
Page 1 of 29

BOBCAT-DI:
PETS Software Description

Army Research Laboratory,
Adelphi MD

from

Laboratory for Language and Media Processing
University of Maryland, College Park, MD, USA

December 20, 2008

Page 2 of 29

Table of Contents

Table of Contents .. 2
List of Figures ... 3
1 Introduction .. 4

1.1 Background ... 4
1.2 Project Overview ... 4
1.3 Organization of Report .. 5

2 GEDI Ground Truthing Tool .. 6
2.1 GEDI Philosophy .. 7
2.2 GEDI Modifications .. 8

3 Evaluation Metrics and Protocols ... 10
3.1 Overview ... 10
3.2 PETS: Performance Evaluation Tools .. 10

3.2.1 Matching score .. 10
3.2.2 Zone matching ... 11
3.2.3 System Architecture .. 13
3.2.4 Process ... 15
3.2.5 Output .. 15
3.2.6 PETS Software Usage ... 18

3.3 ImDiff .. 19
3.3.1 Background ... 20
3.3.2 Evaluation Methodology ... 20

4 Summary and Conclusions ... 29

Page 3 of 29

List of Figures

Figure 1: GEDI Tool ... 6
Figure 2: GEDI Showing Annotated Results .. 9
Figure 3: Ground Truth and Algorithm Results for Evaluation 10
Figure 4: Pixel level definition ... 11
Figure 5: Example of One to One Overlap ... 12
Figure 6: example of one-many overlap ... 12
Figure 7: Example of Many-to-One overlap ... 13
Figure 8: Example of Many-To-Many overlap ... 13
Figure 9: Example of GEDI XML .. 14
Figure 10: Example of Individual Results Page ... 16
Figure 11: Example of Summary Results ... 17
Figure 12: Example of a ground truth Text image. ... 23
Figure 13: Example of a ground truth Text Line Image 24
Figure 14: Image created by superposition (Figs 1 and 2) 25
Figure 15: A sample output of Line Removal Output. ... 26
Figure 16: Missed Detections in the output image ... 27
Figure 17: False detections in the output image ... 28

Page 4 of 29

PETS Software Description

1 Introduction

1.1 Background

Over the past five decades, evaluation has become increasing important as the

field of document image understanding has developed. A number of independent
evaluations have been run by various academic organizations, all focusing on slightly
different problems. In recent years, the University of Maryland has developed a number
of tools aimed at supporting generic annotation and evaluation of document (and video)
data. A set of three reports is being produced from this one year BOBCAT-DI research
and development projects. The three reports include

 A Segmentation and Evaluation Survey- designed to identify major
algorithms, tools and evaluation methodologies in the community,

 The PETS Software Description (This report) – a toolkit to evaluate
segmentation, line detection and image enhancement algorithms, based on
BOBCAT-DI requirements and as a response to the state of the art, and

 Selected Evaluations using the PETS environment – Evaluations designed
to demonstrate the capabilities of the tools and provide a framework for
use in operational environments.

It is the hope that this work will lead to a generic repository for evaluation which

host data, tools, algorithms and evaluation results for community wide comparison.

1.2 Project Overview

The DoD Sequoyah Foreign Language Translation Program, managed by the

interim Sequoyah Transition Mgt Office (STMO) under PEO IEWS, Ft Monmouth, NJ,
is intended to address critical linguist shortfalls in US warfighting and intelligence
operations through automated language translation capabilities (speech and text) and to
provide document image processing and OCR capabilities for cases when material to be
translated is paper or document images. To support unbiased, vendor-neutral assessment
of technology candidates prior to field testing and deployment, the STMO has initiated a
web-accessible, distributed “Best-of Breed Configurable Active Testbed” (BOBCAT) led
and operated by ARL and distributed across NRL and AFRL. Yet to be incorporated into
the testbed is the capability to assess OCR and other document image processing (DIP)
tools. The STMO as well as the ODNI have tasked ARL with integrating document
image (DI) processing assessment into BOBCAT, creating BOBCAT-DI . BOBCAT-DI
will be used to assess a variety of document image processing capabilities and tools, with
a focus on Arabic and other Southwest Asian languages. The image processing and
analysis metrics and methods, particularly as applied to document images obtained from
cameras, scanners, etc., is needed to enable assessments that are reliable, robust, and
scientifically defensible

Page 5 of 29

1.3 Organization of Report
The tools necessary for the proposed web based evaluation need to be robust,

efficient and configurable to adapt to the variety of different research projects currently
within the community. The GEDI and PETS software described in this report are a
response to the challenge of being able to provide a configurable adaptable solution.

