
DOCLIB – A Collaborative
Approach to Document Image
Processing

Kevin Chen David Doermann Stefan Jaeger
Summit Sampat Guangyu Zhu

Booz | Allen | Hamilton Department of Defense University of Maryland,
134 National Business Pkwy College Park, MD 20742, USA
Annapolis Junction, MD 20701 jaeger@umiacs.umd.edu
chen_kevin@bah.com

Often times, valuable intellectual capital is lost due to
technology transfer challenges

• Software development environment and dependencies
(compilers, Makefile, etc)

• Dependencies
• External software
• Hardware
• Platform

• Limited resources
• Diverse skill sets

• Example
– Transferring a new software algorithm from a University

research group to a Government agency.
• University:

– Build using MSVC
– Using MFC
– libjpeg version X.XX

• Government agency :
– Build using Linux g++
– Libjpeg version X.XX.Y

A common model will facilitate technology
transfer
• Common Framework

– Eases technology transfer
– Ensures software compatibility

• Scalable
– Accommodates frequently changing requirements
– Eases R & D of new algorithms
– Enables simple algorithm comparison

• Robust and Stable
– Enables high quality standards
– Prepares Govt. to transfer technology

• Communication
– Facilities technology transfer
– Fosters collaboration
– Balances the needs of academia, Government, and industry

Several tools and techniques were established to
aid technology transfer and enhance performance
• Software Development Process
• Shared Development Server
• Common Development Environment

– Compiler
– Supported platforms
– Coding Standards

• Developer & User Web Portal
– Distribution of software releases
– Software Tutorial (example code)
– Documents/Presentations/Design Archives

• Bug Tracker
– Central Bug Repository
– Task Delegation

• Concurrent Version System (CVS)

These tools and techniques were applied
throughout a collaborative software development
effort

• DOCLIB
– Image & Document Processing Library
– Tailors to Government needs
– Joint, Collaborative Effort

• Government
• Booz | Allen | Hamilton
• University of Maryland, College Park

– Research Facilitation Vehicle
• Used successfully in many Government and Academic

applications
• DOCLIB, a Core Library with an Add-on Construct

– Easy to use
– Designed to appeal to non-object oriented developers

The DOCLIB system architecture is easily
extendable

Pixel
Conversion

Connected
Components

Edge
Detection

Visualization

DLImage

Skeleton

Algorithms

DOCLIB

Logo Detect

Script
Identification

Stamp
Detection

DOCLIB
Add-on

DOCLIB image types plug and play into the existing
architecture

DLImageFactory

DLTiffImage

DLJpegImge

DLPPMImage

DLPPImage

:
:

R
egisters

DLBaseImageDLBaseImageDLBaseImage

Image Type objects are static/singleton objects created on startup
DLImageFactory is a static/singleton object
Image Type objects registers itself with the DLImageFactory during
startup
DLImageFactory keeps a list of supported Image objects as each
image type calls the register function
Additional image types can be plugged into DOCLIB without
modifying existing DOCLIB code.

Design Factors:

int main(int argc, char *argv[]) {
// open tif image
DLImage image("..\\..\\TestImage\\lena.tif");

//rotate image (a) 45 dregrees
image = image.dlRotateImage(45);

//resize image to 100x 100
image = image.dlResizeImage(100,100);

// reverse image
image = image.dlReverseImage();

//convert to binary image using a threshold
DLImage image_bin_thres =

dlDownscaleColor2Binary_threshold(image, 100. 100, 100);

//Want to perform percent threshold binarization?
DLImage image_bin_percent =

dlDownscaleColor2Binary_percentThreshold(image, 0.60);

//binarization routine
DLImage image_bin_global =

dlDownscaleColor2Gray_global(image);

} //end main

Open image

Rotate image

45 degrees

Resize image to

100x 100

Reverse image

Binarize using
threshold

% threshold
Global threshold

DOCLIB makes it easy to code and swap
algorithms to test performance

1. Open TIFF, JPEG, GIF, PPM, PNG, BMP, PBM(P1 and
P4) 1a. Memory based read TIFF

1b. Memory based read GIF
1c. Memory based read PNG

1d. Memory based read BMP
1e. Memory based read PPM
1f. Memory based read JPEG
1g. Memory based read PBM
1h. Supports multiple page TIFF file

2. Save TIFF, JPEG, GIF, PPM, and PNG images to disk
2a. Memory based write TIFF
2b. Memory based write BMP

3. Calculate connected components
4. Save individual components of an image to disk
5. Resize an image
6. Rotate an image (large image takes long time)
7. Copy an image
8. Extract sub-image
9. Flip image
10. Contour image
11. Reverse image
12. Paste Image
13. Set Pixel of an image
14. Convert images to and from BIT(1 bit, black/white),
BYTE(8 bits, gray), COLOR (24 bits)

15. Draw shapes within images
a. Line (color)
b. box (color)

16. Dilate image
17. Erode image
18. Sharpen image
19. Blur image
20. Mask image
21. Convert to YCrCb
22. YCrCbBinarization
23. 256Color quantized
24. PercentThresholdBinarization percent (i.e 90 or .9)
25. ThresholdBinarization rThresh gTresh bThresh
26. Color2Gray_global
27. Gray2Binary_global thresh
28. Binary2Color
29. Gray2Color
30. Binary2Gray
31. loadDocFile - Load an image as a document. Flips bits if
black pixels are more than white pixels.
32. Histgram for 1 and 8 bit images
33. Projection
34. Skeletonize
35. deskew
36. Loading an unknown image from memory or from file

(Unknown image type must be one of the supported images)
37. Skeletonize
38. DLDocument
39. Centroid Calculation

DOCLIB currently supports several
image processing features

Government

Commercial

Industry

A
cadem

ia

DOCLIB

DOCLIB continues to be developed and
distributed across academia, industry,
and Government domains

Application of collaboration tools and techniques
facilitates technology transfer

• Allowing researchers to focus on their core
competencies

• Saving time and frustration
• Increasing collaboration efforts
• Aligning needs across domains
• Minimizing debugging time
• Etc…

Questions?

Kevin Chen
chen_kevin@bah.com
Booz | Allen | Hamilton

Stefan Jaeger
jaeger@umiacs.umd.edu
University of Maryland, College Park

Point of Contacts

David Doermann
doermann@umiacs.umd.edu
University of Maryland, College Park

