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Abstract

We present an analysis and algorithm for the problem of super-resolution imaging, that is the
reconstruction of HR (high-resolution) images from a sequence of LR (low-resolution) images. Super-
resolution reconstruction entails solutions to two problems. One is the alignment of image frames. The
other is the reconstruction of a HR image from multiple aligned LR images. Both are important for the
performance of super-resolution imaging. Image alignment is addressed with a new batch algorithm,
which simultaneously estimates the homographies between multiple image frames by enforcing the
surface normal vectors to be the same. This approach can handle video sequences with large displacement
quite well. Reconstruction is addressed with a wavelet-based iterative reconstruction algorithm with an
efficient de-noising scheme. The technique is based on a new analysis of video formation. At a high
level our method could be described as a better-conditioned iterative back projection scheme with an
efficient regularization criteria in each iteration step. Experiments with both simulated and real data
demonstrate that our approach has better performance than existing super-resolution methods. It can

remove even large amounts of mixed noise without creating artifacts.

Index Terms

Perfect reconstruction filter banks, Super-resolution, Multiple frame alignment, Wavelet denoising

I. OVERVIEW

The problem ofkuper-resolutioreconstruction, which is defined as restoring a high-resolution
(HR) image from a sequence of low-resolution images (see Fig. I), has been studied by many

researchers in recent years. Most super-resolution algorithms formulate the problem as a signal
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Fig. 1. lllustration of super-resolution imaging.

reconstruction problem. Essentially these algorithms differ in two aspects: one is in how the
image frames of the sequence are aligned in a common coordinates system; the other is in
how the high-resolution image is reconstructed from the aligned low-resolution image frames.
The accuracy of the image alignment and the robustness of the signal reconstruction determine
the algorithmic performance. The two aspects are related. Thus the imperfectness of the image
alignment has to be considered in the later stage of image restoration.

In this paper we propose a complete super-resolution reconstruction system which addresses
both the problems of frame alignment and image restoration. Our contributions are two fold.
The first is a theoretical analysis of video formation from the view of filter banks, which leads
to a new wavelet-based reconstruction scheme for the image reconstruction. The second is a
batch algorithm for image alignment, which computes the projective flow (planar homographies)
across all frames in the sequences.

Using a sequence of similar but not identical image frames makes it is possible to increase
the spatial resolution of one still image. However, it is difficult since this is an ill-posed inverse
problem. Despite the difficulties, researchers have made great progress towards stable algorithms.
Iterative back-projection methods ( [10], [18]) have been shown to be an effective tool for
high-resolution image reconstruction. It is known, however, that the de-blurring process, which
is part of this approach, makes it very sensitive to the noise. Thus, the requirement of very
accurate image alignment estimates limits its practical use. Various regularization methods have

been proposed to deal with the noise. However, these methods either are very sensitive to the
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assumed noise model (Tikhonov regularization) or are computationally expensive (Total-Variation
regularization). See [6] for more details.

Our contributions to the reconstruction process are two-fold. First, we model the image
formation procedure from the point of view of filter bank theory. Then, based on this new
formulation, we analyze the limits of the high-resolution reconstruction. Our conclusion is that
in general full recovery is not possible without enforcing some constraints on the recovered
images. At best we could reconstruct the image convolved with a specific low-pass filter (hamely
1(1,1) ® (1,1) for the case of the Box-type PSF). Second, based on our new formulation, we
present a robust wavelet-based algorithm for image reconstruction. The iteration scheme in our
algorithm is inherently more robust to noise than that of classic back-projection methods ( [10],
[18]), because the projection matrix of our back-projection scheme has a better condition number.
We will show that, both in theory and experiments, it has better performance in suppressing the
error propagation than other back-projection iteration schemes.

Furthermore, our algorithm allows us to include a wavelet-based de-noising scheme in each
iteration of the reconstruction which effectively removes the noise without creating smoothing
artifacts. The advantage of our de-noising scheme over regularization methods is that it is nearly
optimal with respect to the risk bound. That is, it has the theoretical minimal error in removing
noise of unknown models. Its effectiveness in removing mixed noise and relatively large amounts
of noise is demonstrated in experiments. It is worth mentioning that our de-noising scheme adds
very little computational burden compared to other complicated regularization methods. Briefly,
our method could be described as a generalized iterative back-projection method with a fast and
optimal regularization criteria in each iteration step. Wavelet theory has previously been used
for image de-noising and de-blurring from static images ( [3], [4]). However, it has not been
studied much with respect to the super-resolution problem. In recent work wavelet theory has
been applied to this problem [16], but only for the purpose of speeding up the computation. Our
contribution lies in an analysis that reveals the relationship between the inherent structure of
super-resolution reconstruction and the theory of wavelet filter banks. This relationship is fully
exploited by using various techniques from wavelet theory in the iterations of the reconstruction.