Section 2 describes the GEDI software tool at a high level and outlines the basic
enhancements that have been made during this project, both under BOBCAT funding and
through contributions from other organizations.

Section 3 highlights the PETs Evaluation Metrics and Protocols including newly
developed metrics using Image differencing. The evaluation for differencing is necessary
to support enhancement and other pixel level analysis algorithms.

Section 4 provides a summary and conclusions.

Page 6 of 29

Figure 1: GEDI Tool

2 GEDI Ground Truthing Tool

GEDI is an editor that assists you in ground truthing scanned text documents. Its
basic structure involves two types of files, an Image file, and a corresponding .xml file in
GEDI Format (see below). A series of image files stored in the same directory (folder)
can be opened simultaneously and the interface maintains a one to one correspondence
with XML files of the same name, in same or another directory. When you begin ground
truthing an image, you can configure the interface to allocation the creation of different
types of zones, each of which may have a custom set of “attributes”.

GEDI allows users to enter information at both the page level and at the zone
level. Zones are typically used to mark the locations of physical regions on the page, such
as text, signatures, logos, etc. Different zone types should be used to label different types
of page elements. Information about a particular zone or page can be entered by setting
values for attributes. Pages and zone types can have any number of attributes associated
with them, and each instance of a page or zone can have its own values for the
attributes. For labeling text, the pre-defined DL_TEXTLINEGT zone type can be used
which manages predefined attributes for contents and character or word offsets within the
zone. For specifics about any particular feature of GEDI, please select it from the table of
contents to the left. Some topics have sub-topics and can be expanded by clicking on the
plus sign next to them.

If you are already familiar with GEDI, you may still want to take a look at
Appendix: Modification History.

Page 7 of 29

2.1 GEDI Philosophy

Before beginning any annotation, it is useful to understand the GEDI Philosophy
for annotation.

When the user annotates an image, GEDI stores the information in an XML file in
the following format:

<?xml version="1.0" encoding="UTF-8"?>
<!--GEDI was developed at Language and Media Processing Laboratory, University of
Maryland.-->
<GEDI xmlns="http://lamp.cfar.umd.edu/GEDI" version="1.0">
 <USER name="Elena" date="5/23/2008 17:24" dateFormat="mm/dd/yyyy hh:mm"> </USER>
 <USER name="Orri" date="6/11/2008 12:52" dateFormat="mm/dd/yyyy hh:mm"> </USER>
 <DL_DOCUMENT src="sample.tif" docTag="xml" NrOfPages="3">
 <DL_PAGE gedi_type="DL_PAGE" src="sample.tif" pageID="1" width="1728"
 height="2292">
 <DL_ZONE gedi_type="DL_TEXTLINEGT" id="2" col="1285" row="269" width="166"
 height="335" orientationD="16.169" contents="" offsets=""
 segmentation="word"> </DL_ZONE>
 <DL_ZONE gedi_type="DL_TEXTLINEGT" id="3"
 polygon="(151,253);(274,274);(610,294);(561,331);(540,375);(312,380);
 (255,414);(109,404);(76,363);(107,349);(113,300)"
 offsets="" segmentation="word"> </DL_ZONE>
 <DL_ZONE gedi_type="DL_TEXTLINEGT" id="4" col="208" row="500" width="245"
 height="40" contents="" offsets="" segmentation="word"> </DL_ZONE>
 <DL_ZONE gedi_type="DL_TEXTLINEGT" id="5" col="214" row="626" width="494"
 height="35" contents="To: Mr. A. Sadovnick" offsets=""
 segmentation="word"> </DL_ZONE>
 <DL_ZONE gedi_type="DL_TEXTLINEGT" id="6" col="214" row="704" width="98"
 height="40" contents="" offsets="" segmentation="word"> </DL_ZONE>
 <DL_ZONE gedi_type="DL_TEXTLINEGT" id="7" col="396" row="706" width="303"
 height="34" contents="" offsets="" segmentation="word"> </DL_ZONE>
 <DL_ZONE gedi_type="DL_TEXTLINEGT" id="8" col="728" row="165" width="296"
 height="259" contents="" offsets="" segmentation="word"> </DL_ZONE>
 </DL_PAGE>
 <DL_PAGE gedi_type="DL_PAGE" src="sample.tif" pageID="2" width="2592"
 height="3300">
 </DL_PAGE>
 <DL_PAGE gedi_type="DL_PAGE" src="sample.tif" pageID="3" width="2592"
 height="3300">
 </DL_PAGE>
 </DL_DOCUMENT>
</GEDI>

