
12/19/2008

1

High Performance
Computing for Audio-

Visual Signal
Processing
Ramani Duraiswami

Perceptual Interfaces and Reality Lab.
Computer Science & UMIACS

University of Maryland, College Park, MD

http://www.umiacs.umd.edu/~ramani ramani@umiacs.umd.edu

Ever larger collections of audio visual data
Sensors are getting varied and cheaper

Cameras, microphones
Camera megapixels double every 18 months

Storage is getting cheaper
Other Large dataOther Large data

Text (all the newspapers, books, technical papers)
Genome data
Medical/biological data (X-Ray, PET, MRI, Ultrasound,
Electron microscopy …)
Climate (Temperature, Salinity, Pressure, Wind, Oxygen
content, …)

The data needs to be processed! Ways to attack problem size growth
Faster processors

“Moore’s law will take care of it”

Faster algorithms with better asymptotic complexity
Go parallel!
Clusters of computersp

Way Google and Yahoo do it
Hadoop and MapReduce
Coarse grained, task based parallelism

New shared memory multiprocessor chips
(multicore processors, GPUs)

Data parallelism

Actually Moore’s law doesn’t help
Argument:

Moore’s law: Processor speed (used to) double every 18 months
If we wait long enough the computer will get fast enough and let my
inefficient algorithm tackle the problem

Is this true?
Yes for algorithms with linear asymptotic complexity
No!! For algorithms with different asymptotic complexityg y p p y
Most scientific algorithms are O(N2) or O(N3)
For a million variables, we would need about 16 generations of
Moore’s law before a O(N2) algorithm was comparable with a O(N)
algorithm

Did no one tell you that Moore’s law is dead?

Moore’s Law is dead!
Feature sizes and clock speeds on commodity chips
have been stagnant over the past 4 years

~3 GHz and 45 nm
Smaller or faster not possible because of Physics!

All manufacturers are going with multicore to
maintain performance

Core-2, core-2-duo, quad-core, …

Shared memory multiprocessing
Intel has demo’ed several many core systems

Graphics processors and gaming consoles have
already been on the multicore path for a decade!

12/19/2008

2

Gamer Power

Sony Playstation 3

2.18 teraflops <$300

Difficult to program

Microsoft X-Box 360

1.04 teraflops <$200

Difficult to program

GEFORCE 8880 GTX Multicore Intel box with 3 GPUs
in Slots
~ 1 Teraflop for < 3000
(shown with 1 GPU)

Current NVIDIA GPU
240 scalar processor cores per GPU
933 GFlops Single Prec and 78 GFlops Double Prec
Hardware Thread Execution Manager enables
thousands of concurrent threads per GPU
1 5 GB memory per GPU1.5 GB memory per GPU
Upto 4 GPUs per CPU node

More would saturate the bus

Programming on the GPU
GPU organized as groups of multiprocessors
Each multiproc. has 8 relatively slow processors
Each MP has small amount of own memory and
access to GPU global memory
Factor of 100s difference in speed as one goes up the
memory hierarchy

Local memory
~50kB

GPU shared
Single Program Multiple Data Framework
Many practically important tasks do map well and we
are working on converting others

Image and Audio Processing
Some types of linear algebra cores
Many machine learning algorithms
Physics algorithms

memory
~1GB

Host memory
~2-32 GB

GPU work in my lab.
Signal Processing

Audio processing (A. O Donovan, CVPR’07, ICASSP 08)
Image processing (Yuancheng Luo, WACV’08/CVGPU’08, JPDC)
Machine Learning (Balaji Vasan)

Fundamental scientific computing algorithms
Fast multipole methods on GPUs (106 × 106 dense matrix vector product
in 1s on the 8800 GTX), J. Comput. Phys. Sep 2008 (with N. Gumerov)
Simulation of plasma turbulence (with Bill Dorland and NG, JPDC Sep
2008)

Flagon: Programming environment/library
Provides objects, operators, and algorithms for using the GPU from C,
Fortran-90 and Matlab
without knowing CUDA (Supercomputing 2007) (NG, RD, BD, YL,
Kate Despain)

GPU programming issues
Cost of global memory access is ~ 500 clock cycles
access to local data is free (~ 1-4 clock cycles)
Lesson 1: Compute the heck out of the data each
time you load it in to local memory

Computing features on image, voice data
Block based linear algebra algorithms

Coalesced reads and writes: When contiguous data
is accessed from global memory, cost of access to
subsequent pieces is only 4 clock cycles
Lesson 2: Use data structures to coalesce access

12/19/2008

3

GPU programming 2
Many models of parallelism considered in 80s and 90s
GPU: closest to data parallelism

Identify a basic set of primitive algorithms

Build a library of efficient procedures
Blelloch’s prefix scan algorithm
Sorts reductionsSorts, reductions

Block based higher level linear algebra algorithms
LU, QR,

Lesson 3: Build a library of useful functions
Lesson 4: Build tools and model for programming the
GPU from high level languages

Algorithms for video/audio processing
Filters and convolution

Feature extraction based on filter output

Morphological operations
Involve branching and logic, and can be slow

TrackingTracking
Computing similarities, geometric transforms

Segmentation
Classification based, Graph cuts,

Machine Learning
Classification, Regression, Ranking
Linear algebra and optimization on features/cost funcions

Feature computation, data smoothing etc
Ideal for the GPU
Several implementations
widely available

