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Abstract

We present an analysis and algorithm for the problem of super-resolution imaging, that is the

reconstruction of HR (high-resolution) images from a sequence of LR (low-resolution) images. Super-

resolution reconstruction entails solutions to two problems. One is the alignment of image frames. The

other is the reconstruction of a HR image from multiple aligned LR images. Both are important for the

performance of super-resolution imaging. Image alignment is addressed with a new batch algorithm,

which simultaneously estimates the homographies between multiple image frames by enforcing the

surface normal vectors to be the same. This approach can handle video sequences with large displacement

quite well. Reconstruction is addressed with a wavelet-based iterative reconstruction algorithm with an

efficient de-noising scheme. The technique is based on a new analysis of video formation. At a high

level our method could be described as a better-conditioned iterative back projection scheme with an

efficient regularization criteria in each iteration step. Experiments with both simulated and real data

demonstrate that our approach has better performance than existing super-resolution methods. It can

remove even large amounts of mixed noise without creating artifacts.

Index Terms

Perfect reconstruction filter banks, Super-resolution, Multiple frame alignment, Wavelet denoising

I. OVERVIEW

The problem ofsuper-resolutionreconstruction, which is defined as restoring a high-resolution

(HR) image from a sequence of low-resolution images (see Fig. I), has been studied by many

researchers in recent years. Most super-resolution algorithms formulate the problem as a signal
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Fig. 1. Illustration of super-resolution imaging.

reconstruction problem. Essentially these algorithms differ in two aspects: one is in how the

image frames of the sequence are aligned in a common coordinates system; the other is in

how the high-resolution image is reconstructed from the aligned low-resolution image frames.

The accuracy of the image alignment and the robustness of the signal reconstruction determine

the algorithmic performance. The two aspects are related. Thus the imperfectness of the image

alignment has to be considered in the later stage of image restoration.

In this paper we propose a complete super-resolution reconstruction system which addresses

both the problems of frame alignment and image restoration. Our contributions are two fold.

The first is a theoretical analysis of video formation from the view of filter banks, which leads

to a new wavelet-based reconstruction scheme for the image reconstruction. The second is a

batch algorithm for image alignment, which computes the projective flow (planar homographies)

across all frames in the sequences.

Using a sequence of similar but not identical image frames makes it is possible to increase

the spatial resolution of one still image. However, it is difficult since this is an ill-posed inverse

problem. Despite the difficulties, researchers have made great progress towards stable algorithms.

Iterative back-projection methods ( [10], [18]) have been shown to be an effective tool for

high-resolution image reconstruction. It is known, however, that the de-blurring process, which

is part of this approach, makes it very sensitive to the noise. Thus, the requirement of very

accurate image alignment estimates limits its practical use. Various regularization methods have

been proposed to deal with the noise. However, these methods either are very sensitive to the

DRAFT



3

assumed noise model (Tikhonov regularization) or are computationally expensive (Total-Variation

regularization). See [6] for more details.

Our contributions to the reconstruction process are two-fold. First, we model the image

formation procedure from the point of view of filter bank theory. Then, based on this new

formulation, we analyze the limits of the high-resolution reconstruction. Our conclusion is that

in general full recovery is not possible without enforcing some constraints on the recovered

images. At best we could reconstruct the image convolved with a specific low-pass filter (namely
1
4
(1, 1) ⊗ (1, 1) for the case of the Box-type PSF). Second, based on our new formulation, we

present a robust wavelet-based algorithm for image reconstruction. The iteration scheme in our

algorithm is inherently more robust to noise than that of classic back-projection methods ( [10],

[18]), because the projection matrix of our back-projection scheme has a better condition number.

We will show that, both in theory and experiments, it has better performance in suppressing the

error propagation than other back-projection iteration schemes.

Furthermore, our algorithm allows us to include a wavelet-based de-noising scheme in each

iteration of the reconstruction which effectively removes the noise without creating smoothing

artifacts. The advantage of our de-noising scheme over regularization methods is that it is nearly

optimal with respect to the risk bound. That is, it has the theoretical minimal error in removing

noise of unknown models. Its effectiveness in removing mixed noise and relatively large amounts

of noise is demonstrated in experiments. It is worth mentioning that our de-noising scheme adds

very little computational burden compared to other complicated regularization methods. Briefly,

our method could be described as a generalized iterative back-projection method with a fast and

optimal regularization criteria in each iteration step. Wavelet theory has previously been used

for image de-noising and de-blurring from static images ( [3], [4]). However, it has not been

studied much with respect to the super-resolution problem. In recent work wavelet theory has

been applied to this problem [16], but only for the purpose of speeding up the computation. Our

contribution lies in an analysis that reveals the relationship between the inherent structure of

super-resolution reconstruction and the theory of wavelet filter banks. This relationship is fully

exploited by using various techniques from wavelet theory in the iterations of the reconstruction.

For the process of image frame alignment, the flow-based approach is the most popular choice

because of its flexibility. The difficulty in accurate estimation of general non-parametric image

flow makes the reconstruction of higher-resolution images not very meaningful. Thus, some
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assumption on the underlying flow model has to be enforced. Such assumption, of course,

makes the algorithm less general, but more practical. The most frequently used flow models are

the affine transform and the more general projective transform ( [2], [5], [10], [22]). The most

popular reconstruction procedure is the iterative back projection method ( [10], [18], [23]).

