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Abstract

We present a novel technique for motion-based recognition of
individual gaits in monocular sequences. Recent work has sug-
gested that the image self-similarity plot of a moving person/object
is a projection of its planar dynamics. Hence we expect that
these plots encode much information about gait motion patterns,
and that they can serve as good discriminants between gaits of
different people. We propose a method for gait recognition that
uses similarity plots the same way that face images are used in
eigenface-based face recognition techniques. Specifically, we first
apply Principal Component Analysis (PCA) to a set of training
similarity plots, mapping them to a lower dimensional space that
contains less unwanted variation and offers better separability of
the data. Recognition of a new gait is then done via standard pat-
tern classification of its corresponding similarity plot within this
simpler space. We use the k-nearest neighbor rule and the Euclid-
ian distance. We test this method on a data set of 40 sequences of
six different walking subjects, at 30 FPS each. We use the leave-
one-out cross-validation technique to obtain an unbiased estimate
of the recognition rate of 93%.

1 Introduction

Human gait has long been an active subject of study in biome-
chanics, kinesiology, psychophysics, and physical medicine [25,
21, 28]. The reasons and applications for this interest include: de-
tection of gait pathologies, rehabilitation of an injured person, im-
proving athletic performance, and designing ergonomic-based ath-
letic and office equipment. These gait studies typically analyze 3D
temporal trajectories of marked points on the body in terms of their
frequency and phase. The relationships among the component pat-
terns of the gait, such as phase differences between the trajectories,
are also a valuable source of information.

In machine vision, gait recognition has received growing inter-
est due to its emergent importance as a biometric [9, 4]. The term
gait recognition is used to signify recognizing individuals by the

way they walk in image sequences. Gait detection is the recog-
nition of different types of human locomotion, such as running,
limping, hopping, etc. Because human ambulation (gait) is one
form of human movement, gait recognition is closely related to
vision methods for detection, tracking and recognition of human
movement in general (such as actions and gestures).

Gait recognition research has largely been motivated by Jo-
hansson’s experiments [21] and the ability of humans for motion
perception from Moving Light Displays (MLDs). In these exper-
iments, human subjects were able to recognize the type of move-
ment of a person solely from observing the 2D motion pattern gen-
erated by light bulbs attached to the person. Similar experiments
later showed some evidence that the identity of a familiar person
(‘a friend’) [3], as well as the gender of the person [11] might be
recognizable from MLDs, though in the latter case a recognition
rate of 60% is hardly significantly better than chance (50%).

Despite the agreement that humans can perceive motion from
MLDs, there is still no consensus on how humans interpret this
MLD-type stimuli (i.e. how it is they use it to achieve motion
recognition). Two main theories exist: The first maintains that peo-
ple use motion information in the MLDs to recover the 3D struc-
ture of the moving object (person), and subsequently use the struc-
ture for recognition; and the second theory states that motion in-
formation is directly used to recognize a motion, without structure
recovery. In machine vision, methods that subscribe to the former
theory are known as structure from motion (SFM) [17], and those
that favor the latter are known as motion-based recognition [8].

Consequently, there exist two main approaches for gait recog-
nition each of which favors one of the two above theories. In SFM-
based methods, a set of body points are tracked (as a result of body
structure recovery), and their motion trajectories are used to char-
acterize, and thereby recognize the motion or action performed
by the body. Note that this approach emulates MLD-based mo-
tion perception in humans, since the body part trajectories are in
fact identical to MLD-type stimuli. Furthermore, this approach is
supported by biomedical gait research [28] which found that the
dynamics of a certain number of body parts/points totally charac-
terize gait. However, because tracking body parts in 3D over a long
period of time remains a challenge in vision, the effectiveness of
SFM-based methods remains limited.

Motion-based recognition methods, on the other hand, char-
acterize the motion pattern of the body, without regard to its un-
derlying structure. Two main approaches exist; one which rep-
resents human movement as a sequence (i.e. discrete number)
of poses/configurations; and another which characterizes the spa-
tiotemporal distribution generated by the motion in its continuum.

