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« Document Representation

* Multi-Class Document Classification
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* A document layout :=
« {text line pairs }
« {textline }




« Text line as object

= oD vector (position, font height,
orientation, length)

« Text line pair as

object
= lurning function
= oD quadrilateral shape vector




Simple Training

« Steps:
Gather positive and negative training samples;
Collect positive clusters from positive training samples;
same for negative samples;
\Weight every positive cluster:

M; : size of a negative cluster within fixed
range of positive cluster i.

Store center of each positive cluster and its weight;

Note:

= Weights are under influence of the type and size of
sampled negative training documents.




Wi : weight of the training cluster which:is within a fixed distance and
closest query cluster I.

Ni': size of query cluster i.

centroid of a cluster
from a query page

» a member of the
query cluster

centroid of a positive
training cluster




‘Performance Evaluation Measures

Viean| Average Precision (MAP)
= APi= (ZiSj Pj) / (ZiSj 1)
Average Relevance Rank (ARR)

Ri : rank of a test document of targeted layout class.
N : test set size
Nw: size of targeted layout subset

= ARR € [0, 1-Nw/N), smaller value, better performance




EXxperiments
-- Datasets (1)

« 12 layout classes

1r1r2C

2Cc_asym 2Cc2c_asym class1 class2 | class3 class5

training_size = [46, 9, 20, 112, 67, 116, 3, 10, 50, 100, 49, 60]
testing_size =[113, 10, 23, 144, 431, 362, 6, 45, 62, 264, 121, 95], sum = 1676




EXxperiments
-- Datasets (2)

« Disturbing testing document classes

|jzi—: < R TR

class6 class? class8 class11

testing_sizes = [24, 39, 18, 148, 9, 7], sum= 245

class12
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Lavout Class
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of previeus system :

training Invoelves a large number of samples and Is
iestarted from scratch each time a new layout
COMES.

= multiple layouts classification at one time
= fewer training samples
= reusable training results




ompact Layout Representation

« 5D quadrilateral shape
vector for every text line pair.

4 {f occurrence

From 101 documents of
variant layoeuts, we built a
dictionary with 976 words
through clustering similar
guadrilaterals.

A document Is represented
by a histogram of word
occurrences through

matCh,i”Q every quadrilateral Now, a document is a 976D vector
to a dictionary word.




Randoem Chopping
— the I1dea

Feature = {angle, #leg,
redness, length, brightness,
shape, height, weight}

N = Zi=1 n/2Cin

CN#Chop

“Pattern Recognition from one example by chopping”,
Francois Fleuret, Gilles Blanchard, NIPS05




The \Verits

Reusable training results: when a new layout
comes, no need to re-chop previous training
samples.

Generalizabllity : tell whether a new pair of
Instances of unseen layouts are similar under
currently learned criteria.

Time efficiency.
large training sets for each class is unnecessary

Space efficiency: O(N,p)




The Procedure

« For' = 1 to NUM_CHOPS
= Randomly chop layout classes into two sides

s Feature Selection

= [rain a discriminative classifier using Logistic
Regression

= Evaluate the classifier on a validating set




Similarity: Measure

Eachiguery document has a signature S like

110 (0 |10 1

Eachilayout class has a relaxed signature RS
averaged from training samples. (consistency)

09 (01 [0.12 |1 |0.07 0.875

Eachi classifier has a performance value P on
validation set. (discriminative power)

0.75 10.8 |0.66 |0.55 |0.7 0.6

Score of a query against layout class i

Score;= 2, F(S, , RS, ) * P,
F(S,, RS, )= (-S5S)(1- RS

Find out the class
C = argmax; Score,

X
1,k i,k) T Sk RSi,k

O
)

-- RS of Class |
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Experimentall Results

-- Confusion Matrix
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Other Experiments

» Multi-class classification on synthesized
datasets

* Rank documents with unseen layouts

* Comparing with deterministic bi-class
classification

* Searching for an optimal num_chops




Challenges

« Supervised training = Semi-supervised
~ Unsupervised

« Efficient ways to find the optimal number
off choeps for a given number of classes




Thank You!