In this paper, we propose a new algorithm for computing projective flow (planar homographies)

simultaneously on all frames in the sequence. The most closely related studies are [8], [21] and

[11], which all provide algorithms for the estimation of planar motion between multiple frames

based on some rank constraint. However these studies either are limited to short image sequences

( [8], [21]), or compute relative motion only between neighboring frames ( [11]), which could

lead to accumulative errors in the image alignment. Our approach is an extension of [11] to

the more general estimation of homographies (as opposed to planar flow). Briefly, the motion

between the reference frame and any other frame is modeled as a homography. Then, the shape

constraint proposed in [11] is directly incorporated into the estimation of the homographies. This

leads to accurate alignment for longer sequences. As a result, we have more frames available

for the reconstruction.

II. FORMULATION OF HIGH-TO-LOW IMAGE FORMATION

We first formulate the high-to-low image formation process. To simplify the exposition, in

the following we only discuss 1D signals with resolution enhancement by a factor 2. Later,

without much difficulty, the analysis will be extended to the 2D case with arbitrary resolution

enhancement. Adopting Farsiu’s notation ( [6]), the image formation process in the pixel domain

can be modeled as

y = σ[H ∗X(F (t))] + N, (1)

where t is the spatial variable;X(t) is the continuous signal andy is the discrete signal;H

is the blurring operator (either optical blurring or motion blurring or both);F is the geometric

transform;N is the noise in the low-resolution image;σ is the decimation operator; and “∗” is

the convolution operator. Not considering the noise for the moment, the high-resolution (HR)

signalx and the low-resolution (LR) signaly can be defined as:

x = σ[X], y = [σ[H ∗X(F (t))]] ↓2, (2)

where↓2 is the downsampling operator with rate 2.
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Next we derive the relationship between the LR signaly and the HR signalx. Denote the

velocity of the signal asε(t) = F (t) − t, which is also called theoptical flow in Computer

Vision. For simplicity of notation, here we assume a sub-pixel flow model with0 < ε(t) < 2 on

the denser grid of the HR imagex (Larger flow could always be reduced to the case of sub-pixel

flow by re-assigning the pixel value). Thus, in the LR image the flow values are all sub-pixel

shifts (Recall a 1-unit shift on the coarse grid ofy equals a 2-unit shift on the fine grid ofx).

Let {j} be a fine grid for the spatial coordinatesx. Then for pointj of y on the coarse grid

(its coordinate is2j on the fine grid) with0 ≤ ε(2j) < 1, the first-order Taylor approximation

of Equation (2) at point2j can be written as

y(j) = [H ∗X(F (t))]t=2j

= [H ∗X(ε(t) + t)]t=2j

= [H ∗X(t)]t=2j + ε(2j)[H ∗X ′(t)]t=2j

= [H ∗X(t)]t=2j + ε(2j)[H ′ ∗X(t)]t=2j.

For all other pointsj′ of y with 1 ≤ ε(2j′) < 2, a similar argument yields

y(j′) = [H ∗X(t)]t=2j′+1 + (ε(2j′)− 1)[H ′ ∗X(t)]t=2j′+1.

Thus, a LR sequencey could be expressed in the pixel domain as a sub-sequence of the

following two sequences:

[a ∗ x] ↓2 +ε ·∗[b ∗ x] ↓2; and a ∗ x(·+ 1)] ↓2 +(ε− 1) ·∗[b ∗ x(·+ 1)] ↓2, (3)

where a, b are discrete versions of the convolution kernelsH and H ′ respectively, and·∗

denotes the component-wise multiplication operator. Having available the optical flow values

εk for multiple low-resolution imagesyk, we can by solving an over-determined system of linear

equations obtain the four components:

[a ∗ x] ↓2, [a ∗ x(·+ 1)] ↓2, [b ∗ x] ↓2, [b ∗ x(·+ 1)] ↓2 . (4)

As will be shown in the next subsection, the two filtersa and b (which are determined by the

blurring kernelH and its derivativeH ′) characterize the super-resolution reconstruction.

Let us next look at some examples of filtersa and b for different blurring kernels.
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Example 1 Consider the box-type blurring kernelH = 1
2n

χ[−n,n]. Let ε(t) = ε ≤ 1. Then we

have

y(j) =

∫ ∞

−∞
χ(2j − t)X(F (t))dt

=
1

2n

∫ 2j+n

2j−n

X(F (t))dt =
1

2n

∫ 2j+n

2j−n

X(t + ε)dt.

Approximating the integration by quadrature rules, we obtain

y(j) =
1

2n
(
1

2
(1− ε)x(2j − n) +

n−1∑
i=−n+1

x(2j − i) +
1

2
(1 + ε)x(2j + n)).

Equivalently, we can write

y = [a ∗ x + ε(b ∗ x)] ↓2, (5)

wherea and b are the following low-pass and high-pass filters, respectively:

a =
1

4n
(1, 2, · · · , 2, 1), b =

1

4n
(−1, 0, · · · , 0, 1).

Example 2 Consider a Gaussian-type blurring kernelH. Using the Cubic Cardinal B-spline

B(t) as approximation to the Gaussian function we have

y(j) =

∫ ∞

−∞
B(2j − t)X(F (t))dt.

Again, by the quadrature rule, we have the approximation

y =
∑

i

x(2j − i)(a(i)− ε · b(i)),

where  a = 1
96

(1, 8, 23, 32, 23, 8, 1);

b = 1
48

(3, 12, 15, 0,−15,−12,−3).

