

EVER VIGILANT™

Initial Results in Offline Arabic Handwriting Recognition Using Large-Scale Geometric Features

Ilya Zavorin, Eugene Borovikov, Mark Turner

System Overview

- Based on large-scale features: robust to handwriting variations, both inter-writer and intrawriter
- Simulates writing process: robust to overlaps
- Trainable: uses discrete Hidden Markov Models (HMM)
- Uses high-level information:
 - Permits "filling in" gaps in recognition unavoidable in degraded handwritten text
 - Resolves ambiguity
- Based on work by Khorsheed, with various modifications

Optical Handwriting Recognition Technologies Technical Exchange Meeting

Large-Scale Features

Represent connected components of image of letter or word as sequence of simple geometric objects, e.g. loops, turning and intersection points

Robust to:

- Handwriting variations: size, orientation, local distribution
- Letter variants: positional forms, casheedas
- Individual style differences
- Poor image quality

Simulation of Writing

 Individually process different connected components (CCs) of image skeleton

العزلان

- Use set of consistent tracing rules to traverse each CC
- Rules resemble those of human handwriting, but any consistent set of rules can be used

Optical Handwriting Recognition Technologies Technical Exchange Meeting

Discrete HMMs

- "Universal" model of lexicon or collection of word models assembled from individual letter HMMs
- Letter model size proportional to letter complexity
- Universal combination reflects letter combination probabilities (bigram or other)
- Very general framework: the only requirement is ordered set of discrete features/events to be used for training and recognition

Discrete HMMs

single letter HMM:

Topology permits skipped and repeated components

universal (composite) HMM based on individual letter HMMs and bigram statistics:

character block (word) HMM:

Optical Handwriting Recognition Technologies Technical Exchange Meeting

Training Modes

Original algorithm: training individual letter models by manually pre-segmented data

- Straight-forward, accurate training
- Not practical for high volume systems

Improvement: training by unsegmented words using word models

- Lose some accuracy, but
- Preprocessing becomes fully automatic

Training with manual segmentation

1. For each training word

- I. Manually pre-segment into character sub-images
- II. Convert character sub-images into observation sequences

2. For each character

- I. Compute initial model
- II. Collect all training sequences from data in Step 1.
- III. Train character model
- 3. Connect all trained character models into universal model using bigram statistics

Training with no manual segmentation

- **1.** For each character, compute initial model
- **2.** For each training word
 - Assemble initial character models into word model
 - II. Convert entire training word image into observation sequence
 - III. Use sequence to train model
 - IV. Disassemble word model into instances of trained character models
- 3. For each character, combine all instances into single trained character model
- 4. Connect all trained character models into universal model using bigram statistics

Experiments

Proof of Concept

- Manual preprocessing of segmented letters
- Emulate handwriting differences by random perturbation ("shaking")
- Training and test words created by concatenation

Manual Processing

- Using specially designed graphical tool
- Stick traces superimposed onto "template" images
- Segments labeled

Traces merged automatically

Optical Handwriting Recognition Technologies Technical Exchange Meeting

Handwriting Style Emulation

- Traces randomly perturbed ("shaken")
- Letter models trained by shaken skeletons
- Perturbation measured by standard deviation, in pixels

Image size $\approx 100 \text{ x } 200 \text{ pixels}$

Test data

- Tested on synthetic data
- 29 main Arabic characters included in model
- Characters models with 3 to 20 hidden states
- Lexicon of 2000+ words
- Various degrees of perturbation, from $\sigma=0$ to $\sigma=15$
- Three sets of tests
 - 1. Machine-printed images as templates; train *with* pre-segmentation
 - 2. Machine-printed images as templates; train *without* pre-segmentation
 - 3. Machine-printed and handwritten images as templates; train *without* pre-segmentation

Test Sets 1 and 2: Results

		With	Without
Example 1		Segmentation	Segmentation
Character Accuracy	Precision	99.5 %	93.1%
	Recall	99.6%	92.1%
Word Accuracy	Number of word sequences	107950	10800
	Number of matches	105691	8059
	Recognition rate	97.9%	74.6%

Optical Handwriting Recognition Technologies Technical Exchange Meeting

Test Set 3: Handwritten and machine-printed data

- Purpose: to show that one can model one handwriting style with perturbed versions of other styles
- Two words, 3 handwritten and 1 machineprinted samples of each
- Skeletons created manually
- Trained using perturbed handwritten skeletons, no pre-segmentation (as in Test 2)
- Tested on machine-printed skeleton

Test Set 3: Training and Test Data

Optical Handwriting Recognition Technologies Technical Exchange Meeting

Test Set 3: Results

- Tested universal model
- Both words correctly recognized
- Perturbation during training was critical: no path at all through universal model without it

Optical Handwriting Recognition Technologies Technical Exchange Meeting

Future Work

Automatic preprocessing

- Rectification
- Feature extraction

Study role of high-level info

 Simple human handwriting recognition tests using native and non-native Arabic speakers to establish baseline of human performance

Tests on more realistic data

- IFN/ENIT
- ISG
- Other datasets