For the process of image frame alignment, the flow-based approach is the most popular choice
because of its flexibility. The difficulty in accurate estimation of general non-parametric image

flow makes the reconstruction of higher-resolution images not very meaningful. Thus, some
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assumption on the underlying flow model has to be enforced. Such assumption, of course,
makes the algorithm less general, but more practical. The most frequently used flow models are
the affine transform and the more general projective transform ( [2], [5], [10], [22]). The most
popular reconstruction procedure is the iterative back projection method ( [10], [18], [23]).

In this paper, we propose a new algorithm for computing projective flow (planar homographies)
simultaneously on all frames in the sequence. The most closely related studies are [8], [21] and
[11], which all provide algorithms for the estimation of planar motion between multiple frames
based on some rank constraint. However these studies either are limited to short image sequences
( [8], [21]), or compute relative motion only between neighboring frames ( [11]), which could
lead to accumulative errors in the image alignment. Our approach is an extension of [11] to
the more general estimation of homographies (as opposed to planar flow). Briefly, the motion
between the reference frame and any other frame is modeled as a homography. Then, the shape
constraint proposed in [11] is directly incorporated into the estimation of the homographies. This
leads to accurate alignment for longer sequences. As a result, we have more frames available

for the reconstruction.

[I. FORMULATION OF HIGH-TO-LOW IMAGE FORMATION

We first formulate the high-to-low image formation process. To simplify the exposition, in
the following we only discuss 1D signals with resolution enhancement by a factor 2. Later,
without much difficulty, the analysis will be extended to the 2D case with arbitrary resolution
enhancement. Adopting Farsiu’s notation ( [6]), the image formation process in the pixel domain
can be modeled as

y = o[H « X(F(t)] + N, (1)

wheret is the spatial variableX (¢) is the continuous signal ang is the discrete signalf/

is the blurring operator (either optical blurring or motion blurring or both)is the geometric
transform; NV is the noise in the low-resolution image;is the decimation operator; ané™is

the convolution operator. Not considering the noise for the moment, the high-resolution (HR)

signalz and the low-resolution (LR) signal can be defined as:
z=o[X], y=[o[H«X(F@)]] |2 (2
where |, is the downsampling operator with rate 2.
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Next we derive the relationship between the LR signand the HR signak. Denote the
velocity of the signal as(t) = F(t) — ¢, which is also called theptical flowin Computer
Vision. For simplicity of notation, here we assume a sub-pixel flow model Withe(t) < 2 on
the denser grid of the HR image(Larger flow could always be reduced to the case of sub-pixel
flow by re-assigning the pixel value). Thus, in the LR image the flow values are all sub-pixel
shifts (Recall a 1-unit shift on the coarse grid;pokquals a 2-unit shift on the fine grid o).

Let {j} be a fine grid for the spatial coordinatesThen for pointj of y on the coarse grid
(its coordinate i25 on the fine grid) with0 < ¢(2j) < 1, the first-order Taylor approximation

of Equation (2) at poin2;j can be written as
y(i) = [H = X(F(t))]i=2;
= [H o« X(e(t) +1)]i=2;
= [H % X()]i=2; + €(2)[H * X' (1)]1=2
= [H = X(1)]t=2; + €(2)[H" * X (t)]i=2;-
For all other points” of y with 1 < €(2j') < 2, a similar argument yields
y(i") = [H * X()]imzj1 + (e(2) = D[H * X ()]s=2541.

Thus, a LR sequencg could be expressed in the pixel domain as a sub-sequence of the

following two sequences:
l[a*x] [o+e-xbxx] lo; and axz(-+1)] [ +(e—1) -*[bxz(- 4+ 1)] o, (3)

where a,b are discrete versions of the convolution kernélsand H’ respectively, andx
denotes the component-wise multiplication operator. Having available the optical flow values
¢x for multiple low-resolution imageg;, we can by solving an over-determined system of linear

eguations obtain the four components:

[axx] lo, Jaxx(-+1)] la, [bxz] o, [bxa(-+1)]]s. 4)

As will be shown in the next subsection, the two filterand b (which are determined by the
blurring kernelH and its derivativel{’) characterize the super-resolution reconstruction.

Let us next look at some examples of filterandb for different blurring kernels.

DRAFT



Example 1 Consider the box-type blurring kernél = %X[—n,n]- Lete(t) = € < 1. Then we

have

y(j) = /_m V(2 — )X (F(t))dt
_ ! 2j+nX(F(t))dt:% o

2n

X (t + €)dt.

2j—n 2j—n

Approximating the integration by quadrature rules, we obtain

V) = o (G — a2z =)+ Y (=) + 50+ a2 + ).