The GEDI represents a document as consisting of pages, and on each page a set of
zones, and for each zone a set of attributes. The types of zone, and the user attributes
which describe them are fully configurable in the interface. Each zone does have a set of
“required” attributes which include 1) Zone ID, 2) GEDI-type, and 3) the coordinates of
the zone – row, col, height and width for normal zones, an additional orientation attribute
for oriented zones, and a list of points for polygonal zones.

The interface itself provide many different tools to help manage and maintain this
metadata including function keys, drop down lists, color coding of attributes, support of
multiple languages (including bi-text) etc. Details and lessons learned are found
throughout this help document. As one additional introduction, here are some details on
how the data is stored in the GEDI XML format. Please refer the example above:

Page 8 of 29

The main tag is a GEDI tag, and it has two types of tags within it. It has one
USER tag per user that has modified it (which includes the name of the user, the data
modified, and the format of the date modified [mm/dd/yyy hh:mm is the default]), and
the other is the DL_DOCUMENT tag, which represents the document, and includes
information such as the number of pages of the image being worked on and the system
path of the image. The DL_DOCUMENT tag has within it one tag per page of the image
being worked on (in most cases, one, but if you have a multipage tiff, it will be more than
one), whose attributes include the height, width, page id (1 through however many
pages), and the system path of the image.

Within each page tag, there are a number of DL_ZONE tags, which correspond to
the zones drawn on the image in GEDI. If the user has turned on parent-child mode to
draw any of the zones, some of the DL_ZONE tags will have other DL_ZONE tags
within them (these are the zones drawn inside the parent zone).

 If the zone is a DL_TEXTLINEGT zone, it will also include the contents, offsets,
and segmentation. Of course, the user is free to add attributes to the page, or to any of the
zone types. These will also be included in the xml file.

2.2 GEDI Modifications
For this project, the team has made several sets of modification, primarily related

to the ability of the system to
 Annotate handwritten textline data with the additional of Polygons
 Represent pixel level details by providing the a run length encoding
 Represent Reading Order
 Direct Integration of Evaluation Capabilities via scripts

The figure below shows results, colored in different ways as a direct result of

evaluation.

Page 9 of 29

Figure 2: GEDI Showing Annotated Results

Page 10 of 29

Figure 3: Ground Truth and Algorithm Results for Evaluation

3 Evaluation Metrics and Protocols

3.1 Overview
Many zone segmentation and zone classification algorithms have been proposed

recently and effective and standard evaluation of such algorithms is getting considered
important. This Section introduces the PETS software which was developed to evaluate
zone segmentation and zone classification algorithms effectively and introduce the
structures and algorithms which are used in PETS. PETS was initially designed to
evaluate zone based algorithms for segmentation and classification.

3.2 PETS: Performance Evaluation Tools

3.2.1 Matching score

In the geometrical zone matching, the overlap ratio of two zones is the measure
used to determine the matching score. The performance evaluation method is based on
counting the number of matches between the result zones of algorithm and ground
truth. We use pixel level precision and recall and get the matching score which is used
to compute an F1 score of.

Let G be the ground truth and gn be the n th ground truth zone, then
G= {g1, g 2, ... , gn} . Let R be the result and rn be the n th result zone, then
R= {r 1, r2, ... , rn} . Let pi be the i th pixel in the document. In the pixel level precision

and recall,

true positive(TP) is ,

false positive(FP) is ,

Page 11 of 29

false negative(FN) is .