III. A NALYSIS OF THE HR RECONSTRUCTION

Given multiple LR signalsyk with different motionsεk, theoretically we can obtain two

complete sequencesa∗x andb∗x from (4). An interesting question arises. Without any assumption

on the given finite signalx, can we reconstruct the signal sequencex exactly from the two

sequencesa ∗ x and b ∗ x?
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To answer this question, let us write the sequence in another form, namely, as its Z-transform.

The Z-transform of a signal sequencex = {x(i)} is defined as

x(z) =
∑

i

x(i)z−i.

It is easy to see that this transform is a one-to-one mapping between sequence space and

polynomial space. Leta(z) and b(z) denote the Z-transforms of the filtersa and b, then the

Z-transforms ofa ∗ x and b ∗ x area(z)x(z) and b(z)x(z) respectively.

Now the question can be addressed by checking whether the polynomial equation

(a(z)x(z))u(z) + (b(z)x(z))v(z) = x(z), (6)

is solvable for the two unknownsu(z) andv(z). Eliminatingx(z) from both sides of (6) yields

a(z)u(z) + b(z)v(z) = 1. (7)

From the theory of Diophantine equation we know the following:

Lemma 3 Given two polynomialsa(z) and b(z), (7) is solvable if and only if the greatest

common divisor ofa(z) and b(z) is a scalar, that is, ifa(z) and b(z) are co-prime.

It is observed thata(z) andb(z) in our two examples (Example 1 and Example 2) both have

a common divisor

c(z) = (1 + z).

This can be seen from the fact thata(−1) = b(−1) = 0, and thereforez = −1 is the root of both

a(z)and b(z). Thus, for these blurring kernels we cannot reconstructx(z) from a(z)x(z) and

b(z)x(z) exactly. This observation is not an incident. The same holds true for general blurring

kernels, as we will show next.

We follow Baker’s modeling of the blurring kernelH ( [1]). The blurring kernel (Point spread

function) can be decomposed into two components:

H = Ω ∗ C,

whereΩ(X) models the blurring caused by the optics andC(X) models the spatial integration

performed by the CCD sensor. TypicallyΩ is modeled by a Gaussian-type function andC is

modeled by a Box-type function. Notice that

H ′ = Ω′ ∗ C.
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Thus we can express the corresponding discrete filters as:

a = ` ∗ c; b = τ ∗ c,

wherec is the discrete version of the spatial integration kernelC, and` and τ are the discrete

versions ofΩ andΩ′. Sincea(z) and b(z) have a common divisorc(z), we cannot reconstruct

x(z) for generalx(z), unlessC is a Dirac function, which generally is not true. Based on

Lemma 3, we then have the following result.

Theorem 4 Given multiple LR finite signalsyk, we can not perfectly reconstruct the HR finite

signalx without any assumptions onx. At most we can reconstructc∗x for some low-pass filter

c. The corresponding Z-transformc(z) of c is the greatest common divisor ofa(z) and b(z),

which includes the spatial integration filter.

Notice thatc is a low-pass FIR (finite impulse response) filter. To recoverx from c∗x, we have

to apply a high-pass filter onc ∗ x and impose some boundary condition on the signalx. Such

a de-blurring process generally is sensitive to the noise and creates artifacts in the recovered

image. A good strategy then is to modify our reconstruction goal during the intermediate iterative

reconstruction process: Instead of trying to reconstructx, we reconstructc ∗ x in the iterative

process, and we leave the recovery ofx from c ∗ x to the last step, after finishing the iterative

reconstruction.

Thus, the modified HR signal to be reconstructed isx̃ = c ∗ x. The LR sequence{yk} can be

expressed as a subset of the following two sequences:

[` ∗ x̃] ↓2 +εk[τ ∗ x̃] ↓2 (8)

and

[` ∗ x̃(·+ 1)] ↓2 +(εk − 1)[τ ∗ x̃(·+ 1)] ↓2,

where the Z-transform of̀ and τ are a(z) and b(z) divided by their greatest common divisor

c(z), respectively. It is worth mentioning that we model the blurring procedure from HR to LR

by a first-order Taylor approximation. But our reasoning could easily be extended to a modeling

by higher-order Taylor approximations, leading to the same conclusion.
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Fig. 2. The two-channel filter bank.

IV. RECONSTRUCTION BASED ONPR FILTER BANKS

A. Introduction to PR filter banks

Before presenting our algorithm, we first give a brief introduction to 2-channel PR (perfect

reconstruction) filter banks, also called wavelet filter banks (see [14] for more details). A two-

channel filter bank consists of two parts: an analysis filter bank and a synthesis filter bank.

In our case, the signal̃x is first convolved with a low-pass filter̀ and a high-pass filterh

and then subsampled by 2. In other words, we analyze the signal by an analysis filter bank.

Then a reconstructed signalx̂ is obtained by upsampling the signal by zero interpolation and

then filtering it with a dual low-pass filterg and a dual high-pass filterq. In other words, we

reconstruct the signal by synthesizing the output from the analysis bank with a synthesis filter

bank. See Fig. 2 for an illustration.

Such a filter bank is called a PR filter bank ifx̂ = x̃ for any input x̃. The question then is,

what makes{`, h, q, g} a PR filter bank. It is easy to see that the process illustrated in Fig. 2

could be expressed using Z-transforms as follows:

x̂(z) =
1

2
(x̃(z) + x̃(−z))

 `(z) h(z)

`(−z) h(−z)

  g(z)

q(z)

 .