Equivalently, we can write
y=laxz+elbxx)] s (5)

wherea and b are the following low-pass and high-pass filters, respectively:

1 1
b

-~ (1.2.....2.1 =—(=1,0,---.,0,1).
a 4n( 5 &y 5 4y ), 4n( s Yy » )

Example 2 Consider a Gaussian-type blurring kernél. Using the Cubic Cardinal B-spline
B(t) as approximation to the Gaussian function we have

y(j) = /oo B(2j —t) X (F(t))dt.

[e.9]

Again, by the quadrature rule, we have the approximation

y =Y w2 —i)(a(i) — e bi)),
where
(1,8,23,32,23,8,1);
(3,12,15,0, —15, —12, —3).

_ 1
= 9
1

p—= L

48

I11. ANALYSIS OF THEHR RECONSTRUCTION

Given multiple LR signalsy, with different motionse,, theoretically we can obtain two
complete sequencesx andb+x from (4). An interesting question arises. Without any assumption
on the given finite signak, can we reconstruct the signal sequencexactly from the two

sequences x x andb x x?
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To answer this question, let us write the sequence in another form, namely, as its Z-transform.

The Z-transform of a signal sequence= {z(:)} is defined as

It is easy to see that this transform is a one-to-one mapping between sequence space and
polynomial space. Let(z) and b(z) denote the Z-transforms of the filtetsand b, then the
Z-transforms ofa * z andb x x area(z)x(z) andb(z)z(z) respectively.

Now the question can be addressed by checking whether the polynomial equation
(a(z)x(2))u(z) + (b(2)2(2))v(2) = z(2), (6)
is solvable for the two unknowns(z) andv(z). Eliminating z(z) from both sides of (6) yields
a(z)u(z) + b(z)v(z) = 1. (7)

From the theory of Diophantine equation we know the following:

Lemma 3 Given two polynomialsi(z) and b(z), (7) is solvable if and only if the greatest

common divisor ofi(z) and b(z) is a scalar, that is, ifa(z) and b(z) are co-prime.

It is observed that(z) andb(z) in our two examples (Example 1 and Example 2) both have

a common divisor
c(z) = (1+ 2).

This can be seen from the fact thet-1) = b(—1) = 0, and therefore = —1 is the root of both
a(z)and b(z). Thus, for these blurring kernels we cannot reconstutfey from a(z)z(z) and
b(z)z(z) exactly. This observation is not an incident. The same holds true for general blurring
kernels, as we will show next.

We follow Baker’s modeling of the blurring kernél ( [1]). The blurring kernel (Point spread

function) can be decomposed into two components:
H=QxC,

where(X) models the blurring caused by the optics andX) models the spatial integration
performed by the CCD sensor. Typically is modeled by a Gaussian-type function arids

modeled by a Box-type function. Notice that
H =0 xC.
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Thus we can express the corresponding discrete filters as:
a=/~0xc, b=Txc,

wherec is the discrete version of the spatial integration keiielhnd/ and r are the discrete
versions ofQ) and (). Sincea(z) andb(z) have a common divisof(z), we cannot reconstruct
x(z) for generalz(z), unlessC is a Dirac function, which generally is not true. Based on

Lemma 3, we then have the following result.

Theorem 4 Given multiple LR finite signalg;, we can not perfectly reconstruct the HR finite
signal z without any assumptions an At most we can reconstruct x for some low-pass filter
c. The corresponding Z-transform(z) of c is the greatest common divisor afz) and b(z),

which includes the spatial integration filter.

Notice thatc is a low-pass FIR (finite impulse response) filter. To recavéom cxz, we have
to apply a high-pass filter onx = and impose some boundary condition on the signabuch
a de-blurring process generally is sensitive to the noise and creates artifacts in the recovered
image. A good strategy then is to modify our reconstruction goal during the intermediate iterative
reconstruction process: Instead of trying to reconstryove reconstruct x x in the iterative
process, and we leave the recoveryzofrom ¢ x x to the last step, after finishing the iterative
reconstruction.

Thus, the modified HR signal to be reconstructed is ¢+ x. The LR sequencéy,} can be

expressed as a subset of the following two sequences:

[0+ 2] o +ex[T * 2] |2 (8)

and
Wxz(-+1)] lo+(ex — [T x2(- + 1)] |2,

where the Z-transform of and r are a(z) andb(z) divided by their greatest common divisor
c¢(z), respectively. It is worth mentioning that we model the blurring procedure from HR to LR
by a first-order Taylor approximation. But our reasoning could easily be extended to a modeling

by higher-order Taylor approximations, leading to the same conclusion.
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Fig. 2. The two-channel filter bank.