Figure 2 shows a example of pixel level definition. n�R� the function that

counts the pixels in R set. Using these terms, we compute precision and recall as
follows.

 Using this metric, we construct a matching score table (MST) between result

zones and ground truth zones.

3.2.2 Zone matching

Once we construct the MST we define four types of zone matching by type of
overlap. They include ‘one-to-one’, ‘one-to-many’, ‘many-to-one’ and ‘many-to-
many’. To find only one ground truth zone which is matched to a result zone, we use
MST to find the best matching case. We define 4 types of zone matching when we
consider the label correspondence for zone segment matching.

 MATCHED : A result zone matching a ground truth zone with same label
 DETECTED : A result zone matching a ground truth zone with different label
 FALSEALARM : A result zone matching no ground truth zone
 MISSED : A ground truth zone which is not matched by any result zone

Figure 4: Pixel level definition

Page 12 of 29

3.2.2.1 One-to-one

This case is simplest case of overlap. Only one result zone overlaps with one
ground truth zone. Figure 3 shows an example of a one-to-one overlap and the
matching score table. In this case, R1 is defined as ‘MATCHED’ if L(R1)=L(G1) and
the matching score is greater than a threshold, otherwise R1 is defined as
‘DETECTED’ if L(R1)≠ L(G1). The default threshold is 80%.

3.2.2.2 One-to-many

If one result overlaps multiple ground truth zones, we need to define which ground
truth zones are matched to the result zone. Figure 4 shows an example of a one-to-
many overlap. In this case, if L(R1)=L(G1)=L(G2), we define R1 as ‘MATCHED’ to
G1 and G2 as ‘MISSED’. IF L(R1)=L(G2)≠ L(G1), R1 is ‘MATCHED’ to G2 and G1
is ‘MISSED’. IF L(R1)≠ L(G1)≠ L(G2), R1 is ‘DETECTED’ by G1 and G2 is
‘MISSED’.

3.2.2.3 Many-to-one

If multiple result zones overlap one ground truth zone, we need to define which
result zones are matched to the ground truth zone. Figure 5 shows an example of a
many-to-one overlapping case. In this case, if L(R1)=L(R2)=L(G1), we define R1 as
‘MATCHED’ to G1 and R2 as ‘FALSE ALARM’. If L(R1)≠ L(R2)=L(G1), R2 is

Figure 5: Example of One to One Overlap

Figure 6: example of one-many overlap

Page 13 of 29

‘MATCHED’ by G1 and R1 is ‘FALSE ALARM’. If L(R1)≠ L(R2)≠ L(G1), R1 is
‘DETECTED’ to G1 and R2 is a ‘FALSE ALARM’.

3.2.2.4 Many-to-many

This case is the most complicated type of overlap. Multiple result zones overlap
multiple ground truth zones. Figure 6 shows an example of a many-to-many overlap.
In this case, we find the maximum number of ‘MATCHED’ cases in the first step, and
then find the maximum number of ‘DETECTED’ cases among the remainder from the
first step.

3.2.3 System Architecture

3.2.3.1 Input

PETS uses XML which follows the GEDI data format specification for input of
results and ground truth. GEDI is the Ground truthing Editor and Document Interface
which can represent the document image structure well.

There are three xml tags which are essential to represent the document element. All
of these are generated by default with GEDI.

<DL_DOCUMENT>

Figure 7: Example of Many-to-One overlap

Figure 8: Example of Many-To-Many overlap

Page 14 of 29

This tag represents the document image itself and this is the parent tag of the
DL_PAGE tag. This tag should have several attributes including ‘NrOfPages’,
‘docTag’ and ‘src’.
 NrOfPages : number of pages which this image document consists of.
 docTag : usually ‘xml’
 src : name of document image

<DL_PAGE>

This tag represents the page of document image and this is the parent tag of the
DL_ZONE tag. It is possible that there are several DL_PAGE tags, if the document
image is multiple page image such as ‘TIFF’ or ‘GIF’. This tag should have several
attribute such as ‘gedi_type’, ‘pageID’, ‘src’, ‘height’ and ‘width’.
 gedi_type : usually DL_PAGE
 pageID : identity of the page
 src : name of document image
 width : horizontal length of the page the image
 height : vertical length of the page of the image