Thus, the sufficient and necessary condition forx̂(z) = x̃(z) is 2zm

0

 =

 `(z) h(z)

`(−z) h(−z)

  g(z)

q(z)

 ,

or equivalently,  g(z)

q(z)

 =

 `(z) h(z)

`(−z) h(−z)

−1  2zm

0

 .
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Then in order to obtain FIR filtersg andq, we require that

det(H(z)) = det(

 `(z) h(z)

`(−z) h(−z)

) = czn.

In summary, the analysis filters{`, h} of a perfect reconstruction filter bank have to satisfy

the following condition:

`(z)h(−z)− `(−z)h(z) = zm for some integerm, (9)

and the corresponding synthesis filters amount to

g(z) = h(−z); q(z) = −(`(−z)).

Thus, given a low-pass filter̀(z), we can find the corresponding high-pass filterh(z) such that

we have an analysis filter bank and thus a PR filter bank by solving the linear system (9).

Example 5 For the well-known “Harr” wavelet filter bank, the synthesis and analysis filters

amount to:

` =
1

2
(1, 1), h =

1

2
(1,−1);

g =
1

2
(1, 1), q =

1

2
(−1, 1).

B. Iterative reconstruction scheme

We have available a number of signalsyk and the corresponding estimates of the optic flow

valuesεk. We also have estimates of the convolution kernels` andτ . Obviously, estimating̀ ∗x

andτ ∗x directly from Equation (3) would not be wise. For reasons of numerical stability special

attention is necessary. Fortunately, the scheme of PR filter banks provides us with an iterative

scheme.

Let ` which corresponds to the blurring kernel be the low pass filter of a PR filter bank. Then

the corresponding high-pass filterh is computed by solving (9). Noteh may be different from

τ .

Recall that for each LR signalyk, we have

yk = [` ∗ x̃] ↓2 +εk ·∗[τ ∗ x̃] ↓2 .
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(If the original signal is incomplete, this can be overcome by a simple interpolation.) From the

above equation[` ∗ x̃] ↓2 is obtained as

[` ∗ x̃] ↓2= yk − εk ·∗[τ ∗ x̃] ↓2 . (10)

The process of a signal̃x passing through a PR filter bank as shown in Fig. 2 can be expressed

as:

x̃ = g ∗ [(` ∗ x̃) ↓2] ↑2 +q ∗ [(h ∗ x̃) ↓2] ↑2 . (11)

Combining (10) and (11), we obtain the iterative reconstruction ofx̃ from K LR signalsyk as

follows: At stepn + 1

x̃n+1 = q ∗ [(h ∗ x̃n) ↓2] ↑2 +g ∗
( 1

K

K∑
k=1

[yk − εk ·∗(τ ∗ x̃n) ↓2] ↑2

)
. (12)

Theorem 6 The iteration of Equation (12) converges to the true valuex under the condition

that

‖g ∗ τ‖ ≤ 1

2
. (13)

Proof: As in [10] for simplicity we omit the down-sampling and upsampling process, as

well as the fusion process. That is, we write

y = ` ∗ x̃ + ε ·∗(τ ∗ x̃).

Then the iteration amounts to

x̃(n+1) = g ∗ (y − ε ·∗(τ ∗ x̃(n))) + q ∗ (τ ∗ x̃(n)). (14)

Subtractingx̃ on both sides of (14) yields

x̃(n+1) − x̃ = g ∗ (y − ε ·∗(τ ∗ x̃(n))) + q ∗ (τ ∗ x̃(n))− x̃

= g ∗ (` ∗ x̃ + ε ·∗(τ ∗ (x̃− x̃(n)))) + q ∗ (τ ∗ x̃(n))− x̃.

Recall that we have

x̃ = g ∗ (` ∗ x̃) + q ∗ (h ∗ x̃).

Then
x̃(n+1) − x̃ = −g ∗ (ε ·∗((τ ∗ (x̃(n) − x̃)) + q ∗ h ∗ (x̃(n) − x̃)

= (g ∗ (−ε ·∗τ∗) + q ∗ h∗)(x̃(n) − x̃).
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Let A denote the operator which represents

g ∗ (−ε · ∗τ ∗+q ∗ h∗).

Then the above equation can be rewritten as

x̃(n+1) − x̃ = A(x̃(n) − x).

Since we have (See [14] for more details):

‖q ∗ h‖ = ‖g ∗ `‖ =
1

2
,

from the fact that‖ε‖∞ < 1, we obtain

‖A‖ ≤ ‖g ∗ τ‖+ ‖q ∗ h‖ < ‖g ∗ τ‖+
1

2
.

Thus‖g ∗ τ‖ ≤ 1
2

is sufficient for the convergence of the iteration.

C. Relationship to other back-projection methods

Applying (11), we can rewrite (12) in the form

x̃n+1 = (x̃n − g ∗ [` ∗ (x̃n) ↓2] ↑2 +g ∗
( 1

K

K∑
k=1

[yk − εk ·∗(τ ∗ x̃n) ↓2] ↑2

)
= x̃n + g ∗

( 1

K

K∑
k=1

[yk − (` ∗ x̃nεk · ∗(τ ∗ x̃n)) ↓2] ↑2

)
.