IV. RECONSTRUCTION BASED ONPRFILTER BANKS
A. Introduction to PR filter banks

Before presenting our algorithm, we first give a brief introduction to 2-channelp@Re¢t
reconstruction filter banks, also called wavelet filter banks (see [14] for more details). A two-
channel filter bank consists of two parts: an analysis filter bank and a synthesis filter bank.
In our case, the signat is first convolved with a low-pass filtef and a high-pass filteh
and then subsampled by 2. In other words, we analyze the signal by an analysis filter bank.
Then a reconstructed signalis obtained by upsampling the signal by zero interpolation and
then filtering it with a dual low-pass filtey and a dual high-pass filter. In other words, we
reconstruct the signal by synthesizing the output from the analysis bank with a synthesis filter
bank. See Fig. 2 for an illustration.

Such a filter bank is called a PR filter bankzif= = for any inputz. The question then is,
what makes{/, h, q, g} a PR filter bank. It is easy to see that the process illustrated in Fig. 2

could be expressed using Z-transforms as follows:

N 1, ~ 5(2) h(z) 9(2)
x(z)==(x(2)+x2(—2 .

Thus, the sufficient and necessary conditionF0t) = z(z) i

(22”)( )( i)
o) [

or equivalently,
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Then in order to obtain FIR filterg and ¢, we require that

det(H(2)) = det(( ;(_Zi) hfé(—zi) ) ) =ez".

In summary, the analysis filted, h} of a perfect reconstruction filter bank have to satisfy

the following condition:
U(z)h(—2) — l(—2)h(z) = z™ for some integern, 9)

and the corresponding synthesis filters amount to

Thus, given a low-pass filtei(z), we can find the corresponding high-pass fikét) such that

we have an analysis filter bank and thus a PR filter bank by solving the linear system (9).

Example 5 For the well-known “Harr” wavelet filter bank, the synthesis and analysis filters

amount to:

[
Il
|
—

1 1
1,1 =—-(—11).
2 )7 q 2( 7)

<
I
|
—~

B. Iterative reconstruction scheme

We have available a number of signaisand the corresponding estimates of the optic flow
valuese,. We also have estimates of the convolution kerdedsd 7. Obviously, estimating
andrxz directly from Equation (3) would not be wise. For reasons of numerical stability special
attention is necessary. Fortunately, the scheme of PR filter banks provides us with an iterative
scheme.

Let ¢ which corresponds to the blurring kernel be the low pass filter of a PR filter bank. Then
the corresponding high-pass filteris computed by solving (9). Note may be different from
T.

Recall that for each LR signaf,, we have

Yp = [+ 7] o +ep -*[T %] o .
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(If the original signal is incomplete, this can be overcome by a simple interpolation.) From the

above equatior x 7| |, is obtained as

[0+ 2] o=y — € -*[T xT] |2 . (10)

The process of a signal passing through a PR filter bank as shown in Fig. 2 can be expressed

as:

T=gx[(l*xT) o] To+qg*[(h*Z) |a] T2 . (11)

Combining (10) and (11), we obtain the iterative reconstructiom &fom K LR signalsy, as

follows: At stepn + 1

K

En-l-l:q*[(h*f)lg T2+g*< Z Y — € * *T*x)l2]T2>. (12)

k=1
Theorem 6 The iteration of Equation (12) converges to the true valuander the condition
that

lg * 7|l < (13)

l\'>|’—‘

Proof: As in [10] for simplicity we omit the down-sampling and upsampling process, as

well as the fusion process. That is, we write
y=L0*T+e-x(T*xT).
Then the iteration amounts to
P = g s (y — e -x(1 x 2™)) 4 ¢ * (7% 2™). (14)

Subtractingz on both sides of (14) yields

) 7 = gx(y—e-x(T*3M)) 4 qx (1x2M) -7
= gx(l*xT+e-*x(1*x(T— f( W) 4 q* (7% 2™) — 7.
Recall that we have
T x ((xT)+qx* (hxT).
Then
) 3 = —gx(e-x((1* (3™ —3)) +qgxhx (@™ - 7)

= (g% (—cx7e) + qx ha)(E — 7).
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Let A denote the operator which represents

g (—€ - *T % +q * hx).
Then the above equation can be rewritten as

gt 7 =A™ — ).
Since we have (See [14] for more details):

lg = hll = llg =] = 5
from the fact thaf||¢||., < 1, we obtain

JAll < [lg [l + [lg = Rl < llg* 7] + %

Thus g = 7|| < 3 is sufficient for the convergence of the iteration. u

C. Relationship to other back-projection methods

Applying (11), we can rewrite (12) in the form

K
T = (@ g [0+ (@) 2] T2+9*<1Zyk—€k *T*$)l2”2>
k=1

K

- 1 - -
= x“+g*(E;[yk—wmnek.*(m“)) Ll 12 ).
From this we can seen that the iteration scheme presented here falls in the class of back-
projection methods. But it has advantages over the usual back-projection iterations. Consider the

well-known method by Irani and Peleg [10]. Its iteration can be described as:

Po g ZT (e = 05 T 12) 12) #p). (15)

where T}, is the geometric transform between and z, and the high-pass filtey is the de-
blurring kernel. Notice that the two methods differ in the de-blurring kernel: one gs@gh
g(z) = h(—=z) defined in (9); the other ig in (15), the approximate inverse filter 6f
The requirement op in (15) is
16— £xpl| < 1, (16)

whered is the ideal unit impulse response filter. In other wogdshould be a good approximation

for the inverse off. In comparisong in our iteration only needs to be a companion filter for
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the smooth filterr with sufficient decay, such that condition (13) holds. This difference makes
g more desirable thap. Let’s investigate this in more detalil.

The noise will be propagated exponentially @$||p||*) in (15) and asO(||g||*) in (12).
Generally the flexibility ofg(z) makes it possible to design @athat has much smaller norm

thanp. This leads to much better resistance to noise propagation. Here is an example.
Example 7 Consider/ = 1(1,2,1). Then
g=(-1/8,-1/4,3/4,—1/4,-1/8)
is a dual PR filter for/ with
0(2)g(—2) = —14+9272+162 2 +927* — 276

It is easy to check thdlg||» is around 0.85. The minimum for the norm of all filters with the
same length ag is around 1.1. The correspondipgs
1 24 21
r=G 3357
In order to make the norm @g# close to the norm of;, a lengthyp with much slower decay
is necessary. Such a filter is not desirable since it causes artifacts, like the “ring” effect. This
clearly indicates that our iteration scheme is more robust to noise and causes less artifacts in

the reconstructed image.

V. ROBUST ALGORITHM ON 2D IMAGES WITH DE-NOISING

Next we generalize the algorithm to 2D images. Then we introduce a de-noising process during
the iterative reconstruction to suppress the noise in the optical flow estimation. Furthermore, the

algorithm is adjusted to handle outliers.

A. Extension to 2D images with a built-in de-noising process

All the previous analysis can be generalized using the tensor product. By an argument similar

to the 1D case, we approximate the LR imadé€ with the HR imagel ¥ as follows:

' =la®@a)* I"F +u-x((a®@b) « I7R) + v %((b® a) x I7"H)] |4,
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where ®”" is the Kronecker tensor product arid, v) is the 2D optical flow vector. Then the

2D analysis bank is

Low-pass filter: L =/®/,

High-pass filters: Hy = (@ h,Hy, =h® {,H; = h® h,
and the2D synthesis filter bank is

Low-pass filter: G =g¢® g,

High-pass filters: G; = g ® ¢,Ga = q® 9,G3 = ¢ ® gq.
It is easy to verify that the 2D filter bank defined above is a perfect reconstruction filter bank with
the analysis filter banK L, H;} and the reconstruction filter ban}G, @Q;}. Then generalizing
(12), the iterative equation for the reconstruction of the HR imigfeom LR imagesItf
amounts to

P = Y Qi [(H o+ T™) L] 1o G (SIS TER - wx((C 1)+ 17) 1
—v k(T ® () * f(n)) L2] T2)

Recall that herd is the blurred version of the truewith I = (c®c)x*1.

There always is noise in the estimated flaww. However, the deconvolution operator could
make the HR image reconstruction very sensitive to such noise. It is known that the noise
variance of the solution will have a hyperbolic growth when the blurring low-pass filter has
zeros at high frequency. Thus, de-noising is necessary to suppress the error propagation during
the iterative reconstruction.

To suppress the noise, we introduce a wavelet de-noising scheme which subtracts some
high-frequency components frodt. Briefly, we first do a wavelet decomposition of the high-
pass response, then apply a shrinkage of wavelet coefficients to the decomposition, and then
reassemble the signal.

Our iteration scheme with built-in de-noising operator amounts to
P = S Qo [W(H T0) La] o 4G e (SEIER — ws((C@7) # 17 Lo
—v (1@ 0« 1) 13] 15 ).

The de-noising operatob defined in the equation above is

3
U(H Iy = G (L (HxT") L] 1o+ [Qi # (F[HZ- x (H, * 'f")]) la] Ta,
=1
whereT is the shrinkage operator.
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B. Shrinkage operator and robust regression

The basic idea of wavelet de-noising is to reduce the noise by shrinking the wavelet coefficients
where typically most noise exist. Here we take a hybrid shrinkage approach. The hybrid shrinkage

operatorl” is defined as:

0 ] < p;
T(v) = | sign()pad=t < v < po; (17)
v Otherwise.