<DL_ZONE>

This tag represents the zone in the page of image. This tag should have 5
essential attributes and can have user defined attribute. The essential attributes are
‘gedi_type’, ‘id’, ‘col’, ‘row’, ‘width’ and ‘height’.

 gedi_type : label of the zone such as Table, Text, Stamp and so on.
 id : identity of the zone
 col : upper right column point of the zone
 row : upper right row point of the zone
 width : horizontal length of the zone
 height : vertical length of the zone
 orientationD : rotation degree of the oriented box. It uses degrees
 polygon : points that consist of (col,row) for boundary point
 lineID : identity of the one line of text
 RLEIMAGE : Run-length code of the zone

Figure 9: Example of GEDI XML

Page 15 of 29

3.2.4 Process

3.2.4.1 Selective merging

In some cases, it is necessary that multiple result zones are merged to one larger
result zone and get the matching score for a ground truth zone. For example, when the
zone segmentation algorithm is trained to segment the text region by word, but the
ground truth zone is a large text area, we need merging mechanism to evaluate the
algorithm. PETS check that a result zone fulfill the condition of merging using
coverage score(CS). CS is defined as follow.

 (4)

when the subset of , and then, will
be merged into one zone and get matching score to gn . for the selective merging,
PETS uses list of entity which is allowed to merge.

3.2.5 Output

There are two types of output from the program. One is the text file which has the
detail result of evaluation process for every zone and the summarized results for all
zones. The other is the output for visualization. It is useful when user check the
matching result directly using GEDI.

For the individual result, symbols, ‘O’, ‘-’ and ‘X’, are used to represent the result
of each zone. ‘O’ indicates that the result zone detected one ground truth zone with
matching score over the threshold and the type of two zones matched. ‘-’ is same as
‘O’ in terms of detection, but the type of two zones did not matched. ‘X’ means that
the result zone is a false alarm. The matching score is displayed if the result zone
detects the one of ground truth zones with matching score over threshold. There are
also overall result for each page at the end of the individual result.

Page 16 of 29

In the summary of section, there is information on individual zones and a

confusion matrix for the evaluation results. These are very commonly used tools
for the analysis of classification results. Finally, summarized results for each type
of zone are shown. The precision, recall, F-score, missing rate and false alarm rate
represents the result of the segmentation algorithm and the classification algorithm.

Figure 10: Example of Individual Results Page

Page 17 of 29

The other output of the program is a GEDI file which is very useful when user

wants to check the results of algorithm visually. There are four types of zones in the
visual output, ‘MATCHED’, ‘DETECTED’, ‘FALSEALARM’ and ‘MISSED’.
Each zone has more information which is useful for understanding the result of
algorithm include ‘GTID’, ‘GTClass’, ‘RESID’, ‘RESClass’, ‘MZID’ and ‘Score’.

 GTID : ID of the ground truth zone
 GTClass : Type of the ground truth zone
 RESID : ID of the result zone
 RESClass : Type of the result zone
 MZID : ID of the merged zone, merged zones have same MZID
 Score : Matching score of the result zone

Figure 11: Example of Summary Results

Page 18 of 29

3.2.6 PETS Software Usage

Additional details of the software are available with the software distribution.

Name :
PETS Performance Evaluation ToolS for zone segmentation
and classification

Synopsis :

Unix/Linux platform command : PETS
Window platform command : PETS.exe
command r {<FILE>|<DIR>} g{<FILE>|<DIR>} i {<FILE>|<DIR>}

[o <FILE>] [v <DIR>] [m <FILE>] [t <NUM>]
[detail] [lid] [rle] [segonly|zoneclass]
[az <FILE>|naz <FILE>]

Options :
r {<FILE>|<DIR>}

: Location of Results File(s)

g {<FILE>|<DIR>}

: Location of Ground Truth File(s)

i {<FILE>|<DIR>}

: Location of Image File(s). Default location is the
location of ground truth

o <FILE>

: Name of File for Evaluation Results. Default is
‘PETS Eval.txt’.

v {<FILE>|<DIR>}

: directory where Xml output of GEDI format will be
saved

lid

: Zones which have same ‘lineID’ attribute in Ground
truth will be merged to one zone

rle

: runlength code will be add to visualization output

detail

: enable detailed output for each zone

t <NUM>

: set the threshold by user for determining a zone
match based on pixel counts. Default is 80(%).

