
Randomized Algorithms for Network
Security and Peer-to-Peer Systems

Micah Adler
University of Massachusetts, Amherst

Talk Outline
• Probabilistic Packet Marking for IP Traceback

– Network Security
– Appeared in STOC 2002

• Load balancing in Peer-to-peer networks
– A Stochastic Process on the Hypercube
– Joint work with Eran Halperin, Richard Karp, and

Vijay Vazirani.
– Appeared in STOC 2003

• More details: www.cs.umass.edu/~micah

The IP Traceback Problem

• Denial of Service Attacks:
– Attacker sends MANY packets to victim.
– Denies access to legitimate users.

• Difficulties:
– Source of packets can be forged.
– Tools for coordinating from multiple locations.

• Enforcing accountability: the IP Traceback

problem.
– Determine the source of a stream of packets.

Probabilistic Packet Marking

• Suggested in [BurchC2000].
• Protocol of [SavageWKA2000]

– Reserve header bits for IP Traceback
– Each router on path of packet:

• With small probability:
– Write IP address into header; reset hop

count.
• Otherwise: increment hop count.

– Victim of attack receives many packets:
• Can reconstruct entire path (with high

probability.)

Existing Work
• Elegant protocol: produced flurry of research.

– [DoeppnerKK2000]
– [LeeS2001]
– [DeanFS2001]
– [ParkL2001]
– [SongP2001]

• Objectives include:
– Reducing header bits required.

• Full protocol of Savage et al: 16 bits.

– Robustness against multiple paths of
attack.

New results: single path of
attack

• New technique for probabilistic marking:
– One header bit is sufficient.
– Number of packets required:

• n: number of bits to describe path.

– Any protocol that uses one bit:

• Number of header bits used: b
– Packets required by optimal protocol:

• Grows exponentially with n.
• Decreases DOUBLY exponentially with b.

O(22n)

)2(2nΩ

()bn 22Θ

New results: many paths of
attack

• Number of paths attacker can use: k
• Lower bound:

– For any valid protocol b = log(2k-1).

• Protocol: b = log(2k+1) sufficient.
– Requires restrictions on attacker.
– Introduces powerful new coding technique.

• New use of Vandermonde matrices.

Model for protocols

• Path of length n: each node has one bit.

• Objective: inform victim of all n bits.
– Easy to adapt to IP Traceback over

Internet.
• Attacker sends b-bit packets along path.

– Chooses initial setting of packets.

• Requirement on intermediate nodes:
– No state information.

b1 b2 b6b5b4b3 bn L

The one bit scheme

• Idea: encode bits b1 . . . bn into
– p = Pr[bit received by victim = 1]

• Packets provide estimate of p.

•

b1 b2 b6b5b4b3

i

n

i

ibp ∑
=

=
1

2
1)(

b7 b8

The one bit scheme
• Protocol for each node i:

– : bit received from predecessor.
– : bit known to i.

– Probability node i forwards 1:

br

bi

br = 0 br =1
bi = 0 0 1

2

bi = 1 1
2 1

The one bit scheme

• Claim: if initial bit set to 0:

• Proof:
– : bit sent by node.

– If then

– If then

• Problem: attacker might set initial bit to

1.
– Result:

i

n

i

ibp ∑
=

=
1

2
1)(

i

n

i

in bp ∑
=

+=
1

2
1

2
1)()(

bs

 Pr[bs = 1] = Pr[br =1] 2

 bi = 1
 bi = 0

 Pr[bs = 1] = Pr[br =1] 2 +1 2

bi

brbs

• Solution:

• If victim knows p within
– All bits in path can be decoded.

• packets sufficient (w.h.p.)()nO 2
2

1)(−− ε

The one bit scheme

ε
ε

−=
−=
==

11
00

10

2
1

2
1

i

i

rr

b
b

bb

n−−±)(2
11 εε

Extension to b bits.
• Computing p w/precision :

– requires packets.

• Idea: use added bits to reduce precision

needed.

• Protocol for each node:
– Increment (b-1)-bit counter.
– If counter overflows, perform 1 bit protocol.

• Effective path length reduced by

()n22θ

p (b-1)-bit counter

1
2n

 2b- 1

Extension to b bits.

• Problem: How to guarantee victim sees all
bits?
– If attacker always sets initial bits the same

Victim only sees one type of counter.

• Only provides bits on path.

• Solution:

– Each node resets counter w/small probability.

n

2b-1

Extension to b bits.

• Decoding:

– More involved than single bit case.

– Practical algorithm for decoding in

software.

– Sufficient: packets.

• Proof of correctness fairly involved.

• Lower bound for any protocol:

()1222 22
−bnbbnO






Ω

bnb 222

Lower Bound.

• Theorem: for any protocol using less than
packets,

• Model:

– Network sends n-bit string to victim.

– Communication: b-bit packets.
– Requirement: network has no memory.






Ω

bnb 222 2
1]Pr[≥wrong

Wrapup of Probabilistic Packet
Marking

• Summary:
– Significantly more efficient new encoding

technique.
– Tradeoff header bits for packets.
– Simple enough to be practical.
– Multiple paths (many open problems . . .).

• Other related work:
– Simulation experiments: tradeoffs seen in

practice.
• Joint work with Q. Dong and K. Hirata

– Applications of PPM to congestion control.
• Joint work with J. Cai, J. Shapiro, and D.

