only with rotation

Image frames : [()7[1’[27[37 Ik

homography Pk — Rk —|- ?7kﬁt



Flow estimation from multiple frames

(%})%j}’(f’ — % Optic flow constraint

(G0 P (7) = 7L (7)) = Ix(7) — Io(p} (7))
Ap(P)pr, =0

Ming, v, 2k | Ak(PLvec Ry, + 0¢7i']||?

subject to the constraints that the R;s are ro-
tation matrices and ||7i|| =1

Given P;Z at step j, we compute P]g"'l — RIT14
Ui+l(ﬁj+1)t at step j+ 1



Experiments

« Synthesized data
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Original Low resolution Tikhonov Wavelet

« Comparison between Tikhonov and wavelet-based regularization
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(cont’)

 Real video
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Interpolation POCS+Affine POCS+Homography Wavelet+Homography




(cont’'d)

Interpolation Irani’s + Affine  Irani’s + Homography Wavelet + Homography
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