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Motivations

Signatures and signed initials provide a new dimension for 
document image retrieval
Two important aspects of this problem

Signature detection
Signature recognition

Solution to this problem will greatly benefit off-line signature 
verification and identification in a range of application 
domains
Signature detection is largely an open problem in literature



8/13/2007
4August 13, 2007

Challenges

Detecting free-form objects in cluttered 
backgrounds is a challenging problem in 
computer vision
2D nature of off-line signatures

Difficult to recover tempo order of 
unconstrained off-line handwriting [1]

Large intra-class variations of signatures
Intersession variability
Larger variations than other forms of 
handwriting

Computation complexity Intersession variability shown by 
Sabourin et al. [6]
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Intra-class Variations of Signatures
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We treat a signature as a global symbol. Rather than focusing 
on local features that typically have large variations, our 
approach aims to capture the structural saliency of a 
signature by searching over multiple scales
We consider identifying salient structure and grouping its 
parts in two separate steps
Two keys questions we addressed are:

How to effectively model off-line signature production under 
reasonable assumptions without its temporal information
What to effectively measure the structural saliency of 
signatures under such production model

Overview of our approach
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We assume that
The wrist moves in a cycloid fashion with reference to a sequence of 
shifting virtual baselines. 
Local baseline changes as the wrist moves its position with respect to 
the document. 
Within a local curve segment, we consider that the baseline remains 
unchanged. 
The locus of the pen maintains a proportional distance from the local 
center point (focus) to the local baseline (directrix). 

This is equivalent to viewing signatures as piece-wise 
concatenations of small elliptic segments.
The model imposes one additional constraint that limits the 
group of feasible second-order curves to smoother ellipses.

Signature production model
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Measure of saliency for signatures

How to measure the global saliency of a signature in the form 
of dynamic curvature without recovering its temporal order.

Knowing two points P1 and P2 and their gradient directions, we 
know a family of second-order curves that pass both points
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Measure of saliency for signatures

In the Cartesian coordinate system, the graph of a quadratic 
equation in two variables is always a conic section

For two points on a signature, i.e. for a set of {(x1, y1), (x2, y2), 
(p1, q1), (p2, q2)}, the range of λ value that corresponds to ellipses
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Evaluation

We used two large collections of real world documents—
Tobacco-800 and University of Maryland Arabic datasets.
Using document context, our multi-scale signature detector 
achieves 92.8% and 86.6% detection rates for the Tobacco-800 
and Maryland Arabic datasets, at 0.3 false-positives per image.

ROC curves for (a) Tobacco-800 dataset and (b) Maryland Arabic dataset.

(a) (b)
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Evaluation

Examples of detected signatures from Tobacco-800 and their saliency maps. 
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Evaluation

Examples of detected signatures from Maryland Arabic dataset and their saliency maps.
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Evaluation

Examples of (a) falsely alarms (b) missed signatures
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Motivations

We treat a signature as a shape
Employ shape matching techniques for signature recognition

Shape representations
Shape matching algorithms
Measure of dissimilarities for shapes
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Shape representation

Shape matching using points sampled from skeletons. (a) Original signature. 
(b) Extracted skeleton [7]. (c) Shape context descriptor [4]. (d) Local 
neighborhood graph [5].
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Shape matching

Visualization of shape matching results using the graph-based non-rigid shape 
matching algorithm. For both signatures, we use 200 point sampled along their 
skeletons. After 5 iterations, 181 and 170 points are matched in (a) and (b), 
respectively.

(a) (b)
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Shape matching evaluation

A signature query example. Among the total of eight relevant signature instances, seven appear in the top eight of the 460-
element ranked list, giving an average precision of 94.2%, and an R-Precision of 87.5%. The irrelevant signature that is 
ranked among the top eight is highlighted with a dashed box.

(10)

Relevant instance outside the top eight in the ranked list

(8)(7)(6)(5)

(4)(3)(2)(1)

Top eight retrieved in the ranked list

A query with eight relevant signature instances
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Signature matching results

Table 1: Signature retrieval result using different similarity measures.

80.8%84.5%Dsc + Daf + Dsc + Dre

74.3%78.7%Dsc + Dbe

48.3%52.5%Dre

55.6%59.8%Dbe

57.0%61.3%Daf

62.8%66.9%Dsc

Mean R-PrecisionMean average 
precisionSimilarity measures

Table 2: Signature retrieval result using multiple instances  of signatures from the same person 
in each query.

88.1%91.3%Three

85.2%88.6%Two

80.8%84.5%One

Mean R-PrecisionMean average 
precisionNumber of instances
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Overview

Propose a joint formulation for logo detection and extraction 
using a boosting strategy across multiple image scales
At a coarse scale, a trained Fisher classifier performs an initial 
classification using features from document context and 
connected components.
Each logo candidate region is further classified at successively
finer image scales by a cascade of simple classifiers
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Feature selection and extraction

Positions of logos in the Tobacco-800 dataset relative to the entire document.

Table 3: Features used for classification.

We define context distance as
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Evaluation

Table 4: Positions of logos in the Tobacco-800 dataset relative to the entire document.

We use accuracy and precision as evaluation metrics

We consider a logo correctly detected if and only if the 
detected region contains more than 75% overlapping pixels 
with the groundtruth AND its area is less than 125% of the 
area of the groundtruth.
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Evaluation

Examples of correctly detected logos from Tobacco-800.
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Evaluation

Examples of incorrectly detected logos.

(a) Over/under-segmented logos

(b) Non logos

Examples of missed logos.
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Multi-scale detection

Connected components are only meaningful over a very small range
of image scales
Using a multi-scale classification and refinement scheme gives more 
precise signature localization and reduces false alarms