The method we describe in this paper takes a motion-based
recognition approach. Our method makes the following assump-
tions:

� People walk with constant speed and direction for about 3-4
seconds.

� People walk approximately parallel to the image plane.

� The camera is sufficiently fast to capture dynamics of motion
(we use 30Hz).



2 Related Work

We review vision methods used in detection, tracking and
recognition of human movement in general, as they are closely re-
lated to gait recognition ([8, 1, 14] are good surveys on this topic).
These methods can be divided into two main categories: methods
that recover high-level structure of the body and use this structure
for motion recognition, and those that directly model how the per-
son moves. We shall describe the latter in more detail as it is more
relevant to the gait recognition approach proposed in this paper.

2.1 Structural Methods

A 2D or 3D structural model of the human body is assumed,
and body pose is recovered by extracting image features and map-
ping them to the structural components of the model (i.e. body
labelling). Hence a human is detected in the image if there exists a
labelling that fits the model well enough (based on some measure
of goodness of fit) [17, 18, 32, 15, 33]. Once a person has been de-
tected and tracked in several images, motion recognition is done
based on the temporal trajectories of the body parts, typically by
mapping them to some low-dimensional feature vector and then
applying standard pattern classification techniques [2, 34, 7, 26].

2.2 Structure-free Methods

To recognize a moving object (or person), these methods char-
acterize its motion pattern, without regard to its underlying struc-
ture. They can be further divided into two main classes. The first
class of methods consider the human action or gait to be com-
prised of a sequence of poses of the moving person, and recognize
it by recognizing a sequence of static configurations of the body in
each pose [27, 20, 16]. The second class of methods characterizes
the spatiotemporal distribution generated by the motion in its con-
tinuum, and hence analyze the spatial and temporal dimensions si-
multaneously [29, 30, 12, 24, 23, 10]. Our method is closely related
to the work of [10], in that both use similarity plots to character-
ize human motion, though we use them for gait recognition, and
Cutler and Davis use them mainly for human detection.

State-space Methods These methods represent human move-
ment as a sequence of static configurations. Each configuration is
recognized by learning the appearance of the body (as a function
of its color/texture, shape or motion flow) in the corresponding
pose.

Murase and Sakai [27] describe a template matching method
which uses the parametric eigenspace representation as applied in
face recognition [35]. Specifically, they use PCA (Principal Com-
ponent Analysis) to compute a 16-dimensional manifold for all the
possible grey-scale images of a walking person. An input sequence
of images (after normalization) is hence mapped to a trajectory in
this 16-dimensional feature space, and gait recognition is achieved
by computing the distance between the trajectories of the input
image sequence and a reference sequence.

Huang et al. [20] use a similar technique, as they apply PCA
to map the binary silhouette of the moving figure to a low dimen-
sional feature space. The gait of an individual person is represented

as a cluster (of silhouettes) in this space, and gait recognition is
done by determining if all the input silhouettes belong to this clus-
ter.

He and Debrunner [16] recognize individual gaits via an HMM
that uses the quantized vector of Hu moments of a moving person’s
silhouette as input.

Spatiotemporal Methods Here, the action or motion is char-
acterized via the entire 3D spatiotemporal (XYT) data volume
spanned by the moving person in the image. It could for example
consist of the sequence of grey-scale images, optical flow images,
or binary silhouettes of the person. This volume is hence treated
as a ‘large’ vector, and motion recognition is typically done by
mapping this vector to a low-dimensional feature vector, and ap-
plying standard pattern classification technique in this space. The
following methods describe different ways of doing this.

Of particular interest is the recent work by Cutler and Davis
[10], in which they show that human motion is characterized by
specific periodic patterns in the similarity plot (a 2D matrix of all
pairwise image matching correlations), and describe a method for
human detection by recognizing such patterns. They also use sim-
ilarity plots to estimate the stride of a walking and running per-
son, assuming a calibrated camera. Here, a person is tracked over
a ground plane, and their distance travelled, D, is estimated. The
number of steps N is also automatically estimated using periodic
motion, which can be a non-integer number. The stride is D=N ,
which could be used as a biometric, though they have not con-
ducted any study showing how useful it is as a biometric.