Page 19 of 29

m <FILE>
: result zones which are in a ground truth zone will
be merged if it’s types are in the <FILE>. First
line of the FILE should have numeric data which is
used as threshold for zone merging.

segonly

: Evaluation will perform detection by not consider
zone labels for matching.

zoneclass

: Evaluation will rely on ZoneIDs for
correspondence, considering only zone labels for
results

az <FILE>

: Zones which its types are in the <FILE> will be
treated in the program, otherwise deleted from the
result.

naz <FILE>

: Zones which its types are in the <FILE> will be
deleted from the result.

3.3 ImDiff
There is a class of document analysis problems which require analysis, and thus

evaluation, at the pixel level and we refer to these problems as detection problems. One
example of this includes line detection and removal and second example is general noise
removal. Pixels of these classes are often interspersed with content so the “detection”
must be done at a pixel level.

For this class of problems, we assume that we have a set of pixels we want to
detect, which we refer to as the template. From this template, we can look at the number
of pixels that are missed and falsely detected, as well as a percentage of missed as a
function of the number of pixels in the template, and the percentage of false, as a function
of the number of pixels in the original or result image.

Accurate evaluation at pixel level requires precise knowledge of the set of pixels
which belong to a particular class which we are interested in detecting. This requires
ground truthing to be done at pixel level, which is almost impractical. Hence we resort to
an approach which provides us with ground truth data which is very close to the pixel
level ground truthing. For example, in case of line detection and removal evaluation,
initially we have scanned images of ruled lines. Noise gets introduced when these images
are binarized, and hence all the foreground pixels do not correspond to lines now. So, to
get rid of these noises and obtain a clean set of line pixels, we do a line based ground
truthing of these images using GEDI. We use this final filtered template for evaluation.

Currently, this capability is not included in PETS or any other type evaluation
software. We have developed this software independently and will be

Page 20 of 29

3.3.1 Background

We define five different type of images used in our evaluation as follows:

a) ContentImage: Images with only content in it. (For example - text, logo)

b) TemplateImage - Images with only the "pixels" which we are interested in

detecting or removing (Ex- Line pixels). In case of line detection evaluation,
the template is the image with only line pixels in it and for line removal
evaluation, the template is defined as the line pixels that we are interested in
removing, after this template is added to ContentImage. For generating these
templates, we have scanned ruled line pages at 300 dpi.

c) OriginalImage/InputImage - Images which are generated by the addition of

contentImage and templateImage. This can be done by simply performing the
logical ‘OR’ operation on the corresponding pixels of two binary images. This
is the input to the detection or removal algorithm which we want to evaluate.

d) DegradedTemplates: The templates obtained by just scanning the ruled

documents may not be a good match to what we observe in real documents.
For example the line may be broken at several places or the thickness of a line
may not be uniform due to some processing that degraded the image. We try
to obtain such realistic InputImages for evaluation by degrading the templates
manually using some image manipulation software. (Ex- GIMP)

e) OutputImages: The output of the method we are evaluating.

As an example, have created 5 TemplateImage, 2 DegradedTemplates and 10

ContentImages. We obtained 50 clean Input Images using 5 TemplateImages and 10
ContentImages and 10 degraded Input Images using the 2 degraded templates. Then our
line detection algorithm is run on these 60 documents. In case of Line detection the
output of the method is the “pixels” that are detected as line pixels, while for Line
removal the output is the image with all the “pixels” detected as line, removed from the
input image.

3.3.2 Evaluation Methodology

Evaluation is based on the purpose or goal of the method we want to evaluate.

Since we have both the original document and the ground truth templates, we can obtain
the pixel based performance of a given algorithm by finding the total number of missed
pixels and false pixels in the output image which is defined as follows:

CASE 1: If the goal is detection then we define the two measures as:

Page 21 of 29

Missed Detection: Foreground pixels that are present in the template image but
are missing in the output image.

False Detection: Foreground pixels that are not present in template but are
present in the output image.