Sobel, Gaussian convolution,
Laplacian of Gaussian etc.
Gradients, Harris operator

Di id i i

Non-separable Convolution Apron

Separable Convolution Apron

Divide images into
possibly overlapping
patches

Compute
Fix stuff at borders
Some tuning and data
structures can help
E.g. for memory access at
borders

7x7 Fil ter Window
16x16 Thread B lock

228 A pr on Pixels

192 A pron Pixels

Other algorithms that port well
•Sorts
•Fourier transforms
•Matrix vector/Matrix Matrix products

Image Processing :Canny Edge detection
on NVIDIA CUDA

Comparison with OpenCV

LENA MANDRILL

Matlab
CUDA interoperability with Matlab via compiled
mex files (SDK example)
Adapted existing code to use
glCudaEdgeDetector(A,nChannels,thresholdLow,t
hresholdHigh,hysteresisIts,sigma);

More substantial speedups

12/19/2008

4

Learning: Classification and Regression
Regression/Classification: Given lots of data (x,y)
x ∈ Rd;
given a new “target” point x* predict y there
Regression if y is real valued
Classification if y is categorical
Kernel methods are powerful here as well
“Lift problem to
infinite dimen-
sional space
where separation
is linear”

Kernel Methods
Key programming primitives

Computation of kernel sums (Matrix vector products)
Solution of linear systems
Evaluation of cost functions

All can be mapped well to GPUpp
Cost of matrix vector product is O(N2)
Algorithms to speed this up to O(N)

First for CPUs
Now for GPUs

Fast Multipole Methods for GPUs
General method for accelerating large classes of dense matrix
vector products
Reduce computational/memory complexity from O(N2) to O(N)
Allow reduction of O(N2) and O(N3) operations to linear order
We are applying it to many areas

Fast statistics, similarity measures, image processing,
segmentation tracking learningsegmentation, tracking, learning
Non uniform fast Fourier transforms and reconstruction
Elastic registration, fitting thin-plate splines
Acoustics, Synthetic beamforming
Fluid mechanics (vortex methods, potential flow, Stokes flow)
Electromagnetic scattering and Maxwell’s equations

Results (Gumerov & Duraiswami, J Comp. Phys, 2008)
30 fold improvement over FMM on CPU
30*N improvement over serial algorithm on CPU

(potential only)N=1,048,576

330 683 s22 25 sp=4
RatioGPUserial CPU

661.761 s116.1 sp=12
721.227 s88.09 sp=8
290.979 s28.37 sp=4

RatioGPUserial CPU

481.395 s66.56 sp=12
560.908 s51.17 sp=8
330.683 s22.25 sp=4

(potential+forces (gradient))N=1,048,576

GPU Programming is now a lot easier
but is still quite hard!
Legacy code is on the CPU whereas success using
CUDA is mostly with shipping entire programming
to GPU

this limits size of problems to that which can be held in p
one “box”
Will not yet fit extremely large problems
Will do problems that fit in ~ 1 GB and can be parallelized

Unless programming model and memory issues are
understood, performance not achieved

Approach to use GPU: Flagon Middleware
Programming from higher language on
CPU (Matlab/C++/Fortran)
Pointers to Device Variables on the GPU
Execute small, well written, CU functions
to perform primitive operations on device

avoid data transfer overhead
Provide wrappers to BLAS FFT and otherProvide wrappers to BLAS, FFT, and other
software (random number, sort, screen
dump, etc.)
Allow incorporation of existing
mechanisms for doing distributed
programming (OpenMP, MPI, Hadoop,
etc.) to handle clusters

Sourceforge Flagon

12/19/2008

5

Processing large video streams
Will need to combine both cluster and GPU
paradigms
At the point video is enrolled in to database we will
need to reduce it to features

Features, objects, actions, people, words, j , , p p ,

Need data parallel algorithms for these
Use it with large search algorithms from Google,
Amazon, Yahoo etc.

Map Reduce/Hadoop
Parallel file systems

Hadoop/Map Reduce
Google, Yahoo and Amazon have built huge search,
and transaction engines on extremely large clusters
of computers
Also built a distributed file system for handling
extremely large data sets y g
Map/reduce paradigm works on files which are
extremely large sets of (key, value) pairs
Map step takes data from the store according to
some rule on the keys
Reduce performs same computation on data
according to key.

Map Reduce
Divide and Conquer!
Extremely fertile area
of research
However not much yet
on analysis of video

Data Store

Initial kv pairs

mapmap

Initial kv pairs

map

Initial kv pairs

map

Initial kv pairs

k1, values…

k2, values…
k3, values…

k1, values…

k2, values…
k3, values…

k1, values…

k2, values…
k3, values…

k1, values…

k2, values…
k3, values…

Barrier: aggregate values by keyson analysis of video
and audio
Reduce can be
computationally
intensive and use GPUs
as an accelerator

redu
ce

k1, values…

final k1 values

redu
ce

k2, values…

final k2 values

redu
ce

k3, values…

final k3 values

Picture from Jimmy Lin’s course notes

Audio processing on the GPU
Recently we developed a novel spherical
microphone array

Audio Camera: Invention of the year, 2008

Allows panning of the environment and measure the
intensity of sound coming from various directionsy g
Very expensive to process
Prevents real-time
Used G80 GPU to convert to real-time
Demo

Gaussian Process Regression
Bayesian approach to regression/classification
Provides both a prediction and a variance estimate
Mackay (2005), Rasmussen and Williams (2006)