Talk Outline
• Probabilistic Packet Marking for IP Traceback

– Network Security
– Appeared in STOC 2002

• Load balancing in Peer-to-peer networks
– A Stochastic Process on the Hypercube
– Joint work with Eran Halperin, Richard Karp, and

Vijay Vazirani.
– Appeared in STOC 2003

• More details: www.cs.umass.edu/~micah

Coupon Collector’s Problem

• Objective: collect each of n coupons.
– Each step: receive one random

coupon.
– Well known: n log n ± o(n log n) steps

required to obtain every coupon (whp).

• Natural variant:
– Each step: check log n random

coupons.
– Receive one coupon if any are

missing.

Structured Coupon Collector’s
Problem

• Underlying graph G=(V,E).

• Initially: all vertices uncovered.

• Each step: choose random vertex v.
– If v uncovered, cover it.

– Else if any neighbors of v uncovered,
• cover random neighbor.

• How many steps until all vertices

covered?

Outline of rest of talk
• Application: distributed hash tables

(DHTs).
– Fundamental tool for Peer-to-Peer Networks.

• Load balancing in DHTs:
– Analyze w/vertex covering process on

hypercube.

• Theorem:
O(n) steps enough for log n-degree hypercube

(whp)

• Implication: asymptotically optimal load
balancing.

Distributed hash tables

Data Item Names Addresses
hash

Storage partitioned over available nodes

Objectives:

• Find data items quickly.

• Balance load fairly.

0

0 01 1

10

0 01 1

1

0 1

Strategy: maintain binary tree w/nodes at leaves

Handles addresses with prefix 011

Partitioning the address space

Based on DHT of [RFHKS 2001] called CAN

Finding region of address
space

• Nodes maintain pointers to each other:

• Complete binary tree: pointers are
hypercube
– Nodes adjacent iff hamming distance = 1.

• New arrival:
– Choose leaf node; split into two new leaves.
– Node adjacency rule: truncate longer string.

0
0
0

0
0
1

0
1
0

0
1
1

1
0
0

1
1
0

1
0
1

1
1
1

Resulting distributed hash table:

0

0 1

10

0 01 1

1

0 1

0 1

Performance of DHT with n
nodes:

• Depends on rule for choosing node to
split.

• Pointers per node: O(log n)
• Queries to locate content: O(log n)

• Load balance: V(x)
V(x)

– V(x): fraction of address space stored at x.

• V(x) = 2 - depth(x)

max
nodes∈x

min
nodes∈x/

Rules for choosing node to
split

• Simple rule:
– Choose hash address uniformly at random.
– Split node storing that address.
– Resulting load balance: T (log n) w.h.p.

• Our main contribution: analyze a better
rule.
– Choose node as in simple rule.
– Split shallowest neighbor of that node.
– Resulting load balance: O(1) w.h.p.

• First O(1) with O(log n) pointers,

Previous Work

• CAN [RFHKS 2001]: k-Dim. Torus
– Our hypercubic DHT is CAN with k = 8

– Suggested both splitting rules.
• No analysis of resulting load balance.

• Pastry [RD 2001], Tapestry [ZKJ 2001]
– Based on [PRR 1997]
– Pointers, queries, load balance, all T (log n)

More Previous Work
• Chord [SMKKB 2001]:

– Pointers, queries, load balance, all T (log n)
– Additional techniques:

• load balance O(1) but pointers T (log2 n)

• Viceroy [MNR 2002]:
– Pointers O(1), queries T (log n).
– Does not address load balance.
– Combine with technique from [SMKKB

2001]:
• Results similar to ours.

shallowest level (s)

deepest level (d)

Reduction to hypercube covering process

To show: w.h.p.,
• d – log n not too large.
• log n – s not too large (hypercube process).

No node “falls behind”

• Consider progress of nodes at level s:
– Each arrival is step of covering process.
– Node is covered when it is split.

• Theorem:
– Vertex covering process on n-node

hypercube: O(n) steps sufficient w.h.p.

• Corollary:
– log n – s is always O(1) w.h.p.

Easier result: O(n loglog n) steps.

• loglog n phases of O(n) steps each.
• w.h.p.: at end of phase i:

• Each node has < log n / 2i uncovered neighbors.

v

What is Pr[hit L1 during step of phase i]?

• Assume log n / 2i-1 = |L1| = log n / 2i

L1: uncovered neighbors of v.

Easier result: O(n loglog n) steps.

v

L2 = the covered neighbors of L1

• Pr[L1 hit in one step] =

• |L2| = ¼ |L1| log n =

•Thus: Pr[L1 hit in one step] =

nn
Lu

nn
ii L log

2
2log

21 1

2

1 −− =∑
∈

2

2

2
log

+i
n

n
n

8
log

L1 L2

•Chernoff bounds: Pr[Any L1 not halved in phase]: 1/poly(n).

Why O(n) seems possible.

Phase i: expected steps until L1 halved:

• L1 has size log n / 2i.

• Pr[L1 hit in one step] =

• Expected steps:

• O(n) steps guarantees O(log n) expected hits.

• Pr[not halving] = 1/nc









i

n
O

2

n
n

8
log

Intuition for a bound of O(n).

• Idea:

• Phase i:

• steps to shrink L3

• L3 larger, so more likely to be close to expectation

• Pr[L1 hit in a step] =

• steps sufficient to halve all L1s whp.

()i
niO
2

L1
v

L2 L3

n
ni log2









i

n
O

2

(uncovered)

• Sufficient (whp) for any d-regular graph:

• Sufficient whp for random d-regular
graphs:

• All results hold if never cover chosen
node.

()()d
dnnO loglog1 ⋅+

()()d
nnO log1+

Extensions:

Open problems for stochastic process

• Adding deletions
• Improving the constants
• O(n) for all log n-regular graphs ?