From this we can seen that the iteration scheme presented here falls in the class of back-

projection methods. But it has advantages over the usual back-projection iterations. Consider the

well-known method by Irani and Peleg [10]. Its iteration can be described as:

xn+1 = xn +
1

K

K∑
k=1

T−1
k

(
((yk − [` ∗ Tk(x

n)] ↓2) ↑2) ∗ p
)
, (15)

where Tk is the geometric transform betweenyk and x̃, and the high-pass filterp is the de-

blurring kernel. Notice that the two methods differ in the de-blurring kernel: one usesg with

g(z) = h(−z) defined in (9); the other isp in (15), the approximate inverse filter of`.

The requirement onp in (15) is

||δ − ` ∗ p|| < 1, (16)

whereδ is the ideal unit impulse response filter. In other words,p should be a good approximation

for the inverse of̀ . In comparison,g in our iteration only needs to be a companion filter for
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the smooth filter̀ with sufficient decay, such that condition (13) holds. This difference makes

g more desirable thanp. Let’s investigate this in more detail.

The noise will be propagated exponentially asO(‖p‖n) in (15) and asO(‖g‖n) in (12).

Generally the flexibility ofg(z) makes it possible to design ag that has much smaller norm

thanp. This leads to much better resistance to noise propagation. Here is an example.

Example 7 Consider` = 1
4
(1, 2, 1). Then

g = (−1/8,−1/4, 3/4,−1/4,−1/8)

is a dual PR filter for` with

`(z)g(−z) = −1 + 9z−2 + 16z−3 + 9z−4 − z−6.

It is easy to check that‖g‖2 is around 0.85. The minimum for the norm of all filters with the

same length asg is around 1.1. The correspondingp is

p = (
1

2
,−2

3
,
4

3
,−2

3
,
1

2
).

In order to make the norm ofp close to the norm ofg, a lengthyp with much slower decay

is necessary. Such a filter is not desirable since it causes artifacts, like the “ring” effect. This

clearly indicates that our iteration scheme is more robust to noise and causes less artifacts in

the reconstructed image.

V. ROBUST ALGORITHM ON 2D IMAGES WITH DE-NOISING

Next we generalize the algorithm to 2D images. Then we introduce a de-noising process during

the iterative reconstruction to suppress the noise in the optical flow estimation. Furthermore, the

algorithm is adjusted to handle outliers.

A. Extension to 2D images with a built-in de-noising process

All the previous analysis can be generalized using the tensor product. By an argument similar

to the 1D case, we approximate the LR imageILR with the HR imageIHR as follows:

ILR = [(a⊗ a) ∗ IHR + u ·∗((a⊗ b) ∗ IHR) + v · ∗((b⊗ a) ∗ IHR)] ↓2,
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where “⊗” is the Kronecker tensor product and(u, v) is the 2D optical flow vector. Then the

2D analysis bank is

Low-pass filter: L = `⊗ `,

High-pass filters: H1 = `⊗ h,H2 = h⊗ `, H3 = h⊗ h,

and the2D synthesis filter bank is

Low-pass filter: G = g ⊗ g,

High-pass filters: G1 = g ⊗ q, G2 = q ⊗ g,G3 = q ⊗ q.

It is easy to verify that the 2D filter bank defined above is a perfect reconstruction filter bank with

the analysis filter bank{L, Hi} and the reconstruction filter bank{G, Qi}. Then generalizing

(12), the iterative equation for the reconstruction of the HR imageĨ from LR imagesILR
k

amounts to

Ĩn+1 =
∑3

i=1 Qi ∗ [(Hi ∗ Ĩ(n)) ↓2] ↑2 +G ∗ 1
K

( ∑K
k=1[Ĩ

LR
k − u ·∗((`⊗ τ) ∗ Ĩn) ↓2

−v ·∗((τ ⊗ `) ∗ Ĩ(n)) ↓2] ↑2 )

Recall that herẽI is the blurred version of the trueI with Ĩ = (c⊗ c) ∗ I.

There always is noise in the estimated flowu, v. However, the deconvolution operator could

make the HR image reconstruction very sensitive to such noise. It is known that the noise

variance of the solution will have a hyperbolic growth when the blurring low-pass filter has

zeros at high frequency. Thus, de-noising is necessary to suppress the error propagation during

the iterative reconstruction.

To suppress the noise, we introduce a wavelet de-noising scheme which subtracts some

high-frequency components from̃In. Briefly, we first do a wavelet decomposition of the high-

pass response, then apply a shrinkage of wavelet coefficients to the decomposition, and then

reassemble the signal.

Our iteration scheme with built-in de-noising operator amounts to

Ĩn+1 =
∑3

i=1 Qi ∗ [Ψ(Hi ∗ Ĩ(n)) ↓2] ↑2 +G ∗ 1
K

( ∑K
k [ĨLR

k − u ·∗((`⊗ τ) ∗ Ĩn) ↓2

−v ·∗((τ ⊗ `) ∗ I(n)) ↓2] ↑2

)
.

The de-noising operatorΨ defined in the equation above is

Ψ(Hi ∗ Ĩn) = G ∗ [
(
L ∗ (Hi ∗ Ĩn)

)
↓2] ↑2 +

3∑
i=1

[Qi ∗
(
Γ[Hi ∗ (Hi ∗ Ĩn)]

)
↓2] ↑2,

whereΓ is the shrinkage operator.
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B. Shrinkage operator and robust regression

The basic idea of wavelet de-noising is to reduce the noise by shrinking the wavelet coefficients

where typically most noise exist. Here we take a hybrid shrinkage approach. The hybrid shrinkage

operatorΓ is defined as:

Γ(ν) =


0 |ν| ≤ µ1;

sign(ν)µ2
|ν|−µ1

µ2−µ1
µ1 < ν ≤ µ2;

ν Otherwise.