This shrinkage offers benefits both from hard shrinkage (uniformly small risk) and soft shrinkage
(overall small risk). The reasoning goes as follows: The optical flow model we adopt here is
parametric. The noise introduced by this model is not related to the local intensity variation. A
hard shrinkage with appropriate threshaldshould effectively remove such noise. On the other
hand, noise in illumination which is related to the intensity of the pixels should be removed
adaptively. Therefore, a soft-shrinkage is needed in some range. Finally, in order to keep the
sharp edges, we keep the large intensity variations. Occasional outliers will be handled by the
median operator when fusing multiple frames.

In summary, our algorithm is as follows: Given an initial HR imaQ® we have
1) = G s mediang {[TFF — up (0 @y % I™) |y —vp -x(y @ £ I™) |5] 7o}

The algorithm above could easily be adapted to different blur filters. We only need to adjust the

(18)

dual filtersG, Q; to make a new perfect reconstruction filter bank. Also, here we only considered
a doubling of the image resolution. But any other resolution increase could be achieved by
changing the 2-channel perfect reconstruction filter bank to an M-channel perfect reconstruction
filter bank.

C. Relation to regularization methods

One popular de-noising technique used for robust reconstruction is regularization ( [19]).
Recall that back-projection methods basically findy minimizing S5 | ||y, — 7 ()|, where
yx(7) is the LR signals derived from our estimatédSuch a least squares estimation problem

usually is ill-conditioned. One way to increase the stability is to enforce a regularization term
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and solve:

K
min Y lye = 5@ + ol @)
k=1

where ® is some regularization function and is some pre-defined smoothing factor. If the
regularization is a least squares problem, we call it a Tikhonov-type regularization. The ad-
vantage is its simplicity and efficiency, the disadvantage is its relatively poor performance. A
nonlinear diffusion regularization, like Total Variation regularization usually performs better, but
is computationally expensive.

Wavelet de-noising is closely related to nonlinear diffusion regularization. [15] discussed the
relationship of wavelet de-noising to Total Variation regularization for two simple cases. More
specifically, consider a wavelet de-noising scheme based on Haar wa\ZeI:et%((l, 1),h =
%(1, —1)). Then for the case of the shrinkage operator in the wavelet de-noising beinfj a

thresholdingoperator defined as in (19), it was shown that the wavelet de-noising process is

equivalent to Total Variation based nonlinear diffusidn() = ||z||;) for a two-pixel signal.

p—1-sgn(p) if (ju] =7);
D(p) = . (19)
0 Otherwise

Although [15] only showed the equivalence between Total Variation regularization and a
simplistic wavelet de-noising scheme for a signal with 2 pixels, these results still demonstrate that
the wavelet de-noising process in our reconstruction is comparable to some nonlinear diffusion
regularization schemes in its ability to suppress the error propagation. However, it doesn’t have
the computational burden of most nonlinear diffusion regularizations, since it only needs a linear
wavelet decomposition over one level. In comparison, nonlinear regularizations need to solve a

nonlinear optimization.

V1. FLOW ESTIMATION FOR SUPERRESOLUTION
A. Basic notations

We consider here the planar motion model. In other words, we assume that the underlying
3D structures of the interesting image regions are planar surfacesy,Uetls, - , Ix be the
image frames in the sequence. Fix frameas the reference image. We need to estimate the

homographies between the reference frdg@nd the frameg,. There is the following constraint
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on the planar homographk, from reference framéd, to frame,.:
Py = R + Git', (20)

where Ry, is a rotation matrix;y is the translation and is the normal of the plane. For two
frames close by, the optical flow at a pointr is constrained by the brightness consistency

constraint ( [9])

I, dI
27 = — 21
(i) = = (21)
Let g = vec[Py] = (p1,,, p2,., -+ > Do, )" be the vectorized version of the homograpghy Assume

I, very close tal, then under the small motion assumption, the brightness consistency constraint

becomes
I, dI
) Pe(F) = 7) = — 22
() BL() —7) = . (22)
with
p1x+p2y+p3
g _ P7E+p8y—+p9
pk(f“) - PaT+PsY+pe
prx+psy+po

pr(7) is a 2D linear rational polynomial. Thus multiplying the denominatorppf) on both

sides of (22) yields a linear homogeneous equation systep).:.on

Apr, = 0.

B. Multi-frame homography estimation

We need to simultaneously estimate all homographies between the reference/jraagethe
frames/,. The P,s are not independent. They share the same plane normal. Using the expression
for homographies from [17], we have the following expressions for all homographies which share

the same plane normals:
Pk:Rk+17kﬁt, for kizl,,K

In order to improve the estimation of th@,s, this constraint on the surface normal has to be
incorporated into a batch algorithm. Furthermore we need to deal with frdmesth large

displacement to the reference framg
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Here we take an iterative approach to estimate the homographie€suppose that at thgh
step we are given the approximate solutiBh = R, + v} - (n?)" for the true homography;.
Then Equation (22) can be applied & as follows:

G — R = 1)~ B (7).