The implementation of above measures can be done by following these equations:

DetectTemplate = LineTemplate ; (1)

MissedDetection = DetectTemplate - (DetectTemplate & OutImage); (2)

FalseDetection = OutImage - (DetectTemplate & OutImage); (3)

Where ‘&’ and ‘|’ represents logical AND and OR operations on the two binary

images. Line Template is the image with only ruled lines it. In case of line detection
evaluation, the detection template used to evaluate the method is same as line template.

Also, in all the above and following equations we have assumed that the
foreground is represented as 1 and background as 0.

We can express the above measure relative to the total number of pixels as follow:

Missed %= (Number of Missed Pixels / Pixels in template)*100 (4)

False % = (Number of False Pixels / Pixels in output image)*100 (5)

CASE 2 : If the goal is removal then we have the same measures defined as :

Missed Detections: Foreground pixels that are present in the template and remain
in the output image. i.e. The method failed to remove to these pixels.

False Detections: Foreground pixels that are not present in the template and the
output image, but are present in the original image. i.e. The method wrongly
removed these pixels.

RemovalTemplate = LineTemplate – (LineTemplates & ContentImage); (6)

OriginalImage = RemovalTemplate | ContentImage; (7)

MissedDetection = OutputImage & RemovalTemplate; (8)

FalseDetection = OriginalImage - (RemovalTemplate | OutputImage); (9)

Where ‘&’ and ‘|’ represents logical AND and OR operations on the two binary

images. Substituting the OriginalImage from 6 in 9, we get

FalseDetection = (RemovalTemplate | ContentImage) –

(RemovalTemplate | OutputImage) (10)

Page 22 of 29

So effectively the false pixels are the content pixels which were removed from the

input image, as template pixels. Further insight into false removal can be obtained if we
classify them as:

a) FalseLine: Falsely removed pixels which belong to a line.
b) FalseRandom: Falsely removed pixels which do not belong to a line.

FalseLine = FalseDetection & LineTemplate (11)

FalseRandom = FalseDetection – FalseLine (12)

In this way, we can get a deeper insight into what is happening with the line and

content pixels. For the same value of FalseDetection, if the number of FalseRandom is
high for a given method then it may be assigned a bigger cost for overall evaluation of
the method.

We can express the above measure relative to the total number of pixels as follow:

Missed %= (Number of Missed Pixels / Pixels in template)*100 (13)

False % = (Number of False Pixels / Pixels in original image)*100 (14)

To combine the above two measures use the F-β measures, for which we first find

the total number of true positives (or true detection or removal), precision and recall as
follows:

True detections (tp): Foreground pixels that were removed from input image

(as line pixels) and are present in the template.

Precision (P) = tp/(tp + FalseDetection) (15)

Recall (R) = tp/(tp + MissedDetection) (16)

Fβ-Measure = (1+ β^2) P*R/ ((β^2)*P + R)

We find the Fβ-Measure for β = 1,2,3 to give different weights to recall and

precision.

Page 23 of 29

Figure 12: Example of a ground truth Text image.

Page 24 of 29

Figure 13: Example of a ground truth Text Line Image

Page 25 of 29

Figure 14: Image created by superposition (Previous 2 Figures)

Page 26 of 29

Figure 15: A sample output of Line Removal Output.

We can see some of the parts of Line still remaining over the text and some of the
text pixels missing.

Page 27 of 29

Figure 16: Missed Detections in the output image

Page 28 of 29

Figure 17: False detections in the output image

For the above example we have following:

Total number of text pixels: 265911
Total number of Line Only Pixels (which do not overlap with text): 307527
Missed Detections (line pixels that are not removed): 2028
False Detections (text pixels that are removed): 2971
Missed Percentage = 0.9661 %
False Percentage = 0.7627 %

Page 29 of 29

4 Summary and Conclusions

The PETS project has produced a set of tools that can be integrated into a full

framework for evaluation of document image analysis research. Combined with the
existing OCR evaluation framework from UNLV the tools provide a powerful tool that
can lead to wide dissemination of results in the community. An internet based portal
which provides data, algorithms and evaluation capabilities as well as the ability to store
and retrieve results will go a long way to achieving this vision.