3 Motivation

In this section, we give the motivation for the methodology
used in this paper. One method of motion-based recognition is to
first explicitly extract the dynamics of points on a moving object.
Consider a point P (t) = (x(t); y(t); z(t)) on a moving object as
a function of time t (see Figure 1). The dynamics of the point can
be represented by the phase plot (P (t); dP =dt(t); :::). Since we
wish to recognize different types of motions (viz. gaits), it is im-
portant to know what can be determined from the projection T of
P (t) onto an image plane, (u; v) = T (P ). Under orthographic
projection, and if P (t) is constrained to planar motion, the ob-
ject dynamics are completely preserved up to a scalar factor. That
is, the phase space for the point constructed from (u; v) is iden-
tical (up to a scalar factor) to the phase space constructed from
P (t). However, if the motion is not constrained to a plane, then
the dynamics are not preserved. Under perspective projection, the
dynamics of planar and arbitrary motion are in general not pre-
served.

Fortunately, planar motion is an important class of motion, and
includes “biological motion” [17]. In addition, if the object is suf-
ficiently far from the camera, the camera projection becomes ap-
proximately orthographic (with scaling). In this case, and assum-
ing we can accurately track a point P (t) in the image plane, then
we can completely reconstruct the phase space of the dynamic sys-
tem (up to a scalar factor). The phase space can then be used di-
rectly to classify the object motion (e.g., [7]).
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Fig. 1. Point P (t) on an object moving in R3,
imaged onto a 2D plane.

In general, point correspondence is not always possible in real-
istic image sequences (without the use of special markers), due to
occlusion boundaries, lighting changes, insufficient texture, image
noise, etc. However, for classifying motions, we do not necessar-
ily have to extract the complete dynamics of the system; qualita-
tive measures may suffice to distinguish a class of motions from
each other. In this paper, we use correspondence-free, qualitative
measures for motion-based gait recognition.

4 Method

4.1 Self-similarity Plots

Computation from an Image Sequence Given a sequence
of grey-scale images obtained from a static camera, we detect and
track the moving person, extract an image template corresponding
to the person’s motion blob in each frame, then compute the im-
age self-similarity plot from the obtained sequence of templates.
For this, we use the method described in [10], except that we use
background modeling and subtraction [13, 19] for foreground de-
tection, since the camera is assumed to be stationary.

Moving objects are tracked in each frame based on spatial and
temporal image coherence. An image template at time t, denoted
by Ot, is extracted for each tracked object, consisting of the image
region enclosed within the bounding box of its motion blob in the
current frame. Deciding whether a moving object corresponds to
a walking person is currently done based on simple shape (such
as aspect ratio of the bounding box and blob size) and periodicity
cues.

Once a person has been tracked for N consecutive frames, its
N image templates are scaled to the same dimensions HxW , as
their sizes may vary due to change in camera viewpoint and seg-
mentation errors. The image self-similarity,S, of the person is then
computed as follows:

S(t1; t2) =
X

(x;y)2Bt1

jOt1 (x; y)�Ot2(x; y)j;

where 1 � t1; t2 � N , Bt1 is the bounding box of the person in
frame t1, and Ot1 ; Ot2 ; ::; OtN are the scaled image templates of

the person. In order to account for tracking errors, we compute the
minimal S0 by translating over a small search radius r:

S
0(t1; t2) = min

jdx;dyj<r

X

(x;y)2Bt1

jOt1(x+ dx; y + dy)�Ot2(x; y)j:

Figure 2(b) shows a plot of S0 for all combinations of t1 and t2, for
the two walking sequences (80 frames each) shown in Figure 2(a)
(note the similarity values have been linearly scaled for visualiza-
tion to the grayscale intensity range [0,255], where dark regions
show more similarity).

Properties The similarity plot, S 0, of a walking person has the
following properties:

1. S0(t; t) = 0, i.e. it has a dark main diagonal.
2. S0(t1; t2) = S(t2; t1), i.e. it is symmetric along the main

diagonal.
3. S0(t1; kp=2 + t1) ' 0, i.e. it has dark lines parallel to the

main diagonal.
4. S0(t1; kp=2� t1) ' 0, i.e. it has dark lines perpendicular to

the main diagonal.

where t1; t2 2 [1; N ], p is the period of walking, and k is an in-
teger. The first two properties are generally true for any similarity
function (though if substantial image scaling is required, the sec-
ond property may not hold). The latter two, however, are a direct
consequence of the periodicity and the bilateral symmetry, respec-
tively, of the human gait.

Figure 2(a) shows the 5 key poses over one walking cycle for
two different persons; poses A and C correspond to when the per-
son is in maximum swing (i.e. the two legs are furthest apart), and
Pose B corresponds to when the two legs are together. One can
easily see that the intersections of the dark lines in S0 (i.e. the
diagonals and cross diagonals) correspond to pose combinations
AA, BB and CC, AC, and CA. Thus these intersections, which are
the local minima of S0, can be used to determine the frequency
and phase of walking [10].

That S0 encodes the frequency and phase of gait can be ex-
plained by the fact that the similarity plot of a walking person is
(approximately) a projection of the planar dynamics of the walk-
ing person when viewed sufficiently far from the camera, as previ-
ously suggested in [10]. Intuitively, this is because S0 is obtained
via a sequence of transformations (image projection and template
matching) applied to the set of 3D points constituting the person’s
body. It can be shown that these transformations approximately
preserve the dynamics of these points (and hence the dynamics of
the gait) under certain assumptions.

4.2 Gait Classifier

As mentioned in the previous section, the similarity plot is a
projection of the dynamics of the walking person that preserves
the frequency and phase of the gait. The question then arises
as to whether this projection preserves more detailed (higher-
dimensional) aspects of gait dynamics, that capture the unique
way a person walks. In other words, does a similarity plot contain
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Fig. 2. (a) A few frames of the key poses in
a walking person sequence, and the corre-
sponding (b) Image self-similarity plots.

sufficient information to distinguish (not necessarily uniquely) the
walking gaits of different people?

To evaluate the usefulness of the self-similarity plot in char-
acterizing and recognizing individual gaits, we propose to build
a gait pattern classifier that takes an SP (self-similarity plot) as
the input feature vector. For this, we take an ‘eigenface’ approach
[35], in which we treat a similarity plot the same way that a face
image is used in a face recognizer. The gist of this approach is that
it extracts ‘relevant information’ from input feature vectors (face
images or SPs) by finding the principal components of the distri-
bution of the feature space, then applies standard pattern classifica-
tion of new feature vectors in the lower-dimensional space spanned
by the principal components. We use a simple non-parametric pat-
tern classification technique for recognition. In the following, we
explain the details of the proposed gait classifier.

Normalizing the Input In order to account for different walk-
ing paces and starting poses, we need to normalize the self-
similarity plots so that they are phase-aligned, have the same fre-
quency, and contain the same number of cycles. To this end, we
compute the frequency and phase of each similarity plot using the
method in [10]. We choose the pose corresponding to when the
legs are maximally apart, i.e. poses A or C in Figure 2(a), for phase
alignment.

Training the Classifier Let S0
1; S

0
1; ::; S

0
M be a given training

set of M labelled (i.e. corresponding to a known person) normal-
ized similarity plots, of size NxN each, and let s0i be the vector of
length N2 corresponding to the ith similarity plot S0

i (obtained by
concatenating all its rows). We compute the principal components
[22] of the space spanned by s01; ::; s

0
M by computing the eigen-

value decomposition (also called Karhunen-Loeve expansion) of
their covariance matrix:

Cs =
1

M

MX

i=1

(s0i � �s0i)(s
0
i �

�s0i)
T

where �s0 is the simple mean of all training vectors s01; ::; s
0
M . This

can be efficiently computed in O(M) time (instead of the brute
force O(N2)) [35].

We then consider the space spanned by the n most significant
eigenvectors, u1; ::; un, that account for 90% of the variation in
the training SPs 1. We denote this space the Eigengait. Hence
each training vector s0i can be sufficiently approximated by a n-
dimensional vector wi obtained by projecting it onto the Eigen-
gait, i.e.wi �

Pn

j=1
uTj :s

0
i. Furthermore, assuming that the train-

ing vectors are representative of the variation in the entire feature
space, then any new feature vector can be similarly approximated
by a point in Eigengait space.

Classification Gait recognition now reduces to a standard pat-
tern classification in a n-dimensional Eigengait space. The advan-
tage of doing pattern classification in this space is not only that n
is typically much smaller than N2 and M , but also that it contains
less unwanted variation (i.e. random noise)2 and hence provides
better separability of the feature vectors, or SPs.

Given a new SP (corresponding to an unknown person), the
procedure for recognizing it is to first convert it to a N2-vector,
map it to a point in Eigengait, find the k closest training points to
it, then decide its class (or label) via the k-nearest neighbor rule
[5, 31].

5 Experiments

To evaluate our method, we build the gait classifier described
above using k-nearest neighbor classification and the gait data set
of Little and Boyd [23]. We use the leave-one-out cross-validation
to obtain a statistically accurate estimate of the recognition rate
[36, 31].

The data set consists of 40 image sequences and six different
subjects (7 sequences per person except for the 5th person). Fig-
ure 3 shows all six subjects overlaid at once on the background
image.

Since the camera is static we used median filtering to recover
the background image. Templates of the moving person were ex-
tracted from each image by computing the difference of the image
and the background and subsequently applying a threshold as well
as morphological operations to clean up noise. This simple method
for person detection and tracking was sufficient because the back-
ground is static and each sequence only contains one moving per-
son. Absolute correlation was used to compute the self-similarity
plot for each of the 40 template sequences. For temporal normal-
ization (since the image sequences were of varying lengths and the

1 According to the theory of PCA, if �1; ::; �n are the n largest
eigenvalues, then the space spanned by their corresponding
eigenvectors account for

Pi=n

i=1
�i=trace(Cs) of the total vari-

ation in the original feature vectors.
2 Assuming data variation is much larger than noise variation.



persons had different gait cycle lengths), the similarity plots were
cropped and scaled so that they all contained 4 gait cycles starting
on the same phase, and are of size 64x64. Figure 4 shows exam-
ples of these normalized similarity plots, where each column of
three plots corresponds to one person.

Since our data set is relatively small, we use the leave-one-out
cross-validation method. The leave-one-out error rate estimator is
known to be an (almost) unbiased estimator of the true error rate
of the classifier. Hence, out of the 40 similarity plots, we build (or
train) our classifier on all but one of the samples, test the classifier
on the sample missed (or left out), and record the classification
result. This is repeated 40 times, leaving out each of the 40 samples
in turn. The recognition rate is then obtained as the ratio of the
number of correctly classified test samples out of the total 40.

The classifier is built simply by storing the training vectors as
points in Eigengait space, and the test sample is classified by de-
termining its k-nearest neighbor with k = 5, using the Euclidian
distance as a distance metric and simple majority as a decision
rule. The recognition rate thus obtained is 0.93 (37 out of 40).

To visualize how well separated the gaits of the 6 people are,
we applied PCA to all 40 SPs. Figure 5 shows all 40 SPs pro-
jected onto the 3 most significant eigenvectors thus obtained. Each
closed contour encloses the samples (points) corresponding to one
person.

Fig. 3. The six people contained in the test se-
quences, overlaid on the background image.

Fig. 4. Normalized self-similarity plots
(columns correspond to a single person).

Fig. 5. Similarity plots projected onto the
space spanned by the three most dominant
eigenvectors.

6 Conclusion and future work

In this paper, we have used a correspondence-free motion-
based method to recognize the gaits of a small population (6) of
people. While the results are promising, more evaluation of the
method needs to be done. Future studies include larger test pop-
ulations (20-100 people) and images taken from multiple view
points (not just parallel to the image plane)3. In addition, image
sequences of the same individual need to be acquired in different
lighting conditions, and with various types of clothing.

Finally, we are working to combine the results of this
correspondence-free gait recognition method with more feature-
oriented methods, such as stride and height estimation.
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