In other words, we apply the differential brightness consistency constraint between the frame
Io(pL.(7)) (the image obtained by warping from the homography,) and (7). The differential
motion is due to the difference between the actual homography and its estimation in the current
stage.

We write these linear equations @p as
Ap(P)pi = 0.
Then the minimization across all homographf@scan be written as

min Z | Ax (P vec[Ry, + wpi"]|)? (23)

Ry, vg,

subject to the constraints that tlig.s are rotation matrices anffi|| = 1. This is a constrained
minimization, bilinear inRy, v, and7i. In the remainder of this section we show how to robustly
solve the minimization (23) using an alternative two-steps optimization.

Given P/ at stepj, we computeP! ™" = R/t 4 577! (/1) at step; + 1.

Given P/ = RJ + #(i)!, we first updatei’**. This minimization of (23) is just a regular

least squares minimization over the sphereiof' and can be written as:
R+l

min Y || Ax(P])vec[ R} + T )| (24)
k

subject to ||7/*t|| = 1. The minimization of (24) can easily be solved by SVD decomposition.
The algorithm is as follows: Giverd and b, the following procedure computes a vectbsuch
that || A7i — b||, is minimum, subject to the constraififi| = 1. Run SVD onA such that

A =UXV" and save

V ={v,v9, 0.}, b=U'b, Y = diag(c;).

Find )\, such that

O}bi 2
=1
;(024—)\*)

i
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Then

- oib;
n = 2(02 T )\* )UZ'-

Then given P!, 7/+!, we estimate{R,"" v}*'} for k = 1,--- | K. We need to solve the

following minimization: For eachk

. j Gl bl —ie 1Ny (12
Rig}%H HAk(Pk)U@C(Rk + vy (7 )l

subject to
(Ri—i-l)tRi—‘rl _ IS-

This is not a trivial task. Here we present a fast linear method to obtain an approximate solution.
Let R;*! be approximated byl + [w].) R}, where[w], is the skew-symmetric matrix of the

rotation vectord. Using the observation that
P]ngl _ Ri;+1 + Ui+1(ﬁj+1)t
we perform the following decomposition
PE = (1 + ) + Aol (RI# 1)) P,
with
vt = (I 4 [wl)vl + (1 + (Rl )l ) Av]. (25)

Then the minimization (25) is simplified to a standard least squares minimizatiasf, @md
Avt:

min || Ax(P))vec|(I + [w]x + Av] - (R P|1% (26)

w],Av]
ThusR,™" andv]™" can be derived from\v] andw, after solving the least squares minimization
of (26).
We adopt the procedure in [8] to compute initial values for the homographissfrom
multiple relative motionsP;, ,, between framed,, and I, related by a small displacement.

Briefly, the P)s are determined by an overdetermined linear system:
Py i Py, — Pp, = 0.

(See [8] for more details.) The iteration algorithm is as follows: Giv&n= R, + @ (/)" at
Stepj,
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1) The minimization (24) is solved by SVD to obtaiii™!.
2) The minimization (26) is solved by least squares to obtdin\].
3) Ui“ is obtained from (25) and the rotation matrix is obtained as:

R =T+ Wil + (1 — (1~ |wl?)2) (W)

The iteration is terminated when thé™'s are close enough to thés.

At a quick glance, it seems that decomposifigis an overkill since we don’t need motion
and structure. But actually it doesn’t make much difference. It is known that the decomposition
of P = R+¢- 7" is unique up to two solutions. By enforcing the consistency betweerPthe

the decomposition becomes unique, and it is not difficult to obtain this decomposition.

VII. EXPERIMENTS AND CONCLUSION

We compare our algorithm’s high-resolution reconstruction to standard methods using both

simulated and real data.

A. Simulated data

We simulated 4 low-resolution image$6(x 16) from a high resolution image by shifting,

blurring and downsampling. The blurring filter is

1 21
1
(==
16 2 4 2
1 21

Three kinds of noise were simulated:
1) Error in motion estimation. This error is modeled by local Gaussian white noise with
parameter. The local covariance matrix is due to the magnitudes of the image gradients.
2) Noise in pixel formation. We added Gaussian white noise with parameterthe pixel
values.
3) Error in PSF modeling. We also checked how error in the PSF modeling influences the

performance. The approximated P8Esed in the reconstruction was

1 11
-~ 1
(= — . 27
16 1 81 (27)
1 11
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PS5 o

