
Re-targetable OCR
and

Cambodian Gazetteer

Mudit Agrawal
LAMP LAB

University of Maryland, College Park

Need

• An adaptive system which can train/learn
a new script

• Optimized for noise and font
characteristics of target document

• Must requirement
– minimal user interaction and
– a minimal number of samples

Objective
• To design a script-independent printed character

recognition system which should provide the
flexibility of

– Training and testing using different datasets
– Using any new script
– Plugging new recognition algorithms/classifiers

Use-case diagram

Add new recognition
engines/classifier

techniques

Modify existing recognition
engines/classifier

techniques

Train/test the given
recognition

engines/classifier
techniques on diff. datasets

Integrate the system with
applications

Researcher

Application
Developer

Evaluator

Model Data

System Overview

Source Code
Framework

C
lassifier C

om
bination

W
rapper

C1

C2
C3

Build Manager

Config. Files

Ground Truth
Data

Training
Module

Image
Data

Libraries
& Exec.

Results

Evaluation

Organization
Source-Root

Src lib bin scripts

•libTiff
•TexImageNet
•other
dependencies

engine
Algos

Recognition specific
Graphs – Bheap,
DGraph, Dijkstra,
Heap

Utils
libTiff, TextImageNet,
Connected
components,
Image Engine, Sort,
BoxOverlay etc.

test

System
Source-Root

Config files Images bin Results

•Images can lie anywhere

•Ground-truth files for training can be
anywhere as well

(path is specified in config.txt)

Deskewed Images

Segmented Images

Training Data

Testing Data

Evaluation Results

Training Task

• Training is done by
– Aligning the ground-truth text with the image-

document
• Alignment is done in the order of line, word and

character mapping
• Using approximate font style to do char-

segmentation

Line Mapping

Word Mapping

Featurization: Template Matching

Featurization: Directional
16 X 16 pixels

For every pixel, look
at its neighbors and
maintain a record of
Vertical, horizontal,
two oblique lines using

Aggregate records
For every block

Normalization and
contour extraction

Dividing into 7 X 7 blocks
of 16 X 16 pixel

Feature vector

Classifier combination
• Template Matching: awarding probabilities where template pixel

matches with the test char pixel and penalizing otherwise

• CityBlockDistance with Deviation:

• A generic framework to combine different classifiers

• This forms the backbone of experiments to test
– The validity of classifier(s) on a given dataset
– Dependence of the script on that classifier combination
– Combination scheme – depending on the evaluation results
– Coming up with best suited combinations specific to the script under

study

Work-flow

Scanning Skew DetectionNoise Removal

Word ExtractionChar Extraction

Templates Unicode Text
Recognizer

Testing
• Testing should be possible on

– Image Documents with several formats (like tif,
png, bmp etc.)

• Plugging the testing results with evaluation
tools

• A feedback training system using the
evaluation tool
– To know certain special features of the new script

under study
– To tune the system for that script

Region & Line Segmentation

Word Segmentation

Syllable and Character Seg

OCR Output

Line Segmentation Script Identification

Font Identification
Word Segmentation

Syllabic Segmentation

Character Segmentation

Feature Extraction
-Pattern matching
-Statistics computation
-Threshold estimation

Classifier selection

Classifier combination Classifier Combination
Wrapper

C
1

C
2

C
3

Training Files

Ground-truth
Data

Test Results

Evaluation

Trai
nin

g P
ha

se
Testing Phase

Evaluation (English Document)
2972 Characters

202 Errors
93.20% Accuracy

0 Reject Characters
0 Suspect Markers
0 False Marks

0.00% Characters Marked
93.20% Accuracy After Correction

Ins Subst Del Errors
0 0 0 0 Marked
1 97 104 202 Unmarked
1 97 104 202 Total

Count Missed %Right
439 2 99.54 ASCII Spacing Characters
99 37 62.63 ASCII Special Symbols
83 17 79.52 ASCII Digits

2342 34 98.55 ASCII Lowercase Letters
1 0 100.00 Latin1 Lowercase Letters
8 8 0.00 General Punctuation

2972 98 96.70% Total Character Accuracy

Errors Marked Correct-Generated : ALL Confusions
35 0 {}-{ }
28 0 {,}-{ .}
10 0 {,}-{.}
6 0 {<201C>}-{"" }
6 0 {<201D>}-{ ""}
5 0 {m}-{[""p[}
5 0 {oo,o}-{00 . }
4 0 {1,}-{l . }
4 0 {1}-{l}
4 0 {]} { }

Gazetteer and Cambodian OCR

• Multi-lingual

• Multi-column

• Multi-font

Multi-lingual

Multi-column

Multi-font

Khmer Romanization

English Caps

Digits

Khmer

Challenges
• Embed script-identification at word-level (after

word-segmentation)

• Font(s) unknown – both phonetic English
(Khmer romanization) and Khmer

• Run different recognizers for each word/script

• Concatenate all the results to generate the text
document

Approach
• Read the main configuration file

• Generate an instance of recognizer for each script present on the
multilingual document

• Segment the document into zone line word level

• Apply script identification at word level

• Call specific recognizer object for the given script

• Recognize the word

• Merge the results of different recognizers into the same page

Linear vs. Non-linear
• Segmentation of document into words is non-linear

(bottom-up approach)

• Words are organized linearly (in text-flow fashion) using
spatial parameters

• Script id and recognizer should be called after word-
organization

• Then the instances of recognizers are created

• Once recognized, words should be pasted in linear
fashion

Word-segmentation

Results (script id)

0007 0 : 0 (-6.587093) 1 (-73.201634)
0008 0 : 0 (1.373798) 1 (-34.786581)
0009 0 : 0 (-0.507051) 1 (-41.932786)
0010 0 : 0 (-1.324335) 1 (-23.058608)
0011 0 : 0 (-4.364201) 1 (-54.584848)
0012 1 : 1 (-4.044712) 0 (-34.130679)
0013 0 : 0 (-6.615302) 1 (-36.660218)
0014 1 : 1 (-3.540809) 0 (-71.135889)
0015 1 : 1 (1.695183) 0 (-1.565632)
0016 0 : 0 (-5.045144) 1 (-44.335387)
0017 0 : 0 (-0.168188) 1 (-14.357100)
0018 0 : 0 (1.123105) 1 (-10.059393)
0019 0 : 0 (1.713712) 1 (-45.626832)
0020 0 : 0 (-4.052548) 1 (-7.284456)

Word-ids Script-id Choice 1 (with confidence) Choice 2 (with confidence)

Ongoing Work
• How to organize the recognized text from different recognizers in multi-

column format?

• Evaluation of Khmer script

• Better recognition engines/strategies need to be applied for the degraded
documents

• Scanning the documents at a much higher resolution

• Bootstrapping the low recognition rates with false script id results

• Using structure of the document to aid script id

Testing Data Training Data

Thanks!

