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Human Motion Analysis

1

3D models of humans Motion capture Shape Sequences

[Johansson 1973]

with joint angles [mocap.cs.cmu.edu] [Veeraraghavan 2004]
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Human Action Recognition — Prior Work
View
Invarignce

Anthropometry

Non-Imaging based methods :
Motion capture, light displays etc

Execution Rate
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Why is learning Execution rate important?

Sequence 1

Sequence 2

Ghost Heads
Structural Ghost Hands
Inconsiste

Average Sequence

Time Warped
Average Sequence

Structurall
consistent

average Sequence giryctural Inconsistencies. (2 heads, 4 arms etc.)

 Wrong match in recognition experiments.

« Algorithms attempt to explain temporal variation by modeling feature
variation.
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Model for an Activity

Feature Space Time Warping Space
4 f Space of
funﬁs
Space of
22(0): Sit time warping
functions
>

Possible Features: Silhouettes, 3D motion
capture, shape of outline, body angles,
location of joints in 3D /2D etc
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Modeling time-warping for Activities

Model For an Activity Properties of functions in A
Nominal activity trajectory : All realizations of the activity starts
a(t); te(0,1) at time t=0 and ends at time t=1,

i.e., f(0)=0 and f(1)=1.

W : Space of time warping
functions. The order of action units for each
activity remains unaltered for all
realizations i.e.,

fi(t)y >0vte (0,1)

Realizations of the activity
r(t) = a(f(t)) where f € W

Also need to know how to
sample candidate functions
“f from W. f=afi+(1—a)fs

We note that A is a convex set., i.e.,
if f, and f, are in A, then for a € (0,1)

fis also in A.
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Activity Specific time-warping space W

W is a subset of A the space of time warping functions.
f(t) = t is a candidate function in W. This represents no time warping.

It is reasonable to assume that W is pointwise convex, i.e., for all
f1,2€Wanda€(0,1), f=afl +(1-a)f2is alsoin W.

o Since the derivative is a linear operator, this means that if the rate
of execution of some action can be speeded up by factors a1
and a2 then it can also be speeded up by any factor 3 in between
a1 and a2. This is not just reasonable but in fact desirable.
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Activity Specific time-warping space W

These properties imply that W
can be represented by a warping
constraint window, given by two

functions u(t) and I(t) where u(t) is | Yip Souning

the upper bounding function and _. Activity Specific

I(t) is the lower bounding function. © Warping Constraint
-

Time warping functions f in the | |
activity specific warping space W Functon 16
are such that .-

u(t) >t > I(t) ¥te (0,1)
w=f2l Vi) e W
where f > g= f(t) = g(t) Vte (0,1)
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From DTW to Activity Specitic Warping

Constraints

Skoe—Chibu Band
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Symmetric Representation of Activity Model

Activity Traje -,lon tor
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Figure 3. Non symmetrical model {a(t),
ing symmetrical version {n.rmu
transformation between the two models
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"1} and the correspond-

ﬂ wnew,lnew }.  The warping

1s given by f.

* Model parameters {a, W}
non-unique.

* There exists an
equivalence class of model
parameters.

« Each equivalence class
contains one member whose
model parameters are
symmetric.

 Learning and inference
made only on symmetric
representation of model in
order to ensure uniqueness.
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Learning Symmetric Representation of
Activity Model

= Learn the nominal activity trajectory a(t)

= Learn the functional space of time-warps W.

= Learning algorithm can be based on any chosen time alignment procedure.
= We have used the Dynamic Time Warping (DTW) for time alignment.

= EM based learning algorithm

= Expectation bt) = E(b;(g7'(t)) = % Z bi(g'(t))

= Maximization
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Learning the Model

Upper Bounding
- Function u(t)

Specific
g Constrain

Lower Boundirg
Function I{t)

& ©

TRyL P‘e \' University of California, Riverside



Pre-processing and Feature Extraction

BiECE: - NN
nog -

1. Background Subtraction

2. Connected Component
analysis

3. Extract Shape Feature.
(Kendall’s statistical shape)

4. Shape Feature lives on a
spherical shape-space.

5. Use appropriate distance
measures like Procrustes
distance for local distance
computations.

X

[Veeraraghavan et. al.] CVPR 2004, PAMI 2005
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Resu

70 people,
Variabilities: shoe type, surface, view point.

Its on USF Data

upto 10 sequences per person

ir

Table 1. Comparison of Identification rates on the USF dataset - of Average OMS of various sigorthm
Pr- | Base- | DTW | HMM | HMM | DTW | Our o i _+—+—+—*_'___ff___..-‘-"---_-:'
obe | line | Shape | Shape | Image | R-R | method | | ””rA'g‘?”t“”” ,g,“g ’Hmmu.mge)
Avg | 42 42 4] 50 42 59 i —
ay: - “DTWHMM
A 79 81 80 96 52 70 | (=hape)
B 66 74 72 86 52 68 ol
C 56 52 56 74 72 81 u M i o i
D | 29 | 29 | 22 | 32 | 33 | 4 | o e
E | 24 | 20 | 20 | 28 | 26 | 64 | ° : :
Fl 3 [ 0] 20 [ 17 ]2 3 Figure: ?Ms_thcu"ve t‘;:)r
\ . . - 5 2 ; various algorithms on the
G 10 19 19 21 36 53 USF database.
Baseline . [Sarkar 2005]
DTW Shape, HMM Shape : [Veeraraghavan 2004]
HMM Image . [Kale 2004]
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Activity Recognition on UMD
Database

Database of 10 Activities and 10
Sequences per activity

2. 100 % Recognition and increase
in discrimination in the similarity
matrix compared to traditional
DTW.

(a) Pick up Object ':ﬂ Kick

(b) Jog in place () Bend to the side
(c) Push (h) Throw

(d) Squat (i) Turn Around

(e) Wave (j) Talk on Cellphone

Figure 4. 10 X 100 Similarity matrix of 100 sequences and 10
different activities.
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Organize a large Database Hierarchically (Dendrogram)

l.evel ]

| | Lewvel 2
rbrtih e i e

|‘| - 1 Lewel 3

Figure 6. Dendrogram for organizing an activity database
1. USF Database. Total 1870 Sequences of 122 individuals.
2. No: of Leaves at every node = 3.

3. No: of Levels of Dendrogram = 3

Identification rate after organization

n = 100 : : , —
/ Identification rate before organization

Table 2. Efficiency of Organization on the USF dataset
Probe | A | B | C D E F G | Avg
7 76 | 81 | 84 | 100 | 82 | 100 | 95 | §9
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Conclusions

Modeling, Learning and accounting for time
warping is important for activity recognition.

We proposed a convex activity specific
function space for time warping functions and
derived learning, recognition and clustering
algorithms using this model.

Appropriate feature selection will enable view
and anthropometry invariance.
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Thank You

= Contact : vashok@umd.edu
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