(a) Original image (b) Noisy LR image
iy i
Pg o o ko

e =
i 1 (e o H
o gl

(c) Wavelet method  (d) Tikhonov regularization

Fig. 3. The HR images (c) and (d) are reconstructed from four LR images by five iterations. (c) is reconstructed by our method.
(d) is reconstructed by the back-projection method with Tikhonov regularization. The motion noise is local Gaussian noise with
o = 0.2. The image formation noise is Gaussian noise wits 0.01. The approximatiorf in (27) is used in the reconstruction
instead of the true PSE

We compared our wavelet-based method to the popular “POCS” back-projection method (
[20]) enforced by Tikhonov regularization (See Fig. 3). It may be possible that another scheme,
namely Total Variation regularization would give a bit better results. However, this would require
solving a nonlinear minimization over each iterative step during the reconstruction, which is
computationally expensive. In our implementation the regularization term is the 2-norm of the
Laplacian smoothness constraint with roughly tuned regularization parameter

Fig. 4 demonstrates the performance of the wavelet-based method for various noise settings.
Performance is measured by the SNR (Signal-to-Noise ratio) of the reconstructed image to the
true image, which is defined as:

SNR = 20logy, ﬂ,
[l — 2|2
where z is the estimate for the true image Fig. 4 clearly indicates the advantage of our
wavelet-based method in suppressing the noise. Especially when noise is large, the boost in

performance is significant.

B. Real data

We used an indoor sequence depicting 13 image frames of a paper box (Fig. 5). The sequence

was taken with a hand-held camera. An interesting planar region was chosen manually. Fig. 6
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(a) Comparison for motion noise
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(b) Comparison for image formation noise
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SNR(db) of the reconstruction
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Iteration number

(c) Comparison for PSF error

Fig. 4. Comparison between the our method and POCS with Tikhonov regularization for various amounts of noise. The

reconstructed image has been obtained in 5 iterations. The x-axis denotes the variance of the noise, the y-axis denotes the SNR

of the reconstruction.

and Fig. 7 show a comparison of the results from four different methods for different regions.
Here the reconstructed HR images double the resolution of the LR images. The HR image in
Fig. 6-7(a) were obtained by cubic interpolation from a single LR image. In Fig. 6-7(b) we used
the POCS method, and estimated the flow field using an affine motion model. In Fig. 6-7(d) we
used the POCS method, and estimated the flow field with the Homography model. Fig. 6-7(d)
show the results from our reconstruction scheme. The difference can be visually evaluated. As
can be seen, there is improvement from (b) to (c) and from (c) to (d) in Fig. 6 and Fig. 7.

The letters in Fig. 6(d) and Fig. 7(d) are the clearest, and there are minimal artifacts around the

edges.
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(a) Reference frame (b) LR planar image region

Fig. 5. Reference image frame of first indoor video and its selected region.

(a) Interpolation (b) POCS+affine

(c) POCS+Homography  (d) Wavelet+Homography

Fig. 6. Comparison of one reconstructed HR region for various methods.

(a) Interpolation (b) POCS + Affine

(c) POCS + Homography  (d) Wavelet + Homography

Fig. 7. Comparison of another reconstructed HR region from Fig. 5 for various methods.
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Fig. 8. Reference frame from second indoor video.

(a) Interpolation (b) Irani’s + Affine

(c) Irani’s + Homography  (d) Wavelet + Homography

Fig. 9. Comparison of one reconstructed HR region from Fig. 8 for various methods.

A second indoor sequence depicting a box wrapped in newspaper (Fig. 8) was tested. This
time, we compared our method against Irani’'s method [10]. See Fig. 9 for a visual comparison.
The same conclusion holds as for the previous experiment; both our homography-based motion
estimation and our reconstruction method lead to improved results.

We also used an outdoor sequence of 11 frames containing a warning sign in the scene. We
compared the reconstructions from different methods for a manually selected region. Since the
regions are too small to provide enough information for the homography flow model, here instead
we used an affine flow model. See Fig. 10 for a visual comparison.

In recent years an effort started combining geometric constraints with Signal Processing [7],
[12], [13]. Along these lines we have presented an algorithm for the problem of super-resolution
reconstruction. We presented a new method for estimating the homography between multiple

frames in a sequence, and a new wavelet-based reconstruction algorithm. We demonstrated both
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(©) (d)

Fig. 10. (a) The key frame in the video. (b) The reconstruction from the interpolation. (c) The reconstruction from Irani’s

method using affine flow. (d) The reconstructed image from the wavelet method with de-noising using affine flow.

in theory and experiments that the proposed method is very robust to noise without sacrificing
efficiency. The reconstruction scheme allows for super-resolution reconstruction from general
video sequences, even when the estimated optical flow is very noisy, and it outperforms existing

methods.
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