(17)

This shrinkage offers benefits both from hard shrinkage (uniformly small risk) and soft shrinkage

(overall small risk). The reasoning goes as follows: The optical flow model we adopt here is

parametric. The noise introduced by this model is not related to the local intensity variation. A

hard shrinkage with appropriate thresholdµ1 should effectively remove such noise. On the other

hand, noise in illumination which is related to the intensity of the pixels should be removed

adaptively. Therefore, a soft-shrinkage is needed in some range. Finally, in order to keep the

sharp edges, we keep the large intensity variations. Occasional outliers will be handled by the

median operator when fusing multiple frames.

In summary, our algorithm is as follows: Given an initial HR imageI(0) we have

I(n+1) = G ∗mediank{[ILR
k − uk ·∗(`⊗ γ ∗ I(n)) ↓2 −vk ·∗(γ ⊗ ` ∗ I(n)) ↓2] ↑2}

+
( ∑3

i=1 Qi ∗ [Φ
(
Hi ∗ I(n)

)
↓2] ↑2

)
.

(18)

The algorithm above could easily be adapted to different blur filters. We only need to adjust the

dual filtersG, Qi to make a new perfect reconstruction filter bank. Also, here we only considered

a doubling of the image resolution. But any other resolution increase could be achieved by

changing the 2-channel perfect reconstruction filter bank to an M-channel perfect reconstruction

filter bank.

C. Relation to regularization methods

One popular de-noising technique used for robust reconstruction is regularization ( [19]).

Recall that back-projection methods basically findx̃ by minimizing
∑K

k=1 ‖yk − ỹk(x̃)‖2
2, where

ỹk(x̃) is the LR signals derived from our estimatedx̃. Such a least squares estimation problem

usually is ill-conditioned. One way to increase the stability is to enforce a regularization term
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and solve:

min
x̃

K∑
k=1

‖yk − ỹk(x̃)‖2
2 + α‖Φ(x̃)‖,

where Φ is some regularization function andα is some pre-defined smoothing factor. If the

regularization is a least squares problem, we call it a Tikhonov-type regularization. The ad-

vantage is its simplicity and efficiency, the disadvantage is its relatively poor performance. A

nonlinear diffusion regularization, like Total Variation regularization usually performs better, but

is computationally expensive.

Wavelet de-noising is closely related to nonlinear diffusion regularization. [15] discussed the

relationship of wavelet de-noising to Total Variation regularization for two simple cases. More

specifically, consider a wavelet de-noising scheme based on Haar wavelets (` = 1
2
(1, 1), h =

1
2
(1,−1)). Then for the case of the shrinkage operator in the wavelet de-noising being asoft

thresholdingoperator defined as in (19), it was shown that the wavelet de-noising process is

equivalent to Total Variation based nonlinear diffusion (Φ(x̃) = ‖x̃‖1) for a two-pixel signal.

Γ(µ) =

 µ− τ · sgn(µ) if (|µ| ≥ τ);

0 Otherwise
(19)

Although [15] only showed the equivalence between Total Variation regularization and a

simplistic wavelet de-noising scheme for a signal with 2 pixels, these results still demonstrate that

the wavelet de-noising process in our reconstruction is comparable to some nonlinear diffusion

regularization schemes in its ability to suppress the error propagation. However, it doesn’t have

the computational burden of most nonlinear diffusion regularizations, since it only needs a linear

wavelet decomposition over one level. In comparison, nonlinear regularizations need to solve a

nonlinear optimization.

VI. FLOW ESTIMATION FOR SUPER-RESOLUTION

A. Basic notations

We consider here the planar motion model. In other words, we assume that the underlying

3D structures of the interesting image regions are planar surfaces. LetI0, I1, I2, · · · , IK be the

image frames in the sequence. Fix frameI0 as the reference image. We need to estimate the

homographies between the reference frameI0 and the framesIk. There is the following constraint
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on the planar homographyPk from reference frameI0 to frameIk:

Pk = Rk + ~vk~n
t, (20)

whereRk is a rotation matrix,~vk is the translation and~n is the normal of the plane. For two

frames close by, the optical flow~u at a point~r is constrained by the brightness consistency

constraint ( [9])

(
dI

d~r
)t~u(~r) = −dI

dt
. (21)

Let ~pk = vec[Pk] = (p1k
, p2k

, · · · , p9k
)t be the vectorized version of the homographyPk. Assume

Ik very close toI0, then under the small motion assumption, the brightness consistency constraint

becomes

(
dI

d~r
)t(~pk(~r)− ~r) =

dI

dt
, (22)

with

~pk(~r) =

 p1x+p2y+p3

p7x+p8y+p9

p4x+p5y+p6

p7x+p8y+p9

 .

~pk(~r) is a 2D linear rational polynomial. Thus multiplying the denominator of~pk(~r) on both

sides of (22) yields a linear homogeneous equation system on~pk:

Ak~pk = 0.

B. Multi-frame homography estimation

We need to simultaneously estimate all homographies between the reference imageI0 and the

framesIk. ThePks are not independent. They share the same plane normal. Using the expression

for homographies from [17], we have the following expressions for all homographies which share

the same plane normals:

Pk = Rk + ~vk · ~nt, for k = 1, · · · , K.

In order to improve the estimation of thePks, this constraint on the surface normal has to be

incorporated into a batch algorithm. Furthermore we need to deal with framesIk with large

displacement to the reference frameI0.
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Here we take an iterative approach to estimate the homographiesPk. Suppose that at thejth

step we are given the approximate solutionP j
k = Rj

k + vj
k · (nj)t for the true homographyPk.

Then Equation (22) can be applied toPk as follows:

(
dI

d~r
)t(~pk(~r)− ~pj

k(~r)) = Ik(~r)− I0(p
j
k(~r)).

In other words, we apply the differential brightness consistency constraint between the frame

I0(p
j
k(~r)) (the image obtained by warpingI0 from the homographypj

k) andIk(~r). The differential

motion is due to the difference between the actual homography and its estimation in the current

stage.

We write these linear equations on~pk as

Ak(P
j
k )~pk = 0.

Then the minimization across all homographiesPk can be written as

min
Rk,~n,vk

∑
k

‖Ak(P
j
k )vec[Rk + ~vk~n

t]‖2 (23)

subject to the constraints that theRks are rotation matrices and‖~n‖ = 1. This is a constrained

minimization, bilinear inRk, ~vk and~n. In the remainder of this section we show how to robustly

solve the minimization (23) using an alternative two-steps optimization.

Given P j
k at stepj, we computeP j+1

k = Rj+1 + ~vj+1
k (~nj+1)t at stepj + 1.

Given P j
k = Rj

k + ~vj
k(~n

j)t, we first update~nj+1. This minimization of (23) is just a regular

least squares minimization over the sphere of~nj+1 and can be written as:

min
~nj+1

∑
k

‖Ak(P
j
k )vec[Rj

k + ~vj
k(~n

j+1)t]‖2 (24)

subject to ‖~nj+1‖ = 1. The minimization of (24) can easily be solved by SVD decomposition.

The algorithm is as follows: GivenA and~b, the following procedure computes a vector~n such

that ‖A~n − ~b‖2 is minimum, subject to the constraint‖~n‖ = 1. Run SVD onA such that

A = UΣV t and save

V = {v1, v2, · · · , vn}, b = U tb, Σ = diag(σi).

Find λ∗ such that ∑
i

(
σibi

σ2
i + λ∗

)2 = 1.
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Then

~n =
∑

i

(
σibi

σ2 + λ∗
)vi.

Then givenP j
k , ~nj+1, we estimate{Rj+1

k , vj+1
k } for k = 1, · · · , K. We need to solve the

following minimization: For eachk

min
Rj+1

k ,vj+1
k

‖Ak(P
j
k )vec(Rj+1

k + ~vj+1
k (~ni+1)t)‖2

subject to

(Rj+1
k )tRj+1

k = I3.

This is not a trivial task. Here we present a fast linear method to obtain an approximate solution.

Let Rj+1
k be approximated by(I + [ω]×)Rj

k, where [ω]× is the skew-symmetric matrix of the

rotation vector~ω. Using the observation that

P j+1
k = Rj+1

k + ~vj+1
k (~nj+1)t

we perform the following decomposition

P j+1
k = (I + [ωj

k]× + ∆vj
k · (R

j
kn

j+1)t)P j
k ,

with

vj+1
k = (I + [ω]x)v

j
k + (1 + (Rj

kn
j+1)tvj

k)∆vj
k. (25)

Then the minimization (25) is simplified to a standard least squares minimization onωi
k and

∆vi
k:

min
ωj

k,∆vj
k

‖Ak(P
j
k )vec[(I + [ω]× + ∆vj

k · (R
j
k~n

j+1)t)P j
k ]‖2. (26)

ThusRj+1
k andvj+1

k can be derived from∆vj
k andωi

k after solving the least squares minimization

of (26).

We adopt the procedure in [8] to compute initial values for the homographiesP 0
k s from

multiple relative motionsPk1,k2 between framesIk1 and Ik2 related by a small displacement.

Briefly, the P 0
k s are determined by an overdetermined linear system:

Pk1,k2P
0
k1
− P 0

k2
= 0.

(See [8] for more details.) The iteration algorithm is as follows: GivenP j
k = Rj

k + ~vj
k(~n

j)t at

Stepj,

DRAFT



20

1) The minimization (24) is solved by SVD to obtain~nj+1.

2) The minimization (26) is solved by least squares to obtainωj
k, ∆

j
k.

3) ~vj+1
k is obtained from (25) and the rotation matrix is obtained as:

Rj+1
k = I + [ωj

k]× + (1− (1− ‖ω‖2)
1
2 )([ωj

k]×)2.

The iteration is terminated when thepj+1
k s are close enough to thepj

ks.

At a quick glance, it seems that decomposingPk is an overkill since we don’t need motion

and structure. But actually it doesn’t make much difference. It is known that the decomposition

of P = R + ~t · ~nt is unique up to two solutions. By enforcing the consistency between thePk,

the decomposition becomes unique, and it is not difficult to obtain this decomposition.

VII. E XPERIMENTS AND CONCLUSION

We compare our algorithm’s high-resolution reconstruction to standard methods using both

simulated and real data.

A. Simulated data

We simulated 4 low-resolution images (16 × 16) from a high resolution image by shifting,

blurring and downsampling. The blurring filter is

` =
1

16


1 2 1

2 4 2

1 2 1

 .

Three kinds of noise were simulated:

1) Error in motion estimation. This error is modeled by local Gaussian white noise with

parameterσ. The local covariance matrix is due to the magnitudes of the image gradients.

2) Noise in pixel formation. We added Gaussian white noise with parameterγ to the pixel

values.

3) Error in PSF modeling. We also checked how error in the PSF modeling influences the

performance. The approximated PSFˆ̀ used in the reconstruction was

ˆ̀=
1

16


1 1 1

1 8 1

1 1 1

 . (27)
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(a) Original image (b) Noisy LR image

(c) Wavelet method (d) Tikhonov regularization

Fig. 3. The HR images (c) and (d) are reconstructed from four LR images by five iterations. (c) is reconstructed by our method.

(d) is reconstructed by the back-projection method with Tikhonov regularization. The motion noise is local Gaussian noise with

σ = 0.2. The image formation noise is Gaussian noise withγ = 0.01. The approximation̂̀ in (27) is used in the reconstruction

instead of the true PSF̀.

We compared our wavelet-based method to the popular “POCS” back-projection method (

[20]) enforced by Tikhonov regularization (See Fig. 3). It may be possible that another scheme,

namely Total Variation regularization would give a bit better results. However, this would require

solving a nonlinear minimization over each iterative step during the reconstruction, which is

computationally expensive. In our implementation the regularization term is the 2-norm of the

Laplacian smoothness constraint with roughly tuned regularization parameterα

Fig. 4 demonstrates the performance of the wavelet-based method for various noise settings.

Performance is measured by the SNR (Signal-to-Noise ratio) of the reconstructed image to the

true image, which is defined as:

SNR = 20 log10

‖x‖2

‖x− x̂‖2

,

where x̂ is the estimate for the true imagex. Fig. 4 clearly indicates the advantage of our

wavelet-based method in suppressing the noise. Especially when noise is large, the boost in

performance is significant.

B. Real data

We used an indoor sequence depicting 13 image frames of a paper box (Fig. 5). The sequence

was taken with a hand-held camera. An interesting planar region was chosen manually. Fig. 6
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(a) Comparison for motion noise

(b) Comparison for image formation noise

(c) Comparison for PSF error

Fig. 4. Comparison between the our method and POCS with Tikhonov regularization for various amounts of noise. The

reconstructed image has been obtained in 5 iterations. The x-axis denotes the variance of the noise, the y-axis denotes the SNR

of the reconstruction.

and Fig. 7 show a comparison of the results from four different methods for different regions.

Here the reconstructed HR images double the resolution of the LR images. The HR image in

Fig. 6-7(a) were obtained by cubic interpolation from a single LR image. In Fig. 6-7(b) we used

the POCS method, and estimated the flow field using an affine motion model. In Fig. 6-7(d) we

used the POCS method, and estimated the flow field with the Homography model. Fig. 6-7(d)

show the results from our reconstruction scheme. The difference can be visually evaluated. As

can be seen, there is improvement from (b) to (c) and from (c) to (d) in Fig. 6 and Fig. 7.

The letters in Fig. 6(d) and Fig. 7(d) are the clearest, and there are minimal artifacts around the

edges.
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(a) Reference frame (b) LR planar image region

Fig. 5. Reference image frame of first indoor video and its selected region.

(a) Interpolation (b) POCS+affine

(c) POCS+Homography (d) Wavelet+Homography

Fig. 6. Comparison of one reconstructed HR region for various methods.

(a) Interpolation (b) POCS + Affine

(c) POCS + Homography (d) Wavelet + Homography

Fig. 7. Comparison of another reconstructed HR region from Fig. 5 for various methods.
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Fig. 8. Reference frame from second indoor video.

(a) Interpolation (b) Irani’s + Affine

(c) Irani’s + Homography (d) Wavelet + Homography

Fig. 9. Comparison of one reconstructed HR region from Fig. 8 for various methods.

A second indoor sequence depicting a box wrapped in newspaper (Fig. 8) was tested. This

time, we compared our method against Irani’s method [10]. See Fig. 9 for a visual comparison.

The same conclusion holds as for the previous experiment; both our homography-based motion

estimation and our reconstruction method lead to improved results.

We also used an outdoor sequence of 11 frames containing a warning sign in the scene. We

compared the reconstructions from different methods for a manually selected region. Since the

regions are too small to provide enough information for the homography flow model, here instead

we used an affine flow model. See Fig. 10 for a visual comparison.

In recent years an effort started combining geometric constraints with Signal Processing [7],

[12], [13]. Along these lines we have presented an algorithm for the problem of super-resolution

reconstruction. We presented a new method for estimating the homography between multiple

frames in a sequence, and a new wavelet-based reconstruction algorithm. We demonstrated both
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(a) (b)

(c) (d)

Fig. 10. (a) The key frame in the video. (b) The reconstruction from the interpolation. (c) The reconstruction from Irani’s

method using affine flow. (d) The reconstructed image from the wavelet method with de-noising using affine flow.

in theory and experiments that the proposed method is very robust to noise without sacrificing

efficiency. The reconstruction scheme allows for super-resolution reconstruction from general

video sequences, even when the estimated optical flow is very noisy, and it outperforms existing

methods